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Abstract We discuss the asymptotics of the eigenvalue counting function for partial
differential operators and related expressions paying the most attention to the sharp
asymptotics. We consider Weyl asymptotics, asymptotics with Weyl principal parts
and correction terms and asymptotics with non-Weyl principal parts. Semiclassical
microlocal analysis, propagation of singularities and related dynamics play crucial
role. We start from the general theory, then consider Schrödinger and Dirac operators
with the strong magnetic field and, finally, applications to the asymptotics of the ground
state energy of heavy atoms and molecules with or without a magnetic field.
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1 Introduction

1.1 A bit of history

In 1911, Hermann Weyl, who at that time was a young German mathematician spe-
cializing in partial differential and integral equations, proved the following remarkable
asymptotic formula describing distribution of (large) eigenvalues of the Dirichlet
Laplacian in a bounded domain X ⊂ R

d :

N(λ) = (2π)−dωd vol(X)λd/2(1 + o(1)) as λ → +∞, (1.1)

where N(λ) is the number of eigenvalues of the (positive) Laplacian, which are less than
λ,1 ωd is a volume of the unit ball in R

d , vol(X) is the volume of X . This formula was
actually conjectured independently by Arnold Sommerfeld [34] and Hendrik Lorentz
[20] in 1910 who stated the Weyl’s Law as a conjecture based on the book of Lord
Rayleigh “The Theory of Sound” (1887) (for details, see [1]).

Weyl published several papers [35–39] (1911–1915) devoted to the eigenvalue
asymptotics for the Laplace operator (and also the elasticity operator) in a bounded
domain with regular boundary. In [38], he published what is now known as Weyl’s

conjecture

N(λ) = (2π)−dωd vol(X)λd/2 ∓ 1

4
(2π)1−dωd−1 vol′(∂X)λ(d−1)/2 as λ → +∞

(1.2)

for Dirichlet and Neumann boundary conditions respectively where vol′(∂X) is the
(d − 1)-dimensional volume of ∂X ∈ C ∞. Both these formulae appear in the toy
model of a rectangular box X = {0 < x1 < a1, . . . , 0 < xd < ad} and then N(λ) is
the number of integer lattice points in the part of ellipsoid {z2

1/a
2
1+. . .+z2

d/a
2
d < π2λ}

with z j > 0 and z j ≥ 0 for Dirichlet and Neumann boundary conditions respectively.2

H. Weyl returned to this topic in [41] (1950). His paper [40] (1927) was an important
step in the creation of Microlocal Analysis, which became a crucial tool in this problem.

1 N(λ) is called the eigenvalue counting function.
2 Finding sharp asymptotics of the number of the lattice points in the inflated domain is an important
problem of the number theory.
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After his pioneering work, a huge number of papers devoted to spectral asymptotics
were published. Among the authors were numerous prominent mathematicians.

After Weyl, the next big step was made by Richard Courant [6] (1920), who
further developed the variational method and recovered the remainder estimate
O(λ(d−1)/2 log λ). The variational method was developed further by many mathemati-
cians, but it lead to generalizations rather than to getting sharp remainder estimates
and we postpone its discussion until Sect. 3.2. Here we mention only Mikhail Birman,
Elliott Lieb and Barry Simon and their schools.

The next development was due to Torsten Carleman [4,5] (1934, 1936) who invented
the Tauberian method and was probably the first to consider an arbitrary spacial
dimension (H. Weyl and R. Courant considered only dimensions 2 and 3) followed
by Boris Levitan [15] (1952) and Avakumovič [2] (1956) who, applied hyperbolic

operator method (see Sect. 1.2) to recover the remainder estimate O(λ(d−1)/2), but
only for closed manifolds and also for e(x, x, λ) away from the boundary.3 See also
[16].

After this, Lars Hörmander [9,10] (1968, 1969) applied Fourier integral operators
in the framework of this method. Hans Duistermaat and Victor Guillemin [7] (1975)
recovered the remainder estimate o(λ(d−1)/2) under the assumption that

Claim 1.1 The set of all periodic geodesics has measure 0.
observing that for the sphere neither this assumption nor (1.2) hold. Here, we consider
the phase space T ∗X equipped with the standard measure dxdξ where X is a mani-
fold.4 This was a very important step since it connected the sharp spectral asymptotics
with classical dynamics.

The main obstacle was the impossibility to construct the parametrix of the hyper-
bolic problem near the boundary.5 This obstacle was partially circumvented by Robert
Seeley [30,31] (1978, 1980) who recovered remainder estimate O(λ(d−1)/2); his
approach we will consider in Sect. 4.2. Finally the Author [11] (1980), using very
different approach, proved (1.2) under assumption that

Claim 1.2 The set of all periodic geodesic billiards has measure 0,
which obviously generalizes Claim 1.1. Using this approach, the Author in [12] (1982)
proved (1.1) and (1.2) for elliptic systems on manifolds without boundary; (1.2) was
proven under certain assumption similar to Claim 1.1.

The new approaches were further developed during the 35 years to follow and many
new ideas were implemented. The purpose of this article is to provide a brief and rather
incomplete survey of the results and techniques. Beforehand, let us mention that the
field was drastically transformed.

First, at that time, in addition to the problem that we described above, there were
similar but distinct problems which we describe by examples:

3 Where here and below e(x, y, λ) is the Schwartz kernel of the spectral projector.
4 In fact the general scalar pseudodifferential operator and Hamiltonian trajectories of its principal symbol
were considered.
5 Or even inside for elliptic systems with the eigenvalues of the principal symbol having the variable
multiplicity.
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(b) Find the asymptotics as λ → +∞ of N(λ) for the Schrödinger operator�+V (x)

in R
d with potential V (x) → +∞ at infinity;

(c) Find the asymptotics as λ → −0 of N(λ) for the Schrödinger operator in R
d with

potential V (x) → −0 at infinity (decaying more slowly than |x |−2);
(d) Find the asymptotics as h → +0 of N−(h) the number of the negative eigenvalues

for the Schrödinger operator h2�+ V (x).

These four problems were being studied separately albeit by rather similar methods.
However, it turned out that the latter problem (d) is more fundamental than the others
which could be reduced to it by the variational Birman–Schwinger principle.

Second, we should study the local semiclassical spectral asymptotics, i.e. the
asymptotics of

∫
e(x, x, 0)ψ(x) dx where ψ ∈ C ∞

0 supported in the ball of radius
1 in which6 V is of magnitude 1.7 By means of scaling we generalize these results
for ψ supported in the ball of radius γ in which6 V is of magnitude ρ with ργ ≥ h

because in scaling h 
→ h/ργ . Then in the general case we apply partition of unity
with scaling functions γ (x) and ρ(x).

Third, in the singular zone {x : ρ(x)γ (x) ≤ h}b we can apply variational
estimates and combine them with the semiclassical estimates in the regular zone

{x : ρ(x)γ (x) ≥ h}. It allows us to consider domains and operators with singulari-
ties.

Some further developments will be either discussed or mentioned in the next sec-
tions. Currently, I am working on the Monster book [14] which is [13] “on steroids”
and which summarizes this development. It is almost ready and is available online and
we will often refer to it for details, exact statements and proofs.

Finally, I should mention that in addition to the variational methods and method
of hyperbolic operator, other methods were developed: other Tauberian methods (like
the method of the heat equation or the method of resolvent) and the almost-spectral
projector method [33]. However, we will neither use nor even discuss them; for survey
of different methods, see [26].

1.2 Method of the hyperbolic operator

The method of the hyperbolic operator is one of the Tauberian methods proposed by
T. Carleman. Applied to the Laplace operator, it was designed as follows: let e(x, y, λ)

be the Schwartz kernel of a spectral projector and let

u(x, y, t) =
∫ ∞

0
cos(λt) dλe(x, y, λ2); (1.3)

observe, that now λ2 is the spectral parameter. Then, u(x, y, t) is a propagator of the
corresponding wave equation and satisfies

6 Actually, in the proportionally larger ball.
7 Sometimes, however, we consider pointwise semiclassical spectral asymptotics, i.e. asymptotics of
e(x, x, 0).
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ut t +�u = 0, (1.4)

u|t=0 = δ(x − y), u|t=0 = 0 (1.5)

(recall that � is a positive Laplacian).
Now we need to construct the solution of (1.4)–(1.5) and recover e(x, y, t) from

(1.3). However, excluding some special cases, we can construct the solution u(x, y, t)

only modulo smooth functions and only for t : |t | ≤ T , where usually T is a small
constant. It leads to

Ft→τ

(
χ̄T (t)u(x, x, t)

)
= T

∫
̂̄χ((λ− τ)T ) dλe(x, x, λ2)

= c0(x)λ
d−1 + c1(x)λ

d−2 + O(λd−3) (1.6)

where F denotes the Fourier transform, χ̄ ∈ C ∞
0 (−1, 1), χ̄ (0) = 1, χ̄ ′(0) = 0 and

χ̄T (t) = χ̄(t/T ).8

Then using Hörmander’s Tauberian theorem,9 we can recover

e(x, x, λ2) = c0(x)d
−1λd + O(λd−1T −1). (1.7)

To get the remainder estimate o(λd−1) instead, we need some extra arguments.
First, the asymptotics (1.6) holds with a cut-off:

Ft→τ

(
χ̄T (t)(Qx u)(x, x, t)

)
= T

∫
̂̄χ((λ− τ)T ) dλ(Qx e)(x, x, λ2)

= c0Q(x)λ
d−1 + c1Q(x)λ

d−2 + OT (λ
d−3) (1.8)

where Qx = Q(x, Dx ) is a 0-order pseudo-differential operator (acting with respect
to x only, before we set x = y; and T = T0 is a small enough constant. Then the
Tauberian theory implies that

(Qx e)(x, x, λ2) = c0Q(x)d
−1λd + c1Q(x)(d − 1)−1λd−1

+ O
(
λd−1T −1µ(supp(Q))

)
+ oQ,T

(
λd−1) (1.9)

where µ = dxdξ
dg

is a natural measure on the energy level surface � = {(x, ξ) :
g(x, ξ) = 1} and we denote by supp(Q) the support of the symbol Q(x, ξ).

On the other hand, propagation of singularities (which we discuss in more details
later) implies that if for any point (x, ξ) ∈ supp(Q) geodesics starting there are not
periodic with periods ≤ T then asymptotics (1.8) and (1.9) hold with T .

Now, under the assumption Claim 1.2, for any T ≥ T0 and ε > 0, we can select
Q1 and Q2, such that Q1 + Q2 = I , µ(supp(Q1)) ≤ ε and for (x, ξ) ∈ supp(Q2)

8 In fact, there is a complete decomposition.
9 Which was already known to Boris Levitan.
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geodesics starting from it are not periodic with periods ≤ T . Then, combining (1.9)
with Q1, T0 and with Q2, T , we arrive to

e(x, x, λ2) = c0(x)d
−1λd + c1(x)(d − 1)−1λd−1

+ O
(
λd−1(T −1 + ε)

)
+ oε,T (λ

d−1) (1.10)

with arbitrarily large T and arbitrarily small ε > 0 and therefore

e(x, x, λ2) = c0(x)d
−1λd + c1(d − 1)−1λd−1 + O(λd−1T −1). (1.11)

holds. In these settings, c1 = 0.
More delicate analysis of the propagation of singularities allows under certain

very restrictive assumptions to the geodesic flow to boost the remainder estimate to
O(λd−1/ log λ) and even to O(λd−1−δ) with a sufficiently small exponent δ > 0.

2 Local semiclassical spectral asymptotics

2.1 Asymptotics inside the domain

As we mentioned, the approach described above was based on the representation of
the solution u(x, y, t) by an oscillatory integral and does not fare well in (i) domains
with boundaries because of the trajectories tangent to the boundary and (ii) for matrix
operators whose principal symbols have eigenvalues of variable multiplicity. Let us
describe our main method. We start by discussing matrix operators on closed mani-
folds.

So, let us consider a self-adjoint elliptic matrix operator A(x, D) of order m. For
simplicity, let us assume that this operator is semibounded from below and we are
interested in N (λ), the number of eigenvalues not exceeding λ, as λ → +∞. In other
words, we are looking for the number N−(h) of negative eigenvalues of the operator
λ−1 A(x, D)− I = H(x, h D, h) with h = λ−1/m .10

2.1.1 Propagation of singularities

Thus, we are now dealing with the semiclassical asymptotics. Therefore, instead of
individual functions, we should consider families of functions depending on the semi-

classical parameter h11 and we need a semiclassical microlocal analysis. We call such
family temperate if ‖uh‖ ≤ Ch−M where ‖ · ‖ denotes usual L 2-norm.

We say that u := uh is s-negligible at (x̄, ξ̄ ) ∈ T ∗
R

d if there exists a symbol
φ(x, ξ), φ(x̄, ξ̄ ) = 1 such that ‖φ(x, h D)uh‖ = O(hs). We call the wave front set

10 If operator is not semi-bounded we consider the number of eigenvalues in the interval (0, λ) (or (−λ, 0))
which could be reduced to the asymptotics of the number of eigenvalues in the interval (−1, 0) (or (0, 1))
of H(x, h D, h).
11 Which in quantum mechanics is called Planck constant and usually is denoted by h̄.
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of uh the set of points at which uh is not negligible and denote by WFs(uh); this is a
closed set. Here, −∞ < s ≤ ∞.

Our first result is rather trivial: if P = P(x, h D, h),

W F s(u) ⊂ W F s(Pu) ∪ Char(P) (2.1)

where Char(P) = {(x, ξ), det P0(x, ξ) = 0}; we call P0(x, ξ) := P(x, ξ, 0) the
principal symbol of P and Char(P) the characteristic set of L .

We need to study the propagation of singularities (wave front sets). To do this, we
need the following definition:

Definition 2.1 Let P0 be a Hermitian matrix. Then P is microhyperbolic at (x, ξ) in

the direction ℓ ∈ T (T ∗
R

d), |ℓ| ≍ 1 if

〈(ℓP0)(x, ξ)v, v〉 ≥ ǫ|v|2 − C |P0(x, ξ)v|2 ∀v (2.2)

with constants ǫ,C > 0.12

Then we have the following statement which can be proven by the method of the

positive commutator:

Theorem 2.2 Let P = P(x, h D, h) be an h-pseudodifferential operator with a Her-

mitian principal symbol. Let � ⋐ T ∗
R

d and let φ j ∈ C ∞ be real-valued functions

such that P is microhyperbolic in � in the directions ∇#φ j , j = 1, . . . , J where

∇#φ = 〈(∇ξφ),∇x 〉 − 〈(∇xφ),∇ξ 〉 is the Hamiltonian field generated by φ.

Let u be tempered and suppose that

WFs+1(Pu) ∩� ∩ {φ1 ≤ 0} ∩ · · · ∩ {φJ ≤ 0} = ∅, (2.3)

WFs(u) ∩ ∂� ∩ {φ1 ≤ 0} ∩ · · · ∩ {φJ ≤ 0} = ∅. (2.4)

Then,

WFs(u) ∩� ∩ {φ1 ≤ 0} ∩ · · · ∩ {φJ ≤ 0} = ∅. (2.5)

Proof This is Theorem 2.1.2 from [14]. See the proof and discussion there. ⊓⊔

The above theorem immediately implies:

Corollary 2.3 Let H = H(x, h D, h) be an h-pseudodifferential operator with a

Hermitian principal symbol and let P = h Dt − H. Let us assume that

|∂x,ξ H0v| ≤ C0|v| + C |(H0 − τ̄ )v| ∀v. (2.6)

Let u(x, y, t) be the Schwartz kernel of eih−1t H .

12 Here and below ℓP0 in is the action of the vector field ℓ upon P0.
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(i) For a small constant T ∗ > 0,

W F(u) ∩ {|t | ≤ T ∗, τ = τ̄ } ⊂ {|x − y|2 + |ξ + η|2 ≤ (C0t)2}. (2.7)

(ii) Assume that H is microhyperbolic in some direction ℓ = ℓ(x, ξ) at the point

(x, ξ) at the energy level τ̄ .13 Then for a small constant T ∗ > 0,

W F(u) ∩ {0 ≤ ±t ≤ T ∗, τ = τ̄ }
⊂ {±(〈ℓx , x − y〉 + 〈ℓξ , ξ + η〉) ≥ ±ǫ0t}. (2.8)

Proof It is sufficient to prove the above statements for t ≥ 0. We apply Theorem 2.2
with

(i) φ1 = t and φ2 = t − C−1
0 (|x − x̄ |2 + ǫ2)

1
2 + ε,

(ii) φ1 = t and φ2 = (〈ℓx , x − y〉 + 〈ℓξ , ξ + η〉)− ǫ0t + ε,

where ε > 0 is arbitrarily small. ⊓⊔

Corollary 2.4 (i) In the framework of Corollary 2.3(ii) with ℓ = (ℓx , 0), the

inequality

|Ft→h−1τχT (t)(Q1x u tQ2y)(x, x, t)| ≤ Csh−d(h/|t |)s (2.9)

holds for all s, τ : |τ − τ̄ | ≤ ǫ, h ≤ |t | � T ≤ T ∗ where Q1x = Q1(x, h Dx ),

Q2y = Q2(y, h Dy) are operators with compact supports, tQ2 is the dual

rather than the adjoint operator and we write it to the right of the function,

χ ∈ C ∞
0 (

[
−1,− 1

2

]
∪

[ 1
2 , 1

]
), χT (t) = χ(t/T ), and ǫ, T ∗ are small positive

constants.

(ii) In particular, we get the estimate O(hs) as T∗ := h1−δ ≤ |t | ≤ T ≤ T ∗.

(iii) More generally, when ℓ = (ℓx , ℓξ ), the same estimates hold for the distribution

σQ1,Q2(t) =
∫
(Q1x u tQ2y)(x, x, t) dx.

Proof (i) If t ≍ 1, (2.9) immediately follows from Corollary 2.3(ii). Consider t ≍ T

with h ≤ T ≤ T ∗ and make the rescaling t 
→ t/T , x 
→ (x − y)/T , h 
→ h/T .
We arrive to the same estimate (with T −d(h/T )s in the right-hand expression
where the factor T −d is due to the fact that u(x, y, t) is a density with respect to
y). The transition from |t | ≍ T to |t | � T is trivial.

(ii) Statement (ii) follows immediately from Statement (i).
(iii) Statement (iii) follows immediately from Statements (i) and (ii) if we apply the

metaplectic transformation (x, ξ) 
→ (x − Bξ, ξ) with a symmetric real matrix
B. ⊓⊔

Therefore under the corresponding microhyperbolicity condition, we can construct
(Q1x u tQ2y)(x, x, t) or σQ1,Q2(t) for |t | ≤ T∗ and then we automatically get it for
|t | ≤ T ∗. Since the time interval |t | ≤ T∗ is very short, we are able to apply the
successive approximation method.

13 Which means that H − τ̄ is microhyperbolic in the sense of Definition 2.1.
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2.1.2 Successive approximation method

Let us consider the propagator u(x, y, t). Recall that it satisfies the equations

(h Dt − H)u = 0, (2.10)

u|t=0 = δ(x − y)I (2.11)

and therefore,

(h Dt − H)u± tQ2y = ∓ihδ(t)δ(x − y) tQ2y, (2.12)

where u± = uθ(±t), θ is the Heaviside function, I is the unit matrix, Q1x =
Q1(x, h Dx ), Q2y = Q2(y, h Dy) have compact supports, tQ is the dual operator14

and we write operators with respect to y on the right from u in accordance with the
notations of matrix theory.

Then,

(h Dt − H̄)u± tQ2y = H ′u ∓ ihδ(t)δ(x − y) tQ2y I (2.13)

with H̄ = H(y, h Dx , 0) obtained from H by freezing x = y and skipping lower
order terms and H ′ = H ′(x, y, h Dx , h) = H − H̄ . Therefore,

u± tQ2y = Ḡ±ih H ′u± tQ2y ± ihḠ∓δ(t)δ(x − y) tQ2y I. (2.14)

Iterating, we conclude that

u± tQ2y =
∑

0≤n≤N−1

(Ḡ±ih H ′)n ū± tQ2y + (Ḡ±ih H ′)N u± tQ2y, (2.15)

ū± = ∓ihḠ±δ(t)δ(x − y) tQ2y I (2.16)

where Ḡ± is a parametrix of the problem

(ih Dt − H̄)v = f, supp(v) ⊂ {±t ≥ 0} (2.17)

and G± is a parametrix of the same problem albeit for H .
Observe that

H ′ =
∑

1≤|α|+m≤N−1

(x − y)αhm Rα,m(y, h Dx )

+
∑

|α|+m=N

(x − y)αhm Rα,m(x, y, h Dx ); (2.18)

14 I.e. tQv = (Q∗v†)† where v† is the complex conjugate to v.
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therefore due to the finite speed of propagation, its norm does not exceed CT as long
as we only consider strips �±

T
:= {0 ≤ ±t ≤ T }. Meanwhile, due to the Duhamel’s

integral, the operator norms of G± and Ḡ± from L 2(�±
T ) to L 2(�±

T ) do not exceed
Ch−1T and therefore each next term in the successive approximations (2.15) acquires

an extra factor Ch−1T 2 = O(hδ) as long as T ≤ h
1
2 (1+δ) and the remainder term is

O(hs) if N is large enough.
To calculate the terms of the successive approximations, let us apply h-Fourier

transform F(x,t)→h−1(ξ,τ ) with ξ ∈ R
d , τ ∈ C∓ := {τ : ∓ Im τ > 0} and observe

that δ(t)δ(x − y) 
→ (2π)−d−1e−ih−1〈y,η〉, tQ2y and Rα,m become multiplication
by Q2(y, η) and Rα,m(y, ξ) respectively, and Ḡ± becomes multiplication by (τ −
H0(y, ξ))−1. Meanwhile, (x j − y j ) becomes −ih∂ξ j

.
Therefore the right-hand expression of (2.15) without the remainder term becomes

a sum of terms ∓iFm(y, ξ, τ )h
m+1e−ih−1〈y,η〉 with m ≥ 0 and Fm(y, ξ, τ ) the sum

of terms of the type

(τ − H0(y, ξ))−1b∗(y, ξ)(τ − H0(y, ξ))−1b∗(y, ξ) · · · b∗(y, ξ)

×(τ − H0(y, ξ))−1 Q2(y, η) (2.19)

with no more than 2m +1 factors (τ − H0(y, ξ))−1. Here, the b∗ are regular symbols.
In particular,

F0(y, ξ, τ ) = (2π)−d−1(τ − H0(y, ξ))−1 Q2(y, η). (2.20)

If we add the expressions for u+ and u− instead of Fm(y, ξ, τ ) with τ ∈ C∓, we get
the distributions (Fm(y, ξ, τ + i0)− Fm(y, ξ, τ − i0)) with τ ∈ R.

Applying the inverse h-Fourier transform with respect to x , operator Q1x , and

setting x = y, we cancel the factor e−ih−1〈y,η〉 and gain a factor of h−d . Thus we
arrive to the Proposition 2.5(i) below; applying Corollary 2.4(ii) and (iii), we arrive to
its Statements (ii) and (iii). We also need to use

u(x, y, t) =
∫

eih−1tτ dτ e(x, y, τ ). (2.21)

Proposition 2.5 (i) As T∗ = h1−δ ≤ T ≤ h
1
2 +δ and χ̄ ∈ C ∞

0 ([−1, 1])

T

∫
̂̄χ

(
(λ− τ)T h−1) dτ (Q1x e tQ2y)(y, y, τ )

∼
∑

m≥0

h−d+m T

∫
̂̄χ

(
(λ− τ)T h−1)κ ′m(y, τ )dτ, (2.22)

where ̂̄χ is the Fourier transform of χ̄ and

κ ′m(y) =
∫ (

Fm(y, ξ, τ + i0)− Fm(y, ξ, τ − i0)
)

dη. (2.23)
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(ii) If H is microhyperbolic on the energy level τ̄ on supp(Q2) in some direction ℓ

with ℓx = 0 then (2.21) holds with T∗ ≤ T ≤ T ∗, |λ − τ̄ | ≤ ǫ, where T ∗ is a

small constant.

(iii) On the other hand, if ℓx �= 0, then (2.21) still holds with T ≤ T ∗, albeit only

after integration with respect to y:

T

∫
̂̄χ

(
(λ− τ)T h−1) dτ

(∫
(Q1x e tQ2y)(y, y, τ ) dy

)

∼
∑

m≥0

h−d+m T

∫
̂̄χ

(
(λ− τ)T h−1)̹ ′

m(τ ) dτ (2.24)

with

̹ ′
m(τ ) =

∫∫ (
Fm(y, ξ, τ + i0)− Fm(y, ξ, τ − i0)

)
dydη. (2.25)

For details, proofs and generalizations, see Section 4.3 of [14].

2.1.3 Recovering spectral asymptotics

Let α(τ) denote (Q1x e tQ2y)(y, y, τ ) (which may be integrated with respect to y)
and β(τ) denote the convolution of its derivative α′(τ ) with T ̂̄χ(τT/h). To recover
α(τ) from β(τ), we apply Tauberian methods. First of all, we observe that under
the corresponding microhyperbolicity condition the distribution κ ′m(y, τ ) or ̹ ′

m(τ ) is
smooth and the right-hand side expression of (2.22) or (2.24) does not exceed Ch−d+1.

Let us take Q1 = Q2; then α(y, τ ) or α(τ) is a monotone non-decreasing matrix
function of τ . We choose a Hörmander function15 χ̄ (t) and estimate the left-hand
expressions of (2.22) or (2.24) from below by

ǫ0T
(
α(λ+ hT −1)− α(λ− hT −1)

)
,

which implies that
(
α(λ+ hT −1)− α(λ− hT −1)

)
≤ CT −1h−d+1 and therefore

|α(λ)− α(μ)| ≤ Ch−d+1|λ− μ| + CT −1h−d+1 (2.26)

as λ,μ ∈ (τ̄ − ǫ, τ̄ + ǫ). Then (2.26) automatically holds, even if Q1 and Q2 are not
necessarily equal.

Further, (2.26) implies that

∣∣∣∣α(λ)− α(μ)− h−1
∫ λ

μ

β(τ) dτ

∣∣∣∣ ≤ CT −1h−d+1 (2.27)

15 I.e. a compactly supported function with positive Fourier transform.
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and therefore

∣∣∣∣
∫ (

α(λ)− α(μ)− h−1
∫ λ

μ

β(τ) dτ

)
φ(μ) dμ

∣∣∣∣ ≤ CT −1h−d+1 (2.28)

if χ̄ = 1 on [− 1
2 ,

1
2 ], λ,μ ∈ (τ̄ − ǫ, τ̄ + ǫ) and φ ∈ C ∞

0 ((τ̄ − ǫ, τ̄ + ǫ)) with∫
φ(τ) dτ = 1.
On the other hand, even without the microhyperbolicity condition, our successive

approximation construction is not entirely useless. Let us apply ϕL(h Dt − λ) with

ϕ ∈ C ∞
0 ([−1, 1]) and L ≥ h

1
2 −δ , and then set t = 0. We arrive to

∫
ϕ((τ − λ)L−1)

(
α′(τ )− β(τ)

)
dτ = O(h∞). (2.29)

This allows us to extend (2.28) to φ ∈ C ∞
0 (bR)) with

∫
φ(τ) dτ = 1. For full details

and generalizations, see Section 4.4 of [14].
Thus, we have proved:

Theorem 2.6 Let H = H(x, h D, h) be a self-adjoint operator. Then,

(i) The following asymptotics holds for L ≥ h
1
2 −δ:

∫
φ((τ − λ)L−1)

⎛
⎝dτ (Q1x e tQ2y)(y, y, τ )−

∑

m≥0

h−d+mκ ′(y, τ ) dτ

⎞
⎠

= O(h∞). (2.30)

(ii) Let H be microhyperbolic on the energy level τ̄ in some direction ℓ with ℓx = 0.

Then for |λ− τ̄ | ≤ ǫ,

(Q1x e tQ2y)(y, y, λ) = h−dκ0(y, λ)+ O(h−d+1) (2.31)

with κm(y, λ) :=
∫ λ
−∞ κ ′m(y, τ ) dτ .

(iii) Let H be microhyperbolic on the energy level τ̄ in some direction ℓ. Then for

|λ− τ̄ | ≤ ǫ,

∫
(Q1x e tQ2y)(y, y, λ) dy = h−d̹0(λ)+ O(h−d+1) (2.32)

with ̹m(y) :=
∫ λ
−∞ ̹ ′

m(τ ) dτ .

(iv) In particular, it follows from (2.20) that

κ0(λ, x) = (2π)−d

∫
q0

1 (x, ξ)θ(λ− H0(x, ξ))q0
2 (x, ξ) dξ (2.33)
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and

̹0(λ) = (2π)−d

∫
q0

1 (x, ξ)θ(λ− H0(x, ξ))q0
2 (x, ξ) dxdξ (2.34)

Remark 2.7 (i) So far we have assumed that Q1, Q2 had compactly supported sym-
bols in (x, ξ). Assuming that these symbols are compactly supported with respect
to x only, in particular when Q1 = ψ(x), Q2 = 1, with ψ ∈ C ∞

0 (X), we need to
assume that

Claim 2.8 {ξ : ∃x ∈ X : Spec H0(x, ξ) ∩ (−∞, λ+ ǫ0] �= ∅} is a compact set.

(ii) If we assume only that

Claim 2.9 {ξ : ∃x ∈ X : Spec H0(x, ξ) ∩ (μ − ǫ0, λ + ǫ0] �= ∅} is a compact set,
instead of (2.31) and (2.32), we get

|(Q1x e tQ2y)(y, y, λ, μ)− h−1κ0(y, λ, μ)| ≤ Ch−d+1 (2.35)

and

∣∣∣∣
∫∫

(Q1x e tQ2y)(y, y, λ, μ) dy − h−1̹0(λ, μ)

∣∣∣∣ ≤ Ch−d+1, (2.36)

where μ≤ λ, e(x, y, λ, μ) := e(x, y, λ) − e(x, y, μ), κm(y, λ) :=
∫ λ
μ
κ ′m(y, τ ) dτ ,

̹m(y, λ) :=
∫ λ
μ
̹ ′

m(y, τ ) dτ and we assume that the corresponding microhyperbolic-
ity assumption is fulfilled on both energy levels μ and λ.

(iii) If H0(x, ξ) is an elliptic symbol which is positively homogeneous of degree
m > 0 with respect to ξ , then the microhyperbolicity condition is fulfilled with
ℓ = (0,±ξ) on energy levels τ �= 0. Furthermore, the compactness condition
of (ii) is fulfilled, and if H0(x, ξ) is also positive-definite, then the compactness
condition of (i) is also fulfilled.

2.1.4 Second term and dynamics

Propagation of singularities To derive two-term asymptotics, one can use the scheme
described in Sect. 1.2, albeit one needs to describe the propagation of singularities.
For matrix operators, this may be slightly tricky.

Let us introduce the characteristic symbol g(x,ξ) := det(τ−H0(x, ξ))where x =
(x0, x), ξ = (ξ0, ξ) etc.; then Char(ξ0 − H(x, ξ)) = {(x,ξ) : g(x,ξ) = 0}. Let ξ0 be

a root of multiplicity r of g(x, ξ0, ξ); then g
(α)
(β)
(x,ξ) = 0 for all α, β : |α| + |β| < r .

Let us consider the r -jet of g at such a point:

g(x,ξ)(y,η) :=
∑

α,β:|α|+|β|<r

1

α!β!g
(α)
(β)
(x,ξ)yβηα; (2.37)
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it is a hyperbolic polynomial with respect to η0. Consider its hyperbolicity cone

K (x,ξ), which is the connected component of {(y;η) ∈ R
2d+2 : g(x,ξ)(y,η) �= 0}

containing {(y, η) : η0 = 1, y = η = 0} and the dual hyperbolicity cone

K #(x,ξ) = {(y′,η′) : 〈y′,η〉 − 〈y,η′〉 > 0} ⊂ {y0 = 0}. (2.38)

Definition 2.10 (i) An absolutely continuous curve (x(t),ξ(t)) (with x0 = t) is
called a generalized Hamiltonian trajectory if a.e.

(
1,

dx

dt
; dξ

dt

)
∈ K #(x, ξ0, ξ). (2.39)

Note that ξ0 = τ remains constant along the trajectory.
(ii) Let K±(x,ξ) denote the union of all generalized Hamiltonian trajectories issued

from (x,ξ) in the direction of increasing/decreasing t .

If g = αgr
1 where α �= 0 and g1 = 0 �⇒ ∇g1 �= 0, the generalized Hamiltonian

trajectories are just (ordinary) Hamiltonian trajectories of g1 and K±(x,ξ) are just
half-trajectories.16

The following theorem follows from Theorem 2.2:

Theorem 2.11 If u(x, y, t) is the Schwartz kernel of eih−1t H , then

WF(u) ⊂ {(x, ξ ; y,−η; t, τ ) : ±t > 0, (t, x; τ, ξ) ∈ K±(0, y; τ, η)}. (2.40)

Then, we obtain:

Corollary 2.12 In the framework of Theorem 2.11,

WF(σQ1,Q2(t)) ⊂ {(t, τ ) : ∃(x, ξ) : (t, x; τ, ξ) ∈ K±(0, x; τ, ξ)}, (2.41)

and for any x,

WF(Q1x u tQ2y) ⊂ {(t, τ ) : ∃ξ, η : (t, x; τ, ξ) ∈ K±(0, x; τ, η)}. (2.42)

Definition 2.13 (i) A periodic point is a point (x, ξ) which satisfies (t, x; τ, ξ) ∈
K±(0, x; τ, ξ) for some t �= 0.

(ii) A loop point is a point x which satisfies (t, x; τ, ξ) ∈ K±(0, x; τ, η) for some
t �= 0, ξ, η; we call η a loop direction.

16 Since eih−1t H describes evolution with revert time, time is also reverted along (generalized) Hamiltonian
trajectories.
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Application to spectral asymptotics Combining Corollary 2.12 with the arguments of
Sect. 1.2, we arrive to

Theorem 2.14 (i) In the framework of Theorem 2.6(ii) let for some x the set of all

loop directions at point x on energy level λ have measure 0.17 Then,

(Q1x e tQ2y)(y, y, λ) = h−dκ0(y, λ)+ h1−dκ1(y, λ)+ o(h−d+1). (2.43)

(ii) In the framework of Theorem 2.6(iii), suppose that the set of all periodic points

on energy level λ has measure 0.18 Then,

∫
(Q1x e tQ2y)(y, y, λ) dy = h−d̹0(λ)+ h1−d̹1(λ)+ o(h−d+1). (2.44)

Remark 2.15 (i) When studying propagation, we can allow H to also depend on
x0 = t ; for all details and proofs, see Sections 2.1 and 2.2 of [14].

(ii) Recall that e(x, y, λ) is the Schwartz kernel of θ(λ− H). We can also consider
eν(x, y, τ ) which is the Schwartz kernel of (λ − H)ν+ := (λ − H)νθ(λ − H)

with ν ≥ 0. Then in the Tauberian arguments, h−d × (h/T ) is replaced by
h−d×(h/T )1+ν and then in the framework of Theorem 2.6(ii) and (iii) remainder
estimates are O(h−d+1+ν) and in the framework of Theorem 2.6(i) and (ii), the
remainder estimates are o(h−d+1+ν); sure, in the asymptotics one should include
all the necessary terms κmh−d+m or ̹mh−d+m .19

(iii) Under more restrictive conditions on Hamiltonian trajectories instead of T an
arbitrarily large constant, we can take T depending on h;20 see Section 2.4 of
[14]. Usually, we can take T = ǫ| log h| or even T = h−δ .
Then in the remainder estimate, the main term is

C
(
µ(�T,γ )h

−d+1 + h−d+1+νT −1−ν),

where �T,γ is the set of all points z = (x, ξ) (on the given energy level) such

that dist(�t (z), z) ≤ γ for some t ∈ (ǫ, T ) and γ = h1/2−δ′ . Here, however,
we assume that either H0 is scalar or its eigenvalues have constant multiplicities
and apply the Heisenberg approach to the long-term evolution.
Then the remainder estimates could be improved to O(h−d+1+ν | log h|−1−ν) or
even to O(h−d+1+ν+δ) respectively. As examples, we can consider the geodesic
flow on a Riemannian manifold with negative sectional curvature (log case) and
the completely integrable non-periodic Hamiltonian flow (power case). For all
details and proofs, see Section 4.5 of [14].

17 There exists a natural measure µλ,x on {ξ : det(λ− H0(x, ξ)) = 0}.
18 There exists a natural measure µλ on {(x, ξ) : det(λ− H0(x, ξ)) = 0}.
19 Here, we need to assume that H is semi-bounded from below; otherwise some modifications are required.
20 Usually these restrictions are T ≤ h−δ and |D�t (z)| ≤ h−δ with sufficiently small δ > 0.
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2.1.5 Rescaling technique

The results we proved are very uniform: as long as we know that operator in question
is self-adjoint and that the smoothness and non-degeneracy conditions are fulfilled
uniformly in B(x̄, 1), then all asymptotics are also uniform (as x ∈ B(x̄, 1

2 ) or

supp(ψ) ⊂ B(x̄, 1
2 )). Then these results could self-improve.

Here we consider only the Schrödinger operator away from the boundary; but the
approach could be generalized for a wider class of operators. For generalizations,
details and proofs, see Chapter 5 of [14].

Proposition 2.16 Consider the Schrödinger operator. Assume that ργ ≥ h and in

B(x̄, γ ) ⊂ X,

|∂αg jk | ≤ cαγ
−|α|, |∂αV | ≤ cαρ

2γ−|α|. (2.45)1,2

Then,

(i) In B(x̄, 1
2γ ),

e(x, x, 0) ≤ Cρd h−d . (2.46)

(ii) If in addition |V | + |∇V |γ ≥ ǫρ2, then for supp(ψ) ⊂ B(x̄, 1
2γ ) such that

|∂αψ | ≤ cαγ
−|α|,

∣∣∣∣
∫ (

e(x, x, 0)− κ0V
d/2
−

)
dx

∣∣∣∣ ≤ Cρd−1γ d−1h1−d; (2.47)

(iii) If in addition |V | ≥ ǫρ2 in B(x̄, γ ) then

|e(x, x, 0)− κ0V
d/2
− | ≤ Cρd−1γ−1h1−d; (2.48)

(iv) If in addition V ≥ ǫρ2 in B(x̄, γ ), then for any s,

|e(x, x, 0)| ≤ Cρd−sγ−shs−d . (2.49)

Proof Indeed, we have already proved this in the special case ρ = γ = 1, h ≤
1. In the general case, we can reduce the problem to the special case by rescaling
x 
→ xγ−1, τ 
→ τρ−2 (so we multiply operator by ρ−2) and then automatically
h 
→ h̄ = hρ−1γ−1. Recall that e(x, y, τ ) is a function with respect to x but a density
with respect to y so an extra factor γ−d appears in the right-hand expressions. ⊓⊔

Let us assume that the conditions (2.45)1,2 are fulfilled with ρ = γ = 1. We want
to get rid of the non-degeneracy assumption |V | ≍ 1 in the pointwise asymptotics.
Let us introduce the scaling function γ (x) and also ρ(x)

γ (x) = ǫ|V (x)| + γ̄ with γ̄ = h
2
3 , ρ(x) = γ (x)

1
2 . (2.50)
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One can easily see that

|∇γ | ≤ 1

2
, ργ ≥ h, (2.51)

(2.45)1,2 are fulfilled and either |V | ≥ ǫρ2 or ργ ≍ h and therefore (2.48) holds
(h̄ ≍ 1 as ργ ≍ h and no non-degeneracy condition is needed). Note that for d ≥ 3,

the right-hand expression of (2.48) is O(h1−d) and for d = 1, 2, it is O(h− 2
3 d). So,

we got rid of the non-degeneracy assumption |V | ≍ 1, and the remainder estimate
deteriorated only for d = 1, 2.

Remark 2.17 (i) We can improve the estimates for d = 1, 2 to O(h
1
3−

2
3 d), but then

we will need to add some correction terms first under the assumption |V | +
|∇V | ≍ 1 and then get rid of it by rescaling; these correction terms are of

boundary-layer type (near V = 0) and are O(h− 2
3 d) and are due to short loops.

For details, see Theorems 5.3.11 and 5.3.16 of [14].
(ii) If d = 2, then under the assumption |V | + |∇V | ≍ 1, the weight ρ−1γ−1 is

integrable, and we arrive to the local asymptotics with the remainder estimate
O(h1−d).

(iii) We want to get rid of the non-degeneracy assumption |V | + |∇V | ≍ 1 in the
local asymptotics. We can do it with the scaling function

γ (x) = ǫ
(
|V (x)| + |∇V |2) 1

2 + γ̄ with γ̄ = h
1
2 , ρ(x) = γ (x).

(2.52)

Then for d = 2, we recover remainder the estimate O(h−1); while for d = 1,

the remainder estimate O(h− 1
2 ) which could be improved further up to O(1)

under some extremely weak non-degeneracy assumption or to O(h−δ) with an
arbitrarily small exponent δ > 0 without it.

(iv) If d ≥ 2, then in the framework of Theorem 2.14(i), we can get rid of the
non-degeneracy assumption as well. This is true for the magnetic Schrödinger
operator as well if d ≥ 2; when d = 2, some modification of the statement is
required; see Remark 5.3.4 of [14].

(v) Furthermore, if we consider asymptotics for Tr((λ−H)ν+ψ) (see Remark 2.15(ii))
with ν > 0 then in the local asymptotics, we get the remainder estimate
O(h1−d+s) without any non-degeneracy assumptions. For details, see Theo-
rem 5.3.5 of [14].

2.1.6 Operators with periodic trajectories

Preliminary analysis Consider a scalar operator H . For simplicity, assume that X is
a compact closed manifold. Assume that all the Hamiltonian trajectories are periodic
(with periods not exceeding C(μ) on the energy levels λ ≤ μ). Then the period
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depends only on the energy level and let T (λ) be the minimal period such that all
trajectories on the energy level λ are T (λ) periodic.21

Without any loss of the generality, one can assume that T (λ) = 1. Indeed, we can
replace H by f (H) with f ′(λ) = 1/T (λ). Then,

e∇
# H0 = I (2.53)

and therefore,

eih−1 H = eiεh−1 B, (2.54)

where B = B(x, h D, h) is an h-pseudo-differential operator which could be selected
to commute with H , at this point, ε = h. Then, H0 = H − εB satisfies

eih−1 H0 = I �⇒ Spec(H0) ⊂ 2πhZ; (2.55)

we call this quantum periodicity in contrast to the classical periodicity (2.53).
We can calculate the multiplicity Nk,h = O(h1−d) of the eigenvalue 2πhk with

k ∈ Z modulo O(h∞). The formula is rather complicated especially since subperiodic
trajectories21 cause the redistribution of multiplicities between eigenvalues (however,
this causes no more than O(h1−d+r ) error).

We consider H := Hε = H0 +εB as a perturbation of H0 and we assume only that
ε ≪ 1. If ε ≤ ǫ0h, the spectrum of H consists of eigenvalue clusters of the width C0ε

separated by spectral gaps of the width≍ h, but if ε ≥ ǫ0h, these clusters may overlap.

Long range evolution Consider

eih−1t H = eih−1t H0 e−ih−1tεB = eih−1t ′H0 eih−1t ′′B (2.56)

with t ′′ = εt , t ′ = t −⌊t⌋. We now have a fast evolution eih−1t ′H0 and a slow evolution

eih−1t ′′B and both t ′, t ′′ are bounded as |t | ≤ T ∗ := ε−1. Therefore, we can trace the
evolution up to time T ∗.

Let the following non-degeneracy assumption be fulfilled:

|∇�(λ)b| ≥ ǫ0, (2.57)

where b is the principal symbol of B, �(λ) := {(x, ξ) : H0(x, ξ) = λ} and ∇�(λ) is
the gradient along �(λ). Then using our methods, we can prove that

∣∣∣∣Ft→h−1τχT (t)

∫
u(x, x, t)ψ(x) dx

∣∣∣∣ ≤ CT h1−d(h/εT )s, (2.58)

21 However, there could be subperiodic trajectories, i.e. trajectories periodic with period T (λ)/p with
p = 2, 3, . . .. It is known that the set �p of subperiodic trajectories with subperiod T (λ)/p is a union of
symplectic submanifolds �p,r of codimension 2r .
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and therefore

Ft→h−1τ χ̄T (t)

∫
u(x, x, t)ψ(x) dx | ≤ Ch1−d(ε−1h + 1) (2.59)

for ǫ0(ε
−1h + 1) ≤ T ≤ ǫ0ε

−1; recall that χ ∈ C ∞
0 ([−1,− 1

2 ] ∪ [ 1
2 , 1] and χ̄ ∈

C ∞
0 ([−1, 1], χ̄ = 1 on [− 1

2 ,
1
2 ].

Then the Tauberian error does not exceed the right-hand expression of (2.59) mul-
tiplied by T ∗−1 ≍ ε, i.e. Ch1−d(ε+ h). In the Tauberian expression, we need to take
T = ǫ0(ε

−1h1−δ + 1).

Calculations We can pass from Tauberian expression to a more explicit one. Observe
that the contribution to the former are produced only by time intervals t ∈ [n −
h1−δ, n + h1−δ] with |n| ≤ T∗; contribution of the remaining interval will be either
negligible (if there are no subperiodic trajectories) or O(h2−d) (if such trajectories
exist). Such an interval with n = 0 produces the standard Weyl expression.

Consider n �= 0. Then the contribution of such intervals lead to a correction term

Ncorr,Q1,Q2(λ) := (2π)−d h1−d

∫

�τ

q0
1ϒ1

(
h−1(H0 − εb)

)
dµτq0

2 , (2.60)

where ϒ1(t) = 2π⌈ t
2π ⌉ − t + 1

2 .

Theorem 2.18 Under assumptions (2.53), (2.54), (2.57) and ε ≥ hM ,

∫
(Q1x e tQ2y)(y, y, λ) dy = h−d̹0,Q1,Q2(λ)

+ h1−d̹1,Q1,Q2(λ)+ Ncorr,Q1,Q2(λ)+ O
(
h1−d(ε + h)). (2.61)

For a more general statement with (2.57) replaced by a weaker non-degeneration
assumption, see Theorem 6.2.24 of [14]. Further, we can skip a correction term (2.60)
if ε ≥ h1−δ; while if hM ≤ ε ≤ h1−δ , this term is O(h1−d(h/ε)s) for ε ≥ h and of
magnitude h1−d for hM ≤ ε ≤ h.

For further generalizations, details and proofs, see Sections 6.2 and 6.3 of [14]. For
related spectral asymptotics for a family of commuting operators, see Section 6.1 of
[14].

One can also consider the case when there is a massive set of periodic trajectories,
yet non-periodic trajectories exist. For details, see [28] and Subsection 6.3.7 of [14].

2.2 Boundary value problems

2.2.1 Preliminary analysis

Let X be a domain in R
d with boundary ∂X and H an h-differential matrix oper-

ator which is self-adjoint in L 2(X) under the h-differential boundary conditions.
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Again, we are interested in the local and pointwise spectral asymptotics, i.e. those of∫
e(x, x, 0)ψ(x) dx with ψ ∈ C ∞

0 (B(0, 1
2 )) and of e(x, x, 0) with x ∈ B(0, 1

2 ).
Assume that in B(0, 1), everything is good: ∂X and coefficients of H are smooth,

H is ξ -microhyperbolic on the energy levels λ1,2 (λ1 < λ2) and also H is elliptic as
a differential operator, i.e.

‖H(x, ξ)v‖ ≥ (ǫ0|ξ |m − C0)‖v‖ ∀v ∀x ∈ B(0, 1) ∀ξ. (2.62)

Then,

e(x, x, λ1, λ2) = κ0(x, λ1, λ2)h
−d + O(h1−dγ (x)−1) (2.63)

for x ∈ B(0, 1
2 ) and γ (x) ≥ h,

κ0(x, λ1, λ2) = (2π)−d

∫ (
θ(λ2 − H0(x, ξ))− θ(λ1 − H0(x, ξ))

)
dξ (2.64)

and γ (x) = 1
2 dist(x, ∂X).

Indeed, the scaling x 
→ (x − y)/γ and h 
→ h̄/γ brings us into the
framework of Theorem 2.6(ii) because ξ -microhyperbolicity (in contrast to the (x, ξ)-
microhyperbolicity) survives such rescaling. Then,

∫

{x : γ (x)≥h}

(
e(x, x, λ1, λ2)− h−dκ0(x, λ1, λ2)

)
ψ(x) dx

= O(h1−d log h), (2.65)

since
∫
{x : γ (x)≥h} γ (x)

−1 dx ≍ | log h|.
One can easily show that if the boundary value problem for H is elliptic then

e(x, x, λ1, λ2) = O(h−d) (2.66)

and therefore,

∫ (
e(x, x, λ1, λ2)− h−dκ0(x, λ1, λ2)

)
ψ(x) dx = O(h1−d log h). (2.67)

To improve this remainder estimate, one needs to improve (2.65) rather than (2.63)
but to get sharper asymptotics, we need to improve both. We will implement the same
scheme as inside the domain.

2.2.2 Propagation of singularities

Toy model: Schrödinger operator Let us consider the Schrödinger operator

H := h2�+ V (x) (2.68)
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with the boundary condition

(
α(x)h∂ν + β(x)

)
v|∂X = 0, (2.69)

where

� =
∑

j,k

D j g
jk Dk, ∂ν =

∑

j

g j1∂ j (2.70)

is derivative in the direction of the inner normal ν (we assume that X = {x : x1 > 0}
locally22), α and β are real-valued and do not vanish simultaneously. Without any loss
of the generality, we can assume that locally

g j1 = δ j1. (2.71)

First of all, near the boundary, we can study the propagation of singularities using
the same scheme as in Sect. 2.1.1 as long as φ j (x, ξ) = φ j (x, ξ

′) do not depend on
the component of ξ which is “normal to the boundary”. The intuitive way to explain
why one needs this is that at reflections, ξ1 changes by a jump.

For the Schrödinger operator, it is sufficient for our needs: near glancing points

(x, ξ ′) (which are points such that x1 = 0 and the set {ξ1 : H0(x ′, ξ ′, ξ1) = τ }
consists of exactly one point), we can apply this method. On the other hand, near other
points, we can construct the solution by traditional methods of oscillatory integrals.

It is convenient to decompose u(x, y, t) into the sum

u = u0(x, y, t)+ u1(x, y, t), (2.72)

where u0(x, y, t) is a free space solution (without boundary) which we studied in
Sect. 2.1.1 and u1 := u − u0 is a reflected wave.

Observe that even for the Schrödinger operator, we cannot claim that the singularity
of u(x, x, t) at t = 0 is isolated. The reason are short loops made by trajectories which
reflect from the boundary in the normal direction and follow the same path in the
opposite direction. However, these short loops affect neither u(x, x, t) at the points
of the boundary nor u(x, x, t) integrated in any direction transversal to the boundary
(and thus do not affect σψ (t) defined below).

Furthermore, they do not affect (Q1x u tQ2y)(x, x, t) as long as at least one of
operators Q j = Q j (x, h D′, h Dt ) cuts them off. Then we get the estimate (2.9).
Consider Q1 = Q2 = 1. Then, if V (x)−λ > 0, we get the same estimate at the point
x ∈ ∂X . On the other hand, if either V (x) − λ < 0 or V (x) = λ, ∇∂X V (x) �= 0
(where ∇∂X means “along ∂X”) at each point of supp(ψ), we get the same estimate
for σψ (x) =

∫
u(x, x, t) dx . As usual, λ is an energy level.

Moreover, σ 1
ψ (t) =

∫
u1(x, x, t)ψ(x) dx satisfies

|Ft→h−1τχT (t)σ
1
ψ (t)| ≤ Csh1−d(h/|t |)s . (2.73)

22 I.e. in intersection with B(0, 1).
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In contrast to the Dirichlet (α = 0, β = 1) or Neumann (α = 1, β = 0) conditions,
under the more general boundary condition (2.69), the classically forbidden level λ
(i.e. with λ < inf B(0,1) V ) may be not forbidden after all. Namely, in this zone, the
operator h Dt − H is elliptic and we can construct the Dirichlet-to-Neumann operator

L : v|∂X → h∂1v|∂X as (h Dt − H)v ≡ 0. This is an h-pseudo-differential operator
on ∂X with principal symbol

L0(x ′, ξ ′, τ ) = −

⎛
⎝V +

∑

j,k≥2

g jkξ jξk − τ

⎞
⎠

1
2

. (2.74)

Then the boundary condition (2.69) becomes

Mw := (αL + β)w ≡ 0, w = v|∂X . (2.75)

The energy level λ < V (x) is indeed forbidden if the operator M is elliptic as τ = λ,
i.e. if M0(x ′, ξ ′, λ) = αL0(x ′, ξ ′, λ)+β �= 0 for all ξ ′; it happens as either α−1β < 0
or W := V−α−2β2 > λ. Otherwise, to recover (2.73),23 we assume that M is either ξ ′-
microhyperbolic or (x ′, ξ ′)-microhyperbolic (W > λ and W = λ �⇒ ∇∂X W �= 0
respectively).

2.2.3 General operators

For more general operators and boundary value problems, we use similar arguments
albeit not relying upon the representation of u(x, y, t) via oscillatory integrals. It
follows from (2.72) that

(h Dt − H)u1± = 0, (2.76)

Bu1±|x1=0 = −Bu0±|x1=0, (2.77)

where as before, uk ± = ukθ(±t), k = 0, 1. Assuming that H satisfies (2.62), we
reduce (2.76)–(2.77) to the problem

AU 1± := (A0h D1 + A1)U
1± ≡ 0, (2.78)

BU 1±|x1=0 = −BU 0± (2.79)

with Ak = Ak(x, h D′, h Dt ), B = B(x, h D′, h Dt ) and U = Sx u t Sy with S =
S(x, h Dx , h Dt ) etc.24

In a neighbourhood of any point (x̄ ′, ξ̄ ′, λ), the operator A could be reduced to the
block-diagonal form with blocks Ak j (k = 0, 1, j = 1, . . . , N ) such that

23 With d replaced by d − 1.
24 If H is a D × D matrix operator of order m then A and S are mD × mD and mD × D matrix operators,
B and B are 1

2 mD × D and 1
2 mD × mD matrix operators respectively.
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(a) For each j = 1, . . . , N − 1, the equation det(A0
0 jη + A0

1 j ) = 0 has a single real

root η j (at the point (x̄ ′, ξ̄ ′, λ) only), η j are distinct, and

(b) Ak N = (
0 A′

k N
A′′

k N
0 ) with det(A′ 0

0Nη+ A′ 0
1N ) = 0 and det(A′′ 0

0Nη+ A′′ 0
1N ) = 0 has

only roots with Im η < 0 and with Im η > 0 respectively.

We can prove a statement similar to Theorem 2.2, but instead of functions φ∗(x, ξ),
we now have arrays of functions φ∗ j (x, t, ξ ′, τ ) ( j = 1, . . . , N − 1) coinciding
with φ∗N (x

′, t, ξ ′, τ ) as x1 = 0. Respectively, instead of microhyperbolicity of the
operator in the direction ℓ ∈ T (T ∗(X × R)), we now have the microhyperbolicity of

the boundary value problem in the multidirection (ℓ′, ν1, . . . , νN−1) ∈ T (T ∗(∂X ×
R)) × R

N−1; see Definition 3.1.4 of [14]. It includes the microhyperbolicity of A j

in the direction (ℓ′, 0, ν j ) for j = 1, . . . , N − 1 and a condition invoking AN and B

and generalizing the microhyperbolicity of operator M for the Schrödinger operator.
Respectively, instead of the microhyperbolicity of an operator in the direction ∇#φ∗,
we want the microhyperbolicity in the multidirection (∇ ′#φ∗, ∂1φ∗1, . . . , ∂1φ∗(N−1)).

As a corollary, under the microhyperbolicity assumption on the energy level λ,
we prove estimates (2.9) for σ 0

ψ (t), σψ (t) and (2.73) for σ 1
ψ (t) as τ is close to λ.

Furthermore, if the operator H is elliptic on this energy level then σ 0
ψ (t) is negligible

and (2.73) holds for σ 1
ψ (t) and σψ (t).

For details, proofs and generalizations, see Chapter 3 of [14].

2.2.4 Successive approximations method

After the (2.9) and (2.73)-type estimates are established, we can apply the successive
approximations method like in Sect. 2.1.2 but with some modifications: to construct
Bu0±|x1=0 and from it to construct u1±, we freeze coefficients in (y′, 0) rather than
in y. As a result, we can calculate all terms in the asymptotics and under microhyper-
bolicity in the multidirection condition, we arrive to the formulae (2.24) for e0(., ., τ ),
e1(., ., τ ) and e(., ., τ )25 with m ≥ 1 for e1(., ., τ ).

The formulae for ̹1
m(τ ) (and thus for ̹m(τ ) = ̹0

m(τ )+ ̹1
m(τ ) are however rather

complicated and we do not write them here. For the Schrödinger operator with V = 0
and boundary condition (2.69), the calculation of ̹1

1 (τ ) is done in Subsection 11.9.4
of [14].

Similar formulae also hold if we take x1 = y1 = 0 and integrate over ∂X (but in
this case m ≥ 0 even for e1(., ., τ )).

Furthermore, if ℓ′x = 0 and ν1 = . . . = νN−1 in the condition of microhyperbolicity,
we are able to get formulae for e0(x, x, τ ), e1(x, x, τ ) and e(x, x, τ ) without setting
x1 = 0 and without integrating but e1(x, x, τ ) is a boundary-layer type term.

For details and proofs, see Section 7.2 of [14].

2.2.5 Recovering spectral asymptotics

Repeating the arguments of Sect. 2.1.3, we can recover the local spectral asymptotics:

25 With the obvious definitions of e0(., ., τ ) and e1(., ., τ ).
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Theorem 2.19 (i) Let an operator H be microhyperbolic on supp(ψ) on the energy

levels λ1 and λ2 (λ1 < λ2) and the boundary value (H, B) problem be micro-

hyperbolic on supp(ψ) ∩ ∂X on these energy levels. Then,

∫

X

e(y, y, λ1, λ2)ψ(y) dy

= h−d

∫

X

κ0(y, λ1, λ2)ψ(y) dy + O(h−d+1). (2.80)

(ii) Suppose that an operator H is elliptic on supp(ψ) on the energy levels λ1 and

λ2 (λ1 < λ2)
26 and the boundary value (H, B) problem is microhyperbolic on

supp(ψ) ∩ ∂X on these energy levels. Then,

∫

X

e(y, y, λ1, λ2)ψ(y) dy

= h1−d

∫

X

κ1(y, λ1, λ2)ψ(y) dy + O(h−d+2). (2.81)

On the other hand, for the Schrödinger operator, we can calculate the contributions
of near normal trajectories explicitly and then we arrive to:

Theorem 2.20 Let (H, B) be the Schrödinger operator (2.68)–(2.69) and let |V | �= λ

on supp(ψ). Then,

e(y, y, λ) = h−d
(
κ0(x, λ)+ Q(x ′, λ; h−1x1)

)
+ O(h−d+1) (2.82)

where Q depends on the “normal variables” (x ′, λ) and a “fast variable” s = h−1x1

and decays as O(s−d+1/2) as s → +∞. Here, x1 = dist(x, ∂X).

For details, exact statement and proofs, see Section 8.1 of [14].

2.2.6 Second term and dynamics

As in Sect. 2.1.4, we can improve our asymptotics under certain conditions to the
dynamics of propagation of singularities. However, in the case that the manifold has
a non-empty boundary, propagation becomes really complicated. For Schrödinger
operators, we can prove that singularities propagate along Hamiltonian billiards unless
they “behave badly” that is become tangent to ∂X at some point or make an infinite
number of reflections in finite time. However, the measure of dead-end points27 is 0.

Thus, applying the arguments of Sect. 1.2 we arrive to

Theorem 2.21 Let d ≥ 2, |V −λ|+|∇V | �= 0 on supp(ψ) and |V −λ|+|∇∂X V | �= 0
on supp(ψ)∩∂X. Further, assume that the measure of periodic Hamiltonian billiards

passing through points of {H0(x, ξ) = 0} ∩ supp(ψ) is 0.28 Then,

26 Then, it is elliptic on all energy levels τ ∈ [λ1, λ2].
27 I.e. points z ∈ �(λ) the billiard passing through which behaves badly.
28 There is a natural measure dxdξ : d H0.
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∫
e(y, y, λ)ψ(y) dy = h−d

∫
κ0(y, λ)ψ(y) dy + o(h−d+1). (2.83)

Remark 2.22 If we are interested in the propagation of singularities without appli-
cations to spectral asymptotics, the answer is “singularities propagate along the
generalized Hamiltonian billiards” (see Definition 3.2.2 in [14]).

One can easily show:

Theorem 2.23 Let d ≥ 3. Assume that we are in the framework of Theorem 2.19(ii).
Further assume that the set of periodic trajectories of the Schrödinger operator on

∂X with potential W introduced after (2.75) has measure 0. Then,

∫
e(y, y, λ)ψ(y) dy = h1−d̹1,ψ (λ)+ h2−d̹2,ψ (λ)+ o(h−d+2). (2.84)

Remark 2.24 Analysis becomes much more complicated for more general operators
even if we assume that the inner propagation is simple. For example, if the oper-
ator in question is essentially a collection of m Schrödinger operators intertwined
through boundary conditions then every incidence ray after reflection generates up to
m reflected rays and we have branching Hamiltonian billiards. Here, a dead-end point

is a point z ∈ �(λ) such that some of the branches behave badly and a periodic point

is a point z ∈ �(λ) such that some of the branches return to it.
Assume that the sets of all periodic points and all dead-end points on the energy

level �(λ) have measure 0 (as shown in [29], the set of all dead-end points may have
positive measure). Then, the two-term asymptotics could be recovered. However, the
investigation of branching Hamiltonian billiards is a rather daunting task.

2.2.7 Rescaling technique

The rescaling technique could be applied near ∂X as well. Assume that λ = 0. Then to
get rid of the non-degeneracy assumption V (x) ≤ −ǫ, we use scaling functions γ (x)
and ρ(x) as in Sect. 2.1.5. It may happen that B(x, γ (x)) ⊂ X or it may happen that
B(x, γ (x)) intersects ∂X . In the former case, we are obviously done and in the latter
case we are done as well because in the condition (2.69) we scale α 
→ αρν, β 
→ βν

where ν > 0 is a parameter of our choice. Thus, in the pointwise asymptotics, we can
get rid of this assumption for d ≥ 3, and in the local asymptotics for d ≥ 2 assuming
that |V |+|∇V | ≍ 1 because the total measure of the balls of radii ≤ γ which intersect
∂X is O(γ ). For details, exact statements and proofs, see Section 8.2 of [14].

2.2.8 Operators with periodic billiards

Simple billiards Consider an operator on a manifold with boundary. Assume first
that all the billiard trajectories (on energy levels close to λ) are simple (i.e. without
branching) and periodic with a period bounded from above; then the period depends
only on the energy level. Example: the Laplace–Beltrami operator on the semisphere.
Under some non-degeneracy assumptions similar to (2.57), we can derive asymptotics
similar to (2.61) but with two major differences:
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(i) We assume that ε ≍ h and recover remainder estimate only O(h1−d+δ); it is still
good enough to have the second term of the non-standard type.

(ii) We can consider b(x, ξ) (which is invariant with respect to the Hamiltonian
billard flow) as a phase shift for one period. Now, however, it could be a result
not only of the quantum drift as in Sect. 2.1.6, but also of an instant change of
phase at the moment of the reflection.

For exact statements, details and proofs, see Subsection 8.3.2 of [14].

Branching billiards with “scattering” We now assume that the billiard branches but
only one (“main”) branch is typically periodic. For example, consider two Laplace–
Beltrami operators intertwined through boundary conditions: one of them is an
operator on the semisphere X1 and another on the disk X2 with ∂X1 and ∂X2 glued
together. Then all billiards on X1 are periodic but there exist nowhere dense sets� j (λ)

of measure 0, such that the billiards passing through � j (λ)\� j (λ) and containing at
least one segment in X2 are not periodic. Assume also that the boundary conditions
guarantee that at reflection, the “observable” part of energy escapes into X2. Then to
recover the sharp remainder estimates, we do not need a phase shift because for time
T ≫ 1, we have

T |Ft→h−1τ χ̄T (t) dτ e(y, y, τ ) dy| ≤ C0h1−d
∑

|n|≤T

qn + oT (h
1−d), (2.85)

where q ≤ 1 estimates from above the “portion of energy” which goes back to X1

at each reflection; if q < 1, as we have assumed the right-hand expression does not
exceed C1h1−d + oT (h

1−d) and we recover asymptotics similar to (2.61) with the
remainder estimate o(h1−d).

For exact statements, details and proofs, see Subsection 8.3.3 of [14].

Two periodic billiards We can also consider the case when the billiards flows in X1

and X2 are both periodic but “magic” happens at reflections. For exact statements,
details and proofs, see Subsection 8.3.4 of [14].

3 Global asymptotics

In this section, we consider global spectral asymptotics. Here we are mainly inter-
ested in the asymptotics with respect to the spectral parameter λ. We consider mainly
examples.

3.1 Weyl asymptotics

3.1.1 Regular theory

We start from examples in which we apply only the results of the previous Sect. 2 which
may be combined with Birman–Schwinger principle and the rescaling technique.
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Simple results

Example 3.1 Consider a self-adjoint operator A with domain D(A) = {u : Bu|∂X =
0}. We assume that A is elliptic and the boundary value problem (A, B) is elliptic as
well.

(i) We are interested in N(0, λ), the number of eigenvalues of A in [0, λ). Instead
we consider N(λ/2, λ), which is obviously equal to Nh(

1
2 , 1), the number of

eigenvalues of Ah = λ−1 A that lie in [ 1
2 , 1), with h = λ−1/m where m is

the order of A. In fact, more is true: the principal symbols of semiclassical
operators Ah and Bh coincide with the senior symbols of A and B. Then the
microhyperbolicity conditions are satisfied and the semiclassical asymptotics
with the remainder estimate O(h1−d) hold which could be improved to two-
term asymptotics under our standard non-periodicity condition. As a result, we
obtain

N(0, λ) = ̹0λ
d
m + O

(
λ

d−1
m

)
(3.1)

and

N(0, λ) = ̹0λ
d
m + ̹1λ

d−1
m + o

(
λ

d−1
m

)
, (3.2)

as λ → +∞ in the general case and under the standard non-periodicity condition
respectively. Here,

̹0 = (2π)−d

∫∫
n(x, ξ) dxdξ (3.3)

where n(x, ξ) is the number of eigenvalues of A0(x, ξ) in (0, 1) and m = m A

is the order of A.
(ii) Suppose that AB is positive definite (then m A ≥ 2) and V is an operator of

the order m B < m A, symmetric under the same boundary conditions. We
are interested in N(0, λ), the number of eigenvalues of V A−1

B in (λ−1,∞).
Using the Birman–Schwinger principle, we can again reduce the problem to the
semiclassical one with H = hm A A − hmV V , h = λ−1/m , m = m A − mV .
The microhyperbolicity condition is fulfilled automatically unless ξ = 0 and
V 0(x, ξ) is degenerate. Still under certain appropriate assumptions about V 0,
we can ensure microhyperbolicity (for m B = 0, 1 only). Then (3.1) and (3.2)
(the latter under standard non-periodicity condition) hold with n(x, ξ) the num-
ber of eigenvalues of V 0(x, ξ)(A0(x, ξ)−1) in (1,∞).

(iii) Alternatively, we can consider the case when V is positively defined (and AB

may be not).
(iv) For scalar operators, one can replace microhyperbolicity by a weaker non-

degeneracy assumption. Furthermore, without any non-degeneracy assumption
we arrive to one-term asymptotics with the remainder estimate O(λ(d−1+δ)/m).

(v) Also one can consider operators whose all Hamiltonian trajectories are periodic;
in this case the oscillatory correction term appears.
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(vi) Suppose the operator AB has negative definite principal symbol but AB is not
semi-bounded from above and V is positive definite. Then instead of (3.1) or
(3.2), we arrive to

N(0, λ) = ̹1λ
d−1

m + O
(
λ

d−2
m

)
(3.4)

and

N(0, λ) = ̹1λ
d−1

m + ̹2λ
d−2

m + o
(
λ

d−2
m

)
, (3.5)

(the latter under an appropriate non-periodicity assumption).

Fractional Laplacians The fractional Laplacian �m,X appears in the theory of sto-
chastic processes. For m > 0, it is defined first on R

d as �m/2, and in a domain
X ⊂ R

d , it is defined as �m,X u = RX�
m/2(θX u) where RX is the restriction to X

and θX is the characteristic function of X . It differs from the m/2-th power of the
Dirichlet Laplacian in X and for m /∈ 2Z, it does not belong to the Boutet de Monvel’s
algebra. In particular, even if X is a bounded domain with ∂X ∈ C ∞ and u ∈ C ∞(X̄),
�m,X u does not necessarily belong to C ∞(X̄) (smoothness is violated in the direction
normal to ∂X ).

Then the standard Weyl asymptotics (3.1) and (3.2) hold (the latter under standard
non-periodicity condition) with the standard coefficient ̹0 = (2π)−dωd−1 vold(X)
and with

̹1,m = (2π)1−dωd−1σm vold−1(∂X), (3.6)

σm = d − 1

m

∫∫ ∞

1
τ−(d−1)/m−1

(
em(x1, x1, τ )− π−1(τ − 1)1/m

)
dx1dτ (3.7)

where em(x1, y1, τ ) is the Schwartz kernel of the spectral projector of operator

am = ((D2
x + 1)m/2)D (3.8)

on R
+. To prove this, we need to redo some analysis of Chapter 2. While tangent rays

are treated exactly as for the ordinary Laplacian, normal rays require some extra work.
However, we can show that the singularities coming along transversal rays do not stall
at the boundary but reflect according the standard law. For exact statements, details
and proofs, see Section 8.5 of [14].

Semiclassical Dirichlet-to-Neumann operator Consider the Laplacian � in X .
Assuming that λ is not an eigenvalue of �D, we can introduce the Dirichlet-to-

Neumann operator Lλ : v 
→ λ−
1
2 ∂νu|∂X where u is defined as (� − λ)u = 0,

u|∂X = v and ν is the inner unit normal. Here, Lλ is a self-adjoint operator and we
are interested in Nλ(a1, a2), the number of its eigenvalues in the interval [a1, a2). Due
to the Birman–Schwinger principle, it is equal to N−

h (a1) − N−
h (a2) where N−

h (a)
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is the number of the negative eigenvalues of h2� − 1 under the boundary condition
(h∂ν − a)u|∂X = 0 and then we arrive to

Nλ(a1, a2) = O
(
λ

d−1
m

)
(3.9)

and

Nλ(a1, a2) = ̹1(a1, a2)λ
d−1

2 + o
(
λ

d−1
2

)
(3.10)

(the latter under a standard non-periodicity condition). For exact statements, details
and proofs, see Section 11.9 of [14].

Rescaling technique We are interested in the asymptotics of either

N−(λ) =
∫

e(x, x, λ) dx (3.11)

or

N(λ1, λ2) =
∫

e(x, x, λ1, λ2) dx with λ1 < λ2 : (3.12)

with respect to either the spectral parameter(s), or semiclassical parameter(s), or some
other parameter(s). We assume that there exist scaling functions γ (x) and ρ(x) satis-
fying

|∇γ | ≤ 1

2
, |x − y| ≤ γ (y) �⇒ c−1 ≤ ρ(x)/ρ(y) ≤ c, (3.13)1,2

such that after rescaling x 
→ x/γ (y) and ξ 
→ ξ/ρ(y) in B(y, γ (y)), we find
ourselves in the framework of the previous chapter with an effective semiclassical

parameter h̄ ≤ 1.29

To avoid non-degeneracy assumptions, we consider only the Schrödinger operator
(2.68) in R

d , assuming that g jk = gk j ,

|∇αg jk | ≤ cαγ
−|α|, |∇αV | ≤ cαρ

2γ−|α| (3.14)

and

∑

j,k

g jkξ jξk ≥ ǫ0|ξ |2 ∀x, ξ. (3.15)

In the examples below, h ≍ 1.

Example 3.2 (i) Suppose the conditions (3.14), (3.15) are fulfilled with γ (x) =
1
2 (|x |+1) and ρ(x) = |x |m , m > 0. Further, assume that the coercivity condition

29 In purely semiclassical settings, h̄ = h/ργ and we assume ργ ≥ h.
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V (x) ≥ ǫ0ρ
2 (3.16)

holds for |x | ≥ c0. Then if |x | ≤ Cλ1/2m , for the operator H − λ, we can use
ρλ(x) = λ1/2 and then the contribution of the ball B(x, γ (x)) to the remain-
der does not exceed Cλ(d−1)/2γ d−1(x); summation over these balls results in
O(λ(d−1)(m+1)/2m).

On the other hand, if |x | ≤ Cλ
1

2m , for the operator H − λ we can use ρ(x) =
γm(x) but there the ellipticity condition is fulfilled and then the contribution of
the ball B(x, γ (x)) to the remainder does not exceed Cγ−s ; summation over
these balls results in o

(
λ(d−1)(m+1)/2m

)
. Then we arrive to

N(λ) = c0h−d

∫
(λ− V (x))

d
2
+ + O

(
λ(d−1)(m+1)/2m

)
(3.17)

as λ → +∞. Obviously the main part of the asymptotics is ≍ λd(m+1)/2m .
(ii) Suppose instead 0 > m > −1. We are interested in its eigenvalues tending to

the bottom of the continuous spectrum (which is 0) from below. We no longer
require the assumption (3.16).
We use the same γ (x) but now ρλ(x) = γ (x)m for |x | ≤ C |λ|1/2m . Then
the contribution of the ball B(x, γ (x)) to the remainder does not exceed
Cγ (x)(d−1)(m+1); summation over these balls results in O

(
|λ|(d−1)(m+1)/2m

)
.

On the other hand, if |x | ≥ C |λ|1/2m , for the operator H −λwe can use ρλ(x) =
|λ| 1

2 , but there the ellipticity condition is fulfilled and then the contribution of
the ball B(x, γ (x)) to the remainder does not exceed C |λ|−sγ d−s ; summation
over these balls results in o

(
|λ|(d−1)(m+1)/2m

)
. Then we arrive to asymptotics

(3.17) again as λ → −0.
Obviously the main part of the asymptotics is O(|λ|d(m+1)/2m) and under the
assumption V (x) ≤ −ǫρ(x)2, in some cone it is ≍ |λ|d(m+1)/2m .

(iii) In both cases (i) and (ii), the main contribution to the remainder is delivered by the
zone {ε < |x ||λ|−1/2m < ε−1} and assuming that g jk(x) and V (x) stabilize as
|x | → +∞ to g jk0(x) and V 0(x), positively homogeneous functions of degrees
0 and 2m respectively, and that the set of periodic trajectories of the Hamiltonian∑

j,k g jk(x)ξ jξk + V 0(x) on energy level 1 in (i) or −1 in (ii) has measure 0,

we can improve the remainder estimates to o
(
|λ|(d−1)(m+1)/2m

)
.

Example 3.3 Consider the Dirac operator

H =
∑

1≤ j≤d

σ j D j + Mσ0 + V (x), (3.18)

where σ j ( j = 0, . . . , d) are Pauli matrices in the corresponding dimension and
M > 0. Let V (x) → 0 as |x | → ∞. Then the essential spectrum of H is (−∞,−M]∪
[M,∞) and for V as in Example 3.2(ii), we can get similar results for the asymptotics
of eigenvalues tending to M−0 or−M+0: so instead of N(λ), we consider N(0, M−η)
or N(M + η, 0) with η → +0.
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Example 3.4 Consider the Schrödinger operator, either in a bounded domain X ∋ 0
or in R

d like in Example 3.2(i) and assume that g jk(x) and V (x) have a singularity at
0 satisfying there (3.14)–(3.16) with γ (x) = |x | and ρ(x) = |x |m with m < −1.

Consider the asymptotics of eigenvalues tending to +∞. As in Example 3.2(i),
we take γ (x) = 1

2 |x | and ρλ(x) = λ1/2 for |x | ≥ ǫ0λ
1/2m (then the contribution

of B(x, γ (x)) to the remainder does not exceed λ(d−1)/2|x |d−1) and ρλ(x) = |x |m
as |x | ≤ ǫ0λ

1/2m (then due to the ellipticity the contribution of B(x, γ (x)) to the
remainder does not exceed ρ−sγ−s−d ). We conclude that the contribution of B(0, ǫ)
to the remainder does not exceed Cλ(d−1)/2ǫd−1 which means that this singularity
does not prevent remainder estimate as good as o(λ(d−1)/2). However, this singularity
affects the principal part which should be defined as in (3.17).

Example 3.5 (i) When analyzing the asymptotics of the large eigenvalues, we can
consider a potential that is either rapidly increasing (withρ = exp(|x |m), γ (x) =
|x |1−m , m > 0), or slowly increasing (with ρ = (| log x |)m , γ (x) = |x |, m > 0)
which affects both the magnitude of the main part and the remainder estimate.

(ii) When analyzing the asymptotics of the eigenvalues tending to the bottom of the
essential spectrum, we can consider a potential that is either rapidly decreasing
(with ρ = |x |−1(log |x |)m with m > 0, γ (x) = |x |, m > 0) or slowly decreasing
(with ρ = (| log x |)m , γ (x) = |x |, m < 0) which affects both the magnitude of
the main part as well as the remainder estimate.

Remark 3.6 We can consider the same examples albeit assuming only that h ∈ (0, 1);
then the remainder estimate acquires the factor h−d+1.

3.1.2 Singularities

Let us consider other types of singularities when there is a singular zone where after
rescaling h̄ ≤ 1 29. Still, it does not prevent us from using the approach described
above to get an estimate from below for (3.11) or (3.12): we only need to decrease
these expressions by inserting ψ (0 ≤ ψ ≤ 1) that is supported in the regular zone

(aka the semiclassical zone) defined by h̄ ≤ 2h̄0 after rescaling and equal to 1 for
h̄ ≤ h̄0 and applying the rescaling technique there.

Let us discuss an estimate from above. If there was no regular zone at all, we would
have no estimate from below at all but there could be some estimate from above of
variational nature. The best known is the LCR (Lieb–Cwikel–Rosenblum) estimate

N−(0) ≤ Ch−d

∫
V

d
2
− dx (3.19)

for the Schrödinger operator with Dirichlet boundary conditions as d ≥ 3. For d = 2,
the estimate is marginally worse (see [25] for the most general statement for arbi-
trary orders of operators and dimensions and [32] for the most general results for the
Schrödinger operator in dimension 2).

It occurs that we can split our domain into an overlapping regular zone {x :
ρ(x)γ (x) ≥ h} and a singular zone {x : ρ(x)γ (x) ≤ 3h}, then evaluate the con-
tribution of the regular zone using the rescaling technique and the contribution of the
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singular zone by the variational estimate as if on the inner boundary of this zone (i.e.
a part of its boundary which is not contained in ∂X ) the Dirichlet boundary condition
was imposed, and we add these two estimates:

−Ch1−d

∫

{ργ≥h,V≤ǫρ2}
ρd−1γ−1√g dx

≤ N−(0)− (2π)−dωd h−d

∫

{ργ≥h}
V

d/2
− dx

≤ Ch1−d

∫

{ργ≥h,V≤ǫρ2}
ρd−1γ−1 dx + Ch−d

∫

{ργ≤h,V≤ǫρ2}
ρd dx .

(3.20)

See Theorems 9.1.7 and 9.1.13 of [14] for more general statements. Further, similar
statements could be proven for operators which are not semi-bounded (see Theo-
rems 10.1.7 and 10.1.8 of [14]).

In particular, we have:

Example 3.7 (i) Let

∫
ρd−1γ−1 dx < ∞. (3.21)

Then,

N−(0) = (2π)−dωd h−d

∫
V

d/2
−

√
g dx + O(h1−d). (3.22)

(ii) If in addition the standard non-periodicity condition is satisfied then

N−(0) = (2π)−dωd h−d

∫
V

d/2
−

√
g dx

−1

4
(2π)1−dωd−1h1−d

∫
V
(d−1)/2
− d S + o(h1−d), (3.23)

where d S is a corresponding density on ∂X .

Example 3.8 Consider the Dirichlet Laplacian in a domain X assuming that there
exists scaling function γ (x) such that (3.14) holds and

Claim 3.9 For each y ∈ X , the connected component of B(y, γ (x)) ∩ X containing
y coincides with {x ∈ B(0, 1), x1 ≤ f (x ′}, where x ′ = (x2, . . . , xd) and

|∇α f | ≤ Cαγ
1−|α| ∀α, (3.24)

where we rotate the coordinate system if necessary.30

30 It is precisely the condition that we need to impose on the boundary for the rescaling technique to work.
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(i) Then the principal part of asymptotics is

c0λ
d
2 h−d

∫

{x :γ (x)≥λ−
1
2 }

dx (3.25)

and the remainder does not exceed

Cλ
d−1

2 h1−d

∫

{x :γ (x)≥λ−
1
2 }
γ (x)−1 dx + Cλ

d
2 h−d

∫

{x :γ (x)≤λ−
1
2 }

dx . (3.26)

(ii) In particular, if

∫

X

γ (x)−1 dx < ∞, (3.27)

then the standard asymptotics with the remainder estimate O(λ(d−1)/2h1−d)

hold. Moreover, under the standard condition Claim 1.1, we arrive to the two-
term asymptotics (1.2).
These conditions are satisfied for domains with vertices, edges and conical points.
In fact, we may allow other singularities including outer and inner spikes and
cuts.
Furthermore, these conditions are satisfied for unbounded domains with cusps
(exits to infinity) provided these cusps are thin enough (basically having finite
volume and area of the boundary).

(iii) These results hold under the Neumann or mixed Dirichlet-Neumann boundary
condition, but then we need to assume that the domain satisfies the cone con-
dition; for the two-term asymptotics, we also need to assume that the border
between the parts of ∂X with the Dirichlet and Neumann boundary conditions
has (d − 1)-dimensional measure 0.

Example 3.10 (i) Suppose that the potential is singular at 0 ∈ X like |x |2m with
m ∈ (−1, 0). Then this singularity does not affect the asymptotics of large
eigenvalues.

(ii) Let us consider Example 3.2(i) albeit allow V ≥ 0 to vanish along certain
directions. Then we have canyons and {x : V (x) ≤ λ} are cusps. If the canyons
are narrow and steep enough then the same asymptotics (3.17) hold. Moreover,
under the non-periodicity condition, the remainder estimate is “o”.

(iii) Let us consider Example 3.2(ii) albeit allow V ≥ 0 to be singular along certain
directions. Then we have gorges and {X : V (x) ≤ λ} are cusps. If the gorges
are narrow and shallow enough then the same asymptotic (3.17) hold. Moreover,
under the non-periodicity condition, the remainder estimate is “o”.

Example 3.11 We can consider also multiparameter asymptotics, for example with
respect to h → +0 and λ. In addition to what we considered above, the following
interesting possibility appears:λ ց λ∗ := inf V (x)which is either finite or−∞. Then
if λ tends to λ∗ slowly enough so that N−

h (λ) → +∞, we get interesting asymptotics.
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In particular, as either V (x) ≍ |x |2m with m > 0 and λ → +0 or V (x) ≍ |x |2m

with 0 > m > −1 and λ → −∞, then this condition is h = o(|λ|(m+1)/2m).

Remark 3.12 We can also consider Tr((−H)νθ(−H)) with ν > 0. Then in the esti-
mates above, ρd 
→ ρd+2ν and ρd−1 
→ ρd+ν−1γ−ν−1.

For full details, proofs and generalizations, see Chapter 11 of [14] which covers
also non-semibounded operators.

3.2 Non-Weyl asymptotics

3.2.1 Partially Weyl theory

Analyzing the examples of the previous section, one can observe that for some values
of the exponents, the condition (3.21) (or it special case (3.27)) fails but the main term
of the asymptotics is still finite and has the same rate of the growth as it had before,
while for other values of the exponent, it is infinite. In the former case, we get Weyl
asymptotics but with a worse remainder estimate, in the latter case, all we can get is
an estimate rather than the asymptotics. Can one save the day?

In many cases, the answer is positive and we can derive either the Weyl asymptotics
but with a non-Weyl correction term or completely non-Weyl asymptotics. The main
but not the only tool is the spectral asymptotics for operators with operator-valued
symbols. Namely, in some zone of the phase space, we separate the variables31 x =
(x ′; x ′′) and (ξ ′; ξ ′′) respectively and consider the variables (x ′, ξ ′) as semiclassical

variables (or Weyl variables), similar to (x, ξ) in the previous scheme. So we get an
operator H(x ′, D′) with an operator-valued symbol which we can study in the same
way as the operator H before.

One can say that we have a matrix operator but with a twist: first, instead of
finite-dimensional matrices, we have unbounded self-adjoint operators in the aux-
iliary infinite-dimensional Hilbert space H (usually L 2 in the variables x ′′); second,
we are interested in the asymptotics

∫
trH

(
ê(x ′, x ′, λ)

)
dx ′, (3.28)

rather than in the asymptotics without trace where ê(x ′, y′; λ) is an operator in H (with
Schwartz kernel e(x ′, y′; x ′′, y′′; λ)); and, finally, the main term in asymptotics is

∫
trH

(
e(x ′, ξ ′; λ)

)
dξ ′dx ′, (3.29)

where e(x ′, ξ ′, λ) is a spectral projector (in H) of H(x ′, ξ ′). Here, we need to assume
that H(x ′, ξ ′) is microhyperbolic with respect to (x ′, ξ ′). Since the operator trH is

31 After some transformation, the transformations and separations in the different zones are not necessarily
the same.
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now unbounded, both the main term of the asymptotics of (3.28) and the remainder
estimate may have magnitudes different from what they would be without trH.

Since the operator H(x ′, ξ ′) is rather complicated, we want to replace it by some
simpler operator and add some easy to calculate correction terms.

We consider multiple examples below. Magnetic Schrödinger, Schrödinger–Pauli
and Dirac operators studied in Sects. 5 and 6 are also of this type.

3.2.2 Domains with thick cusps

This was done in Section 12.1 of [14] for operators in domains with thick cusps of
the form {x : x ′′ ∈ f (x ′)�} where � is a bounded domain in R

d ′′
with smooth

boundary, defining the cusp cross section. Here again we consider for simplicity the
Dirichlet Laplacian. Assume first that the metric is Euclidean and the domain X =
{x = (x ′, x ′′) : x ′ ∈ X ′ := R

d ′
, x ′′ ∈ f (x ′)�}. Then, the change of variables

x ′′ 
→ x ′′/ f (x ′) transforms � to the operator

P =
∑

1≤ j≤d ′

(
D j + gx j

L + id ′′

2
gx j

) (
D j + gx j

L − id ′′

2
gx j

)
+ 1

f 2
�′′

(3.30)

in L 2(X ′×�) = L 2(Rd ′
,H)where L = 〈x ′′, D′′〉, g = − log f , H = L 2(�),�′ is

a Laplacian in X ′, and�′′ = �′′
D is a Dirichlet Laplacians in�, and we simultaneously

multiply u by f −d ′′/2 to have the standard Euclidean measure rather than the weighted
one f d ′′

dx . We consider the operator (3.30) as a perturbation of the operator

P̄ := �′ + 1

f 2
�′′, (3.31)

which is a direct sum of d ′-dimensional Schrödinger operators Pn = �′ + μn f −2 in
X ′ where μn > 0 are the eigenvalues of �′′

D. Assuming that

f ≍ |x |−m, |∇ f | ≍ |x |−m−1 for |x ′| ≥ c, (3.32)

we can ensure that the microhyperbolicity condition (with respect to (x ′; ξ ′)) is fulfilled
for Pn , P̄ , as well as for P .

Then according to the previous section, for Pn the eigenvalue counting function is

Nn(λ) = cd ′

∫ (
λ− μn f −2(x ′)

) d′
2
+ dx ′ + O

(
λ(d

′−1)(m+1)/2mμ
−(d ′−1)/2m
n

)
,

(3.33)

where the remainder estimate is uniform with respect to n. Observe that for P̄ the
eigenvalue counting function is N̄(λ) =

∑
n Nn(λ). Using μn ≍ n2/d ′′

, we arrive to
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Nn(λ) = cd ′

∫∫
(λ− μ f −2(x ′))

d′
2
+ dx ′dμn(μ)+ O(R(λ)) (3.34)

with

R(λ) = λ
1
2 (d−1) + λ

m+1
2m

(d ′−1) + δ(d ′−1),md ′′λ
1
2 (d−1) log λ, (3.35)

where n(μ) is the eigenvalue counting function for �′′
D.

We show, moreover, that the same asymptotics holds for our original operator
(3.30). Furthermore, if the first term in (3.34) is dominant, then under the standard
non-periodicity assumption we can replace O(λ(d−1)/2) by o(λ(d−1)/2); we need to
add the standard boundary term to the right-hand expression in (3.34).

On the other hand, if the second term in (3.34) dominates, then assuming that f

stabilizes as |x ′| → ∞ to a positively homogeneous function f0, under the corre-
sponding non-periodicity assumption (now in T ∗

R
d ′

) for |ξ ′|2 + f −2
0 (x ′), we can

replace O(λ(m+1)(d ′−1)/2m) by o(λ(m+1)(d ′−1)/2m). Finally, if both powers coincide
then under the stabilization condition, the remainder estimate is o(λ(d−1)/2 log λ) but
we need to add the modified boundary term to the right-hand expression in (3.34).

Obviously, the principal part in (3.34) is of the magnitude

S(λ) = λ
1
2 d + λ

m+1
2m

d ′ + δd ′,md ′′λ
1
2 d log λ. (3.36)

If X is not exactly of the same form and the metric only stabilizes (fast enough) at
infinity to g jk0 := δ jk , then we can recover the same remainder estimate and reduce
the principal part to

cd ′

∫∫
(λ− μ f −2(x ′))

d′
2
+ φ(x

′) dx ′dμn(μ)+ cdλ
d/2

∫

X

(√
g −

√
g0φ(x ′)

)
dx,

(3.37)

where supp(φ) ⊂ {|x ′| ≥ c},φ = 1 in {|x ′| ≥ c}. Here, the first part is exactly as above
and the second term is actually the sum of two terms; one of them cdλ

d/2
∫ √

g(1 −
φ(x ′)) dx is the contribution of the “finite part of the domain” (without the cusp) and

the second cdλ
d/2

∫
(
√

g−
√

g0)φ(x ′) dx is a contribution of the cusp in the correction.
Note that now to get the remainder estimate o(λ(d−1)/2), one needs to include the

standard boundary term in the second part of (3.37).
The crucial part of our arguments is a multiscale analysis. As long as r ≤ cλ1/2m−δ ,

we can scale x 
→ xrm and consider σ0(t) = Tr
(
eih−1t Hφ(x ′/r)

)
; here H = λ−1 P ,

h = λ−1/2rm . From the propagation with respect to (x, ξ), we know that on energy
level 1, the time interval (h1−δ, ǫ) contains no singularities of σ0(t).

On the other hand, for r ≥ c, we can scale x 
→ x/r and consider σ1(t) =
Tr

(
ei h̄−1t Hφ(x ′/r)

)
; here h̄ = λ−1/2r−1. From the propagation with respect to (x ′, ξ ′),

we know that on energy level 1, the time interval (h̄1−δ, ǫ) contains no singularities
of σ1(t).
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Observe first thatσ1(t) = σ0(r
−1−m t) and therefore the time interval (h1−δ, ǫrm+1)

contains no singularities of σ0(t). This allows us to improve the remainder estimate
in the full Weyl asymptotics but we need to include many terms which are difficult to
calculate.

On the other hand, for λδ ≤ r ≤ cλ1/2m , we can consider H as a perturbation of
H̄ = λ−1 P̄ . We do it first in the framework of the theory of operators with operator-
valued symbols. Then we consider all perturbation terms and apply to them “full Weyl
theory” and due to the stabilization assumption, the error is less than (3.35). This gives
us another asymptotics, also with many terms which are difficult to calculate.

Comparing these two asymptotics in their common domain λδ ≤ r ≤ λ1/2m−δ , we
conclude that all terms but those present in both must be 0; it allows us to eliminate
almost all the terms and sew these asymptotics resulting in (3.37).

Using the same approach, we can consider higher order operators, the case when
X ′ is a conical set and there are several cusps Xk which may have different dimensions
d ′

k and rates of decay (then both the principal part and the remainder estimate should
be modified accordingly).

3.2.3 Neumann Laplacian in domains with ultra-thin cusps

Consider the Neumann Laplacian in domains with cusps. Recall that since these
domains do not satisfy the cone condition, we so far have no results even if the cusp is
thin. Applying the same arguments as before, we hit two obstacles. The first (minor)
obstacle is that the Neumann boundary condition for the operator (3.30) coincides
with the same condition for �′′ only asymptotically. The second (major) obstacle is
that μ1 = 0 and P1 = �′ has a continuous spectrum. In fact, we should not reduce P

to P̄; from (3.30) we conclude that

P1 =
∑

1≤ j≤d ′

(
D j +

id ′′

2
gx j

) (
D j −

id ′′

2
gx j

)
= �′ + W (3.38)

with

W = d ′′2

4
|∇g|2 + d ′′

2
�′g. (3.39)

Still this operator may have a continuous spectrum unless |∇g| → ∞ as |x | → ∞.
We need to assume that f has superexponential decay: f = e−g with

|∇αg| ≤ cα|x |1+m−|α| ∀α, (3.40)

g ≍ |x ′|m+1, |∇g| ≍ |x ′|m for |x ′| ≥ c, (3.41)

|∇|∇g|2| ≍ |x |2m−1 for |x ′| ≥ c, (3.42)

where m > 0 and (3.42) is a microhyperbolicity condition for P1. Then one can prove
easily that when d ′′ ≥ 2,
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N(λ) = cdλ
d/2

∫

X

√
g dx + cd ′

∫
(λ− W )

d ′/2
+ dx ′ + O(R(λ)) (3.43)

with

R(λ) = λ
1
2 (d−1) + λ

m+1
2m

(d ′−1). (3.44)

Moreover, if the first term in (3.34) dominates, then under the standard non-periodicity
assumption, we can replace O(λ(d−1)/2) by o(λ(d−1)/2) (simultaneously including
the standard boundary term); if the second term dominates, then assuming that W

stabilizes as |x ′| → ∞ to a positively homogeneous function W0, under the cor-
responding assumption for |ξ ′|2 + W0(x

′) we can replace O(λ(m+1)(d ′−1)/2m) by
o(λ(m+1)(d ′−1)/2m).

One can see easily that N(λ) ≍ S(λ) = λ
1
2 d + λ

m+1
2m

d ′
. Observe that in contrast to

(3.35) and (3.36), even if the exponents coincide, a logarithmic factor does not appear.
The case d ′′ = 1 is special since even an ultra-thin cusp is also thick (according to

the classification of the previous Sect. 3.2.1) and the corresponding formulae should
include a modified boundary term containing the double logarithm of λ. For this and
other generalizations, see Section 12.6 of [14]. Also one can consider spikes with
supp( f ) = {|x ′| ≤ L}, in which case the standard Weyl asymptotics holds.

3.2.4 Operators in R
d

The scheme of Sect. 3.2.2 is repeated in many similar cases.
First, consider eigenvalues tending to +∞ for the Schrödinger operator with poten-

tial V which generically is ≍ |x |2m but vanishes along some directions.
For example, consider the toy model V = |x |2m−2m′ |x ′′|2m′

with m > m′ > 0.
Let X ′ = R

d ′ ∋ x ′ and X ′′ = R
d ′′ ∋ x ′′. Consider only the conical vicinity of X ′

and here we instead consider the potential V = |x ′|2m−2m′ |x ′′|2m′
. Consider only the

part of operator which is related to x ′′: �′′ + |x ′|2m−2m′ |x ′′|2m′
and after the change

of variables x ′′ 
→ x ′′|x ′|k with k = (m − m′)/(m′ + 1), it becomes |x ′|2k L with
L = �′′ + U (x ′′), U = |x ′′|2m′′

. The condition m′′ > 0 ensures that the spectrum of
L is discrete and accumulates to +∞.

So basically we have a mixture of the Schrödinger operator on R
d with a potential

growing as |x |2m and the Schrödinger operator with the operator-valued symbol on R
d ′′

with a potential growing as |x |2k and we recover the asymptotics with the remainder
estimate O(R(λ)), where

R(λ) = λ
m(d−1)
(m+1) + λ

k(d′−1)
(k+1) + δm(d−1)

(m+1) ,
k(d′−1)
(k+1)

λ
m(d−1)
(m+1) log λ (3.45)

and the principal part is ≍ S(λ), where

S(λ) = λ
md

(m+1) + λ
kd′
(k+1) + δmd/(m+1)

,
kd′
(k+1)

λ
md

(m+1) log λ. (3.46)
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In a rather general situation, this principal part is similar to the one in (3.37) where
n(μ) is the eigenvalue counting function for L . Further, under similar non-periodicity
assumptions, we can replace “O” by “o”. For generalizations, details and proofs, see
Section 12.2 of [14].

Second, consider eigenvalues tending to −0 for the Schrödinger operator with a
potential V which generically is ≍ |x |2m with m ∈ (−1, 0) but is singular in some
directions. Again, consider a toy model V = −|x |2m−2m′ |x ′′|2m′

with −1 < m <

m′ < 0. Again, L = �′′+U (x ′′), U = −|x ′′|2m′′
and its negative spectrum is discrete

and accumulates to −0. The formulae (3.45) and (3.46) remain valid (albeit λ → −0).
For generalizations, details and proofs, see Section 12.3 of [14].

3.2.5 Maximally hypoelliptic operators

Third, consider the eigenvalues tending to +∞ for maximally hypoelliptic operators

with a symplectic manifold of degeneration. Consider the toy model P = �′′ +
|x ′′|2m�′. In this case, after the partial Fourier transform, we get�′′+|x ′′|2m |ξ ′|2 and
after the change of variables x ′′ 
→ |ξ ′|k x ′′, we get |ξ ′|2k L , L = �′′ + |x ′′|2m and
k = 1/(m + 1).

This toy model is maximally hypoelliptic as the spectrum of L is discrete and
accumulates to +∞. So basically we have a blend of operator of order 2 on R

d and
of order 2k on R

d ′
and we recover the asymptotics with remainder estimate O(R(λ))

with

R(λ) = λ
(d−1)

2 + λ
(d′−1)

2k + δd−1,(d ′−1)/kλ
(d−1)

2 log λ (3.47)

and principal part ≍ S(λ) with

S(λ) = λ
d
2 + λ

d′
2k + δd,d ′/kλ

d
2 log λ. (3.48)

Further, under similar non-periodicity assumptions, we can replace “O” by “o”. For
generalizations, details and proofs, see Section 12.4 of [14].

3.2.6 Trace asymptotics for operators with singularities

Here, we also consider only one example (albeit the most interesting one) of a
Schrödinger operator H := h2� − V (x) in R

3 with potential V (x) at 0 stabiliz-
ing to a positive homogeneous function V0 of degree −1:

|∇α(V − V0)| ≤ cα|x |−|α| ∀α. (3.49)

We assume that V (x) decays fast enough at infinity and we are interested in the
asymptotics of Tr(H−), which is the sum of the negative eigenvalues of H . While
generalizations are considered in Section 12.5 of [14], exactly this problem with
V0 = |x |−1 arises in the asymptotics of the ground state energy of heavy atoms
and molecules.
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It follows from Sect. 3.1 that N−
h has purely Weyl asymptotics with the remainder

estimate O(h−2) and32 it could be improved to o(h−2) but we have a different object
and if the potential had no singularities, the remainder estimate would be O(h−1) or
even o(h−1). 32,33

Therefore considering the contribution of the ball B(x, γ (x)) with γ (x) = 1
2 |x |,

we have a contribution to the Weyl expression

− ch−3
∫

V
5
2
+ dx (3.50)

of magnitude Cρ2(h/ργ )−3 = Ch−3ρ5γ 3, while the contribution to the remainder

does not exceed Cρ2(h/ργ )−1 = Ch−1ργ with ρ = |x |− 1
2 . We see that the former

converges at 0 and the latter diverges. This analysis could be done for ργ ≥ h i.e. if
|x | ≥ h2. Then we conclude that the contribution of the zone {x : |x | ≥ a} to the

remainder does not exceed Ch−1a− 1
2 which as a = h2 is O(h−2). On the other

hand, one can easily prove that the contribution of B(0, h2) to the asymptotics is also
O(h−2).

To improve this estimate, we analyze B(0, a) in more detail. In virtue of (3.49),
we can easily prove that the contribution of B(x, γ ) to Tr(H− − H0−) (with H0 =
h2�− V0) does not exceed C(h/ργ )−2 = Ch−2ρ2γ 2 and therefore the contribution

of B(0, a) to the remainder is O(h−2a). Minimizing the total error h−2a + h−1a− 1
2

in a, we get a = h
2
3 and the remainder O(h− 4

3 ), which is better than O(h−2) but not
as good as O(h−1).

But then we need to include in the asymptotics the extra term

∫ (
e1

0(x, x, 0)− cV
5
2
+ (x)

)
ψ(a−1x) dx, (3.51)

where e(·, ·, λ) is the Schwartz kernel of the spectral projectors for H , e1(·, ·, 0) =∫ 0
−∞ λ dλe(·, ·, λ) and the subscript 0 means that it is for H0 and ψ ∈ C ∞

0 (B(0, 2))
and equals 1 in B(0, 1).

Basically, all that we achieved so far was to replace H by H0 in (3.51). The
same arguments allow us to replace ψ by 1 in this expression with the same error

O(h−1a− 1
2 ). This time, we cannot decompose it as the difference of two integrals

because each of them is diverging at infinity (since V0 decays there not fast enough).
Further, due to the homogeneity of V0, one can prove that this remodelled expression
(3.51) is homogeneous of degree −2 with respect to h and thus is equal to κh−2. Here,
κ is some unknown constant, but for V0 = |x |−1, it could be calculated explicitly.

Therefore, we conclude that with the remainder estimate O(h− 4
3 ), Tr(H−) is given

by the Weyl expression plus the Scott correction term κh−2.

32 Under the standard non-periodicity condition.
33 But then the principal part of asymptotics should include the third term ch−1 while the second term
vanishes.
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To improve this remainder estimate, we should carefully study the propagation
of singularities. We can prove that if h2−δ ≤ γ ≤ 1, then the singularities do not

come back “in real time” ≍ 1, which is a vast improvement over ≍ γρ−1 ≍ γ
3
2 .

Then the contribution of B(x, γ ) to the “trace remainder” does not exceed Ch−1ρ2γ 3

but then the principal part of asymptotics should have a lot of terms; the n-th term
is of the magnitude h−3+2nρ2−2nγ 3−2n ; however, using (3.49) we conclude that the
difference between such terms for H and H0 is O(h−3+2nρ−2nγ 3−2n) which leads to
the estimate

∣∣∣∣
∫ (

e1(x, x, 0)− e1
0(x, x, 0)− cV

5
2
+ (x)+ cV

5
2

0 +(x)
)

dx

∣∣∣∣ ≤ Ch−1. (3.52)

This estimate implies that with the remainder estimate O(h−1), Tr(H−) is given by
the Weyl expression plus κh−2. Moreover, this estimate could be further improved to
o(h−1) 32,33.

Similar results hold for other singularities (including singularities of the boundary),
dimensions and Tr(H ν

−) with ν > 0. However, note that there could be more than one
such correction term.

3.2.7 Periodic operators

Finally, consider an operator H0 = H0(x, D) with periodic coefficients (with the
lattice of periods Ŵ). Then its spectrum is usually absolutely continuous and consists
of spectral bands {λk(ξ) : ξ ∈ Q′} separated by spectral gaps. Here, λk are the
eigenvalues of operator H0 with quasiperiodic boundary conditions

u(x + n) = T nei〈n,ξ 〉(x) ∀n ∈ Ŵ, (3.53)

Ŵ∗ is the dual lattice,34 Q and Q′ are corresponding elementary cells;35 ξ is called the
quasimomentum. Here, T = (T1, . . . , Td) is a family of commuting unitary matrices.

Let us consider an operator Ht = H0 − tW (x)with W (x) > 0 decaying at infinity.
Then, while the essential spectra of H and Ht are the same, Ht can have discrete
eigenvalues in the spectral gaps and these eigenvalues decrease as t increases.

Let us fix an observation point E belonging to either the spectral gap or its boundary
and introduce NE (τ ), the number of eigenvalues of Ht crossing E as t changes between
0 and τ . We are interested in the asymptotics of NE (τ ) as t → ∞.

Then using Gelfand’s transform,

Fu(ξ, x) = (2π)
d
2 (vol(Q′))−1

∑

n∈Ŵ
T ne−i〈n−x,ξ 〉u(x − n) (3.54)

34 I.e. if Ŵ = Ze1 ⊕ Ze_2 ⊕ · · · ⊕ Zed then Ŵ∗ = Ze′1 ⊕ Ze′2 ⊕ · · · ⊕ Ze′
d

with 〈e j , e′
k
〉 = δ jk .

35 I.e. Q = {x1e1 + · · · + xd ed : x ∈ [0, 1]d } and Q′∗ = {ξ1e′1 + · · · + ξd e′
d
: ξ ∈ [0, 1]d }.
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with (x, ξ) ∈ Q × Q′, this problem is reduced to the problem for operators with
operator-valued symbols on L 2(Q′,Hξ,{T }) where Hξ,{T } is the space of functions
satisfying (3.53).

After that, different results are obtained in three essentially different cases: when
E belongs to the spectral gap, E belongs to the bottom of the spectral gap, and E

belongs to the top of the spectral gap. For exact results, proofs and generalizations,
see Section 12.7 of [14].

4 Non-smooth theory

So far we have considered operators with smooth symbols in domains with smooth
boundaries. Singularities were possible but only on “lean” sets. However, it turns out
that many results remain true under very modest smoothness assumptions.

4.1 Non-smooth symbols and rough microlocal analysis

To deal with non-smooth symbols, we approximate them by rough symbols p ∼∑
m pm , depending on a small mollification parameter ε and satisfying

|∇α
ξ ∇β

x pm(x, ξ)| ≤ Cmαβρ
−α

γ
−βε−m (4.1)

with

min
j
ρ jγ j ≥ ε ≥ Ch1−δ (4.2)

(microlocal uncertainty principle), which could be weakened to

|∇α
ξ ∇β

x pm(x, ξ)| ≤ C |α|+|β|+m+1α!β!m!ρ−α
γ
−βε−m

∀α, β,m : |α| + |β| + 2m ≤ N = C | log h|−1 (4.3)

with

min
j
ρ jγ j ≥ ε ≥ Ch| log h| (4.4)

(logarithmic uncertainty principle). At this point, microlocal analysis ends: the
assumptions cannot be weakened any further.

Assuming that

|∇α
ξ ∇

β
x ∇ p0(x, ξ)| ≤ C |α|+|β|+1α!β!ρ−α

γ
−β (4.5)

and

|∇α
ξ ∇

β
x ∇ pm(x, ξ)| ≤ C |α|+|β|+m+1α!β!m!ρ−α

γ
−βε1−m (m ≥ 1), (4.6)
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we can restore Theorem 2.2 (see Theorem 2.3.2 of [14]) and therefore also the Corollar-
ies 2.3 and 2.4, assuming ξ -microhyperbolicity instead of the usual microhyperbolicity.
For proofs and details, see Section 2.3 of [14].

After this, we can than use the successive approximation method like in Sect. 2.1.2
(definitely some extra twisting required) and then recover the spectral asymptotics—
originally only for operators which are ξ -microhyperbolic.

To consider non-smooth symbols, we can bracket them between rough symbols:
for example, for the Schrödinger operator p−(x, ξ, h) ≤ p(x, ξ, h) ≤ p+(x, ξ, h)

where p± = pε ±Cν(ε) and pε is the symbol p, ε-mollified and ν(ε) is the modulus
of continuity of the metric and potential; ε = Ch| log h|.

Then for ν(ε) = O(ε| log ε|−1),36 we can recover the remainder estimate O(h1−d);
under even weaker regularity conditions by rescaling, we can recover weaker remain-
der estimates. On the other hand, if ν(ε) = o(ε| log ε|−1), we can recover the remainder
estimate o(h1−d) under the standard non-periodicity condition.37 For proofs and
details, see Section 4.6 of [14]. There is an alternative to the bracketing construc-
tion based on perturbation theory, which works better for the trace asymptotics and
also covers the pointwise asymptotics. For an exposition, see Section 4.6 of [14].

Further, for scalar and similar operators, the rescaling technique allows us to replace
ξ -microhyperbolicity by microhyperbolicity under really weak smoothness assump-
tions; here we also use ε depending on the point so that we can consider scalar symbols
under weaker and weaker non-degeneracy assumptions albeit stronger and stronger
smoothness assumptions. See Section 5.4 of [14].

4.2 Non-smooth boundaries

Let us consider a domain with non-smooth boundary (with the Dirichlet boundary
condition). Here, the standard trick to flatten out the boundary by the change of vari-
ables x1 
→ x1 − φ(x ′) works very poorly: the operator principal symbol contains
the first partial derivatives φ and therefore we need to require φ ∈ C 2. Fortunately,
the method of Seelley [30] can help us. This method was originally developed for the
Laplacian with a smooth metric and a smooth boundary.

Here, we consider only the Schrödinger operator; assume first that the metric and
potential are smooth. Consider a point x̄ ∈ X and assume that the metric is Euclidean
at x̄ and nearby, X looks like {x : x1 ≥ φ(x ′)} with ∇ ′φ(x̄ ′) = 0. Observe that these
assumptions do not require any smoothness beyond C 1.

Consider a trajectory starting from (x̄, ξ). If |ξ1| < ρ := Ch| log h|/γ , the trajec-
tory starts parallel to ∂X and ∂X can “catch up” only at time at least T = σ(γ )where
γ = 1

2 dist(x, ∂X) and σ is the inverse function to ν, which is a modulus of continuity

for φ.36

36 Which means that the first partial derivatives are continuous with modulus of continuity ν1(ε) =
ν(ε)ε−1.
37 However, even for the Schrödinger operator without boundary, the dynamic equations do not satisfy the
Lipschitz condition and thus the flow could be multivalued.
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If ξ1 > ρ then this trajectory “runs away from ∂X” and ∂X can “catch up” only
at time at least T = σ(γ ) + σ1(ξ1) where σ1 is the inverse function to ν1.36 On the
other hand, if ξ1 < −ρ, then we can revert the trajectory (which works only for local
but not pointwise spectral asymptotics).

These arguments allow us to estimate the contribution of B(x, γ (x)) to the remain-
der by Ch1−dγ d h| log h|σ(γ )−1 and then the total remainder by Ch1−d

∫
σ(γ )−1 dx .

The latter integral converges for ν(t) = t | log t |−1−δ .
Sure, this works only when γ ≥ γ̄ = Ch| log h|. However, if we smoothen the

boundary with a smoothing parameter C γ̄ , for γ ≤ γ̄ , we will be in the framework
of the smooth theory after rescaling and we can take T = γ̄ . The contribution of this
strip to the remainder does not exceed Ch1−d γ̄ T −1 as its measure does not exceed
C γ̄ . One can easily check that the variation of vol(X) due to the smoothing of the
boundary is Ch1−d and we can use the bracketing of X as well.

We can even improve the remainder estimate to o(h1−d) under the standard non-
periodicity condition.

Furthermore, if the metric and potential are not smooth, we need to mollify them,
taking the mollification parameter ε larger near ∂X and taking ρ = Ch| log h|/ε, but
it works. For systems, we can exploit the fact that most of the cones of dependence are
actually trajectories. For exact statements, proofs and details, see Section 7.5 of [14].

4.3 Aftermath

After the non-smooth local theory is developed, we can use all the arguments of
Sect. 3.1 and consider “stronger but more concentrated” singularities added on the top
of the weaker ones.

5 Magnetic Schrödinger operator

5.1 Introduction

This section is entirely devoted to the study of the magnetic Schrödinger operator

H = (−ih∇ − μA(x))2 + V (x) (5.1)

and of the Schrödinger–Pauli operator

H = ((−ih∇ − μA(x)) · σ)2 + V (x) (5.2)

with a small semiclassical parameter h and large magnetic intensity parameter (cou-
pling constant) responsible for the interaction of a particle with the magnetic field μ.
Here, σ = (σ1, . . . ,σd)where σ1, . . . ,σd are Pauli D×D-matrices and A is magnetic

vector potential. We are interested in the two-parameter asymptotics (with respect to
h and μ) as well as related asymptotics.
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5.2 Standard theory

5.2.1 Preliminaries

For a detailed exposition, generalizations and proofs, see Chapter 13 of [14].
Consider the most interesting cases d = 2, 3 with smooth V (x) and A(x). If d = 2,

the magnetic field could be described by a single (pseudo)scalar F12 = ∂1 A2 − ∂2 A1

and by a scalar F = |F12|. If d = 3, the magnetic field could be described by a
(pseudo)vector F = ∇×A (vector magnetic intensity) and by a scalar F = |F| (scalar

magnetic intensity). As a toy model, we consider an operator in R
d with constant V

and F. Then canonical form of the operator (5.1) is

H = h2 D2
1 + (h D2 − μFx1)

2 + h2 D2
3 +V, (5.3)

with the third term omitted when d = 3. Then we can calculate

e(x, x, τ ) = h−dN MW
d (τ − V, μhF) (5.4)

with

N MW
d (τ, F) = κd

∑

n≥0

(
τ − (2n + 1)F

) 1
2 (d−2)
+ F, (5.5)

where κ2 = 1/(2π), κ3 = 1/(2π2). In particular, if d = 2, F �= 0 this operator has
a pure point spectrum of infinite multiplicity. Eigenvalues (2m + 1)μhF are called
Landau levels. If d = 3, this operator has an absolutely continuous spectrum.

In these cases, the operator (5.2) is a direct sum of D/2 operators H− and D/2
operators H+ where H∓ = H0 ∓ μhF , H0 is the operator (5.1); then

N MW
d (τ − V, μhF) := κd D

⎛
⎝1

2
τ

1
2 (d−2)
+ +

∑

n≥1

(
τ − 2nF

) 1
2 (d−2)
+

⎞
⎠ F (5.6)

Classical dynamics are different as well: when d = 2, the trajectories are mag-

netrons–circles of radii (μF)−1, while if d = 3, there is also free movement along
magnetic lines–integral curves of F, so the trajectories are solenoids.

5.2.2 Canonical form

Using the ℏ-Fourier transform, we can reduce the magnetic Schrödinger operator to
its microlocal canonical form

μ2
∑

n≥0

Bn(x1, ℏD1, μ
−2, ℏ)Ln

0 for d = 2, (5.7)

h2 D2
2 + μ2

∑

n≥0

Bn(x
′, ℏD1, μ

−2, ℏ)Ln
0 for d = 3, (5.8)
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with ℏ = μ−1h, L0 = x2
d + ℏ

2 D2
d , x ′ = x1 and x ′ = (x1, x2) when d = 2, 3

respectively. Further, the principal symbols of the operators B0 and B1 are μ−2V ◦�
and F ◦� respectively, where � is a diffeomorphism (x ′, ξ1) → x .

This canonical form allows us to study both the classical trajectories and the
propagation of singularities in the general case. When d = 2, there is still move-
ment along the magnetrons but magnetrons are drifting with the velocity v =
μ−1(∇((V − τ)/F12))

⊥ where ⊥ denotes the counter-clockwise rotation by π/2.
If d = 3, trajectories are solenoids winding around magnetic lines and the movement
along magnetic lines is described by an 1-dimensional Hamiltonian but there is also
side-drift as in d = 2.

We can replace then L0 by its eigenvalues which are (2 j + 1)ℏ, thus arriving to a
family of ℏ-pseudodifferential operators with respect to x1 if d = 2 and to a family of
ℏ-pseudodifferential operators with respect to x1 which is also a Schrödinger operator
with respect to x2.

5.2.3 Asymptotics: moderate magnetic field

We can always recover the estimate O(μh1−d) with the standard Weyl principal part
simply by using the scaling x → μx , h 
→ μh, μ 
→ 1. On the other hand, for d = 2,
we cannot in general improve it as follows from the example with constant F and V .

However, under a(THE?) non-degeneracy assumption, the remainder estimate is
much better:

Theorem 5.1 Let d = 2, F ≍ 1, μh � 1 and

|∇V F−1| + | det Hess V F−1| ≥ ǫ. (5.9)

Then

∫ (
e(x, x, 0)− h−2N MW

2 (x,−V, μhF)
)
ψ(x) dx = O(μ−1h−1). (5.10)

The explanation is simple: each of the non-degenerate 1-dimensional
ℏ-pseudodifferential operators contributes O(1) to the remainder estimate and there
is ≍(μh)−1 of them which should be taken into account. Another explanation is that
under the non-degeneracy assumption, the drift of the magnetrons destroys the peri-
odicity but we can follow the evolution for time T ∗ = ǫμ, so the remainder estimate
is O(T ∗−1h−1).

If d = 3, we cannot get the local remainder estimate better than O(h−2) without
global non-periodicity conditions due to the evolution along magnetic lines. On the
other hand, we do not need strong non-degeneracy assumptions:

Theorem 5.2 Let d = 3, F ≍ 1 and μh � 1. Then,

∫ (
e(x, x, 0)− h−3N MW

3 (x,−V, μhF)
)
ψ(x) dx = O(h−2 + μh−1−δ) (5.11)
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in the general case and

∫ (
e(x, x, 0)− h−3N MW

3 (x,−V, μhF)
)
ψ(x) dx = O(h−2), (5.12)

provided

∑

α: 1≤|α|≤K

|∇αV F−1| ≥ ǫ. (5.13)

Further, in the general case, as(FOR?) μ ≤ h− 1
3 , we can replace the magnetic Weyl

expression N MW
3 by the standard Weyl expression N3.

5.2.4 Asymptotics: strong magnetic field

Let us now consider the strong magnetic field case μh � 1. Then the remainder
estimates (5.10), (5.11) and (5.12) acquire a factor of μh−1:

Theorem 5.3 Let d = 2, F ≍ 1 and μh � 1. Then for the operator (5.3),

(i) Under the assumption

|τV − (2 j + 1)μhF | ≥ ǫ0 ∀ j ∈ Z
+, (5.14)

the following asymptotics holds:

e(x, x, τ )− h−2N MW
2 (x, τ − V, F) = O(μ−shs). (5.15)

(ii) Under the assumption

|τV − (2 j + 1)μhF | + |∇((V − τ)F−1)|
+| det Hess((V − τ)F−1)| ≥ ǫ0 ∀ j ∈ Z

+, (5.16)

the following asymptotics holds:
∫ (

e(x, x, τ )− h−2N MW
2 (x, τ − V, F)

)
ψ(x) dx = O(1). (5.17)

Remark 5.4 If d = 2, we only need that μ−1h ≪ 1 rather than h ≪ 1.

Theorem 5.5 Let d = 3, F ≍ 1 and μh � 1. Then for the operator (5.3),

∫ (
e(x, x, 0)− h−3N MW

3 (x,−V, μhF)
)
ψ(x) dx = O(μh−1−δ) (5.18)
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in the general case and

∫ (
e(x, x, 0)− h−3N MW

3 (x,−V, μhF)
)
ψ(x) dx = O(μh−1) (5.19)

under the assumption

|V + (2 j + 1)μhF | +
∑

α: 1≤|α|≤K

|∇αV F−1| ≥ ǫ ∀ j ∈ Z
+. (5.20)

Remark 5.6 (i) N MW
d = O(μh) for μh � 1.

(ii) For the Schrödinger–Pauli operator (5.4), one only needs to replace “(2 j + 1)”
by “2 j” in the assumptions above.

5.3 2D case, degenerating magnetic field

5.3.1 Preliminaries

Since μF plays such a prominent role when d = 2, one may ask what happens if F

vanishes somewhere? Obviously, one needs to make certain assumptions; it turns out
that in the generic case

|F | + |∇F | ≍ 1, (5.21)

the degeneration manifold � := {x : F(x) = 0} is a smooth manifold and the
operator is modelled by

h2 D2
1 + (h D2 − μx2

1/2)
2 + V (x2), (5.22)

which we are going to study. We consider the local spectral asymptotics forψ supported
in a small enough vicinity of�. Under the assumption (5.21) (or, rather more a general
one), the complete analysis was done in Chapter 14 of [14].

5.3.2 Moderate and strong magnetic field

We start from the case μh � 1. Without any loss of the generality, one can assume
that � = {x : x1 = 0}. Then, the scaling x 
→ x/γ (x̄) (with γ (x) = 1

2 dist(x, �)),
brings us to the case of the non-degenerate magnetic field with h 
→ h1 = h/γ and

μ 
→ μ1 = μγ 2 as long as γ ≥ μ− 1
2 . Then the contribution of B(x, γ (x)) to the

remainder does not exceed Cμ−1
1 h−1

1 = Cμ−1h−1γ−1 and the total contribution of the

regular zone Z = {γ (x) ≥ C0μ
− 1

2 } does not exceed C
∫
μ−1h−1γ−3 dx = Ch−1.

On the other hand, in the degeneration zone Z0 = {γ (x) ≤ C0μ
− 1

2 }, we use

γ = μ− 1
2 and the contribution of B(x, γ (x)) does not exceed Ch−1

1 = Ch−1μ− 1
2

and the total contribution of this zone also does not exceed Ch−1.
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Thus we conclude that the left-hand expression of (5.10) is now O(h−1). Can we
do any better than this?

Analysis of the evolution and propagation in the zone Z shows that there is a
drift of magnetic lines along � with speed Cμ−1γ−1 which allows us to improve
T ∗ ≍ μγ 2 to T ∗ ≍ μγ (both before rescaling) and improve the estimate of the
contribution of B(x, γ (x)) to Cμ−1h−1 and the total contribution of this zone to

C
∫
μ−1h−1γ−2 dx = Cμ− 1

2 h−1.
Analysis of evolution and propagation in the zone Z0 is more tricky. It turns out

that there are short periodic trajectories with period ≍ μ− 1
2 , but there are not many

of them which allows us to improve the remainder estimate in this zone as well.

Theorem 5.7 Let d = 2 and suppose the condition (5.21) is fulfilled. Let � := {F =
0} = {x1 = 0} and −V ≍ 1. Let μ ≤ h−1. Then,

(i) The left-hand expression of (5.17) is O(μ− 1
2 h−1 + h−1(μ

1
2 h| log h|) 1

2 ). In

particular, for μ � (h| log h|)− 2
3 , it is O(μ− 1

2 h−1).

(ii) Further,

∫ (
e(x, x, 0)− h−2N MW

2 (x,−V, μhF)
)
ψ(x) dx

−h−1
∫

N MW
corr (x2, 0)ψ(x2, 0) = O

(
μ− 1

2 h−1 + h−δ
)

(5.23)

with

h−1N MW
corr := (2πh)−1

∫
n0(ξ2,−W (x2), h̄) dξ2

− h−2
∫

N MW(−W (x2), μhF(x1)) dx1 (5.24)

where n0(ξ2, τ, h̄) is an eigenvalue counting function for the operator a0(ξ2, h̄) =
h̄2 D2

1 + (ξ2 − x2
1/2)

2 on R
1 ∋ x1, h̄ = μ

1
2 h and W (x2) = V (0, x2).

(iii) Furthermore, under the non-degeneracy assumption

∑

1≤k≤m

|∂k
x2

W | ≍ 1 (5.25)

(in the framework of assumption (5.22)), one can take δ = 0 in (5.23).

Remark 5.8 (i) Under some non-degeneracy assumptions, Theorem 5.7(i) could
also be improved.

(ii) Theorem 5.7 remains valid for h−1 ≤ μ � h−2 as well but then the zone {x :
γ (x) ≥ C(μh)−1} is forbidden, contribution to the principal part is delivered by
the zone {x : γ (x) � (μh)−1} and it is � μ−1h−3.

(iii) As μ ≥ Ch2, the principal part is 0 and the remainder is O(μ−s).

For further details, generalizations and proofs, see Section 14.6 of [14].
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5.3.3 Strong and superstrong magnetic field

Assume now that μ � h−1 and replace V by V − (2 j + 1)μhF12 with j ∈ Z
+.

Then the zone {x : γ (x) ≥ C(μh)−1} is no longer forbidden, the principal part of
asymptotics is of the magnitude μh−1 (cf. Remark 5.8(ii) and the remainder estimate

becomes O(μ− 1
2 h−1 + h−δ) (and under the non-degeneracy assumption one can take

δ = 0).
Furthermore, the case μ ≥ Ch−2 is no longer trivial. First, one needs to change

the correction term by replacing a0 with a2 j+1 := a0 − (2 j + 1)h̄x1. Second, the
non-degeneracy condition should be relaxed by requiring (5.25) only if

|h̄2/3λ j,n(η)+ W (x2)| + |∂ηλ j,n(η) ≥ ǫ ∀η, (5.26)

fails, where λ j,n are the eigenvalues of a2 j+1 with h̄ = 1.
Furthermore, if

|h̄2/3λ j,n(η)+ W (x2)| ≥ ǫ ∀η, (5.27)

then 0 belongs to the spectral gap and the remainder estimate is O(μ−s).
For further details, exact statements, generalizations and proofs, see Sections 14.7

and 14.8 of [14].

5.4 2D case, near the boundary

5.4.1 Moderate magnetic field

We now consider the magnetic Schrödinger operator with d = 2, F ≍ 1 in a compact
domain X with C ∞-boundary. While the dynamics inside the domain do not change,
the dynamics in the boundary layer of the width ≍μ−1 are completely different. When
the magnetron hits ∂X , it reflects according to the standard “incidence angle equals
reflection angle” law and thus the “particle” propagates along ∂X with speed O(1)
rather than O(μ−1). Therefore, physicists distinguish between bulk and edge particles.
Note however that in general, this distinction is not as simple as in the case of constant
F and V . Indeed, a drifting inner trajectory can hit ∂X and become a hop trajectory,
while the latter could leave the boundary and become an inner trajectory.

It follows from Sect. 5.2 that the contribution of B(x, γ (x)) with γ (x) =
1
2 dist(x, ∂X) ≥ γ̄ = Cμ−1 to the remainder is O(μ−1h−1γ 2T (x)−1), where T (x) is
the length of the drift trajectory inside the bulk zone {x ∈ X : γ (x) ≥ γ̄ }. Then the total
contribution of this zone to the remainder does not exceed Cμ−1h−1

∫
T (x)−1 dx =

O(μ−1h−1) since T (x) � γ (x)
1
2 (in the proper direction).

On the other hand, due to the rescaling x 
→ x/γ̄ , the contribution of B(x, γ̄ ) with
γ (x) ≤ γ̄ to the remainder does not exceed Cμh−1γ̄ 2 and the total contribution of
the edge zone {x ∈ X : γ (x) ≤ γ̄ } does not exceed Cμh−1γ̄ = Ch−1 and the total
remainder is O(h−1). Thus, if we want a better estimate, we need to study propagation
along ∂X .
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Theorem 5.9 Under the non-degeneracy assumption |∇∂X (V F−1)| ≍ 1 on supp(ψ)
(contained in the small vicinity of ∂X) for μh � 1

∫

X

(
e(x, x, 0)− h−2N MW(x, 0, μh)

)
ψ(x) dx

− h−1
∫

∂X

N MW
∗,bound(x, 0, μh)ψ(x) dsg = O(μ−1h−1), (5.28)

whereN MW
∗,bound is introduced in (5.29)D or (5.29)N below for the Dirichlet or Neumann

boundary conditions respectively with h̄ = μhF(x) and τ replaced by −V (x).

Here,

N MW
D,bound(τ, h̄)

:= (2π)−1
∫ ∞

0

∑

j≥0

(∫
θ
(
τ − h̄λD, j (η)

)
υ2

D, j (x1, η) dη − θ
(
τ − (2 j + 1)h̄

))

h̄
1
2 dx1 ((5.29)D)

and

N MW
N,bound(τ, h̄)

:= (2π)−1
∫ ∞

0

∑

j≥0

(∫
θ
(
τ − h̄λN, j (η)

)
υ2

N, j (x1, η) dη − θ
(
τ − (2 j + 1)h̄+

))

h̄
1
2 dx1, ((5.29)N)

where λD, j (η) and λN, j (η) are eigenvalues and υD, j and υN, j are eigenfunctions of

operator

a(η, x1, D1) = D2
1 + x2

1 as x1 < η (5.30)

with the Dirichlet or Neumann boundary conditions respectively at x1 = η.

Remark 5.10 Under weaker non-degeneracy assumptions |∇V F−1| ≍ 1 and
∇∂X V F−1 = 0 �⇒ ±∇2

∂X V F−1 ≥ ǫ, less sharp remainder estimates are derived.
The sign in the latter inequality matters since it affects the dynamics. It also matters
whether Dirichlet or Neumann boundary conditions are considered: for the Dirichlet
boundary condition we get a better remainder estimate.

For exact statements, generalizations and proofs, see Sections 15.2 and 15.3 of [14].

5.4.2 Strong magnetic field

We now consider the strong magnetic field μh � 1 and for simplicity assume that
F = 1. In this case, we need to study an auxiliary operator D2

1 + (x1 − η)2 as x1 < 0
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with either the Dirichlet or Neumann boundary conditions at x1 = 0 or equivalently
the operator (5.30) and our operator is basically reduced to a perturbed operator

a(ℏD2, x1, D1)− (2 j + 1)− (μh)−1W (x2) ℏ = μ−1h, (5.31)

with W (x2) = V (0, x2). Then we need to analyze either λD, j (η) or λN, j (η) more
carefully. It turns out that:

Proposition 5.11 λD,n(η) and λN,n(η), n = 0, 1, 2, . . . are real analytic functions

with the following properties:
(i) λD,k(η) are monotone decreasing for η ∈ R; λD,k(η) ր +∞ as η → −∞;

λD,k(η) ց (2k + 1) as η → +∞; λD,k(0) = (4k + 3).
(ii) λN,k(η) are monotone decreasing for η ∈ R

−; λN,k(η) ր +∞ as η → −∞;
λN,k(η) < (2n + 1) as η ≥ (2n + 1)

1
2 ; λN,k(0) = (4n + 1).

(iii) λN,k(η) < λD,k(η) < λN,(k+1)(η); λD,k(η) > (2k + 1), λN,n(η) > (2k − 1)+.

Proposition 5.12 (i) ∂ηλD,k(η) < 0.

(ii) ∂ηλN,n(η) � 0 if and only if

λN,k(η) � η2. (5.32)

(iii) λN,k(η) has a single stationary point38 ηk, it is a non-degenerate minimum, and

at this point (5.32) holds.

(iv) In particular, (λN,k(η)− η2) has the same sign as (ηk − η).

We see the difference between the Dirichlet and Neumann cases because we need
non-degeneracy for λ∗,k(ℏD2) − (2 j + 1) + W (x2). It also means the difference in
the propagation of singularities along ∂X : in the Dirichlet case, all singularities move
in one direction (constant sign of λ′D,k), while in the Neumann case, some move in

the opposite direction (variable sign of λ′N,k); this effect plays a role also in the case
when μh � 1.

Assume here that τ is in an “inner” spectral gap:

|(2 j + 1)μh + V − τ | ≥ ǫ0μh ∀x ∀ j ∈ Z
+. (5.33)

Theorem 5.13 Suppose that μh � 1 and the condition (5.33) is fulfilled. Then,

(i) In case of the Dirichlet boundary condition, the left-hand expression in (5.28) is

O(1).
(ii) In case of the Neumann boundary condition, assume additionally that

|
(
λN, j (η)μh + V − τ | ≤ ǫ0μh,

|λ′N, j (η)| + |∂x2 V | ≤ ǫ0 �⇒ ±∂2
x2

V ≥ ǫ0 ∀ j = 0, 1, 2, . . . (5.34)±

38 And it must have one due to Proposition 5.11.

123



432 V. Ivrii

Then, the left-hand expression in (5.28) is O(1) under the assumption (5.34)+
and O(log h) under the assumption (5.34)−.

Remark 5.14 (i) If (5.33) is fulfilled for all τ ∈ [τ1, τ2], then the asymptotics is
“concentrated” in the boundary layer.

(ii) For a more general statement when (5.33) fails (i.e. when τ is no longer in the
“inner” spectral gap) and is replaced with the condition

|V + (2 j + 1)μh − τ | + |∇V | ≍ 1 (5.35)

on supp(ψ), see Theorem 15.4.18 of [14].

5.5 Pointwise asymptotics and short loops

We are now interested in the pointwise asymptotics inside the domain. Surprisingly,
it turns out that the standard Weyl formula for this purpose is better than the Magnetic
Weyl formula.

5.5.1 Case d = 2

We start from the case d = 2, F = 1, |∇V | ≍ 1. One can easily see that in classical
dynamics, short loops of the lengths ≍ μ−1n with n = 1, . . . , N , N ≍ μ appear. We
would like to understand how these loops affect the asymptotics in question.

Theorem 5.15 For the magnetic Schrödinger operator which satisfies the above

assumptions in a domain X ⊂ R
2, with B(0, 1) ⊂ X, the following estimates hold at

a point x ∈ B(0, 1
2 )

(i) For 1 ≤ μ ≤ h− 1
2 ,

|e(x, x, τ )− h−2N W
x (τ )| ≤ Cμ−1h−1 + Cμ

1
2 h− 1

2 + Cμ2h− 1
2 (5.36)

and

RW
x(r) := |e(x, x, 0)− h−2(N W

x (0)+ N W
x,corr(r)(0)

)
|

≤ Cμ−1h−1 + Cμ
1
2 h− 1

2 + Cμh−1(μ2h)r+
1
2

+C

⎧
⎨
⎩

(
h−1

(
hμ

5
2
)r+ 1

2 + μ
1
3 h− 2

3

)
as μ ≤ h− 2

5 ,

μ
5
3 h− 1

3 as μ ≥ h− 2
5

(5.37)

where N W
x,corr(r) is the r-term stationary phase approximation to some explicit

oscillatory integral (see Section 16.2 of [14]).
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(ii) For h− 1
3 ≤ μ ≤ h−1,

RW′′
x(r) :=

∣∣∣
(

e(x, x, τ )− h−2Nx,corr(r) − ēx (x, x, τ )+ h−2N̄x,corr(r)

)∣∣∣

≤ Cμ
1
2 h− 1

2 + C

{
μ−2h−2(μ2h)r+

1
2 for μ ≤ h− 1

2

h−1 for μ ≥ h− 1
2

+C

⎧
⎪⎨
⎪⎩

h−1
(
μ

5
2 h

)r+ 1
2 + μ

1
3 h− 2

3 for μ ≤ h− 2
5

μ
5
3 h− 1

3 for h− 2
5 ≤ μ ≤ h− 1

2

μ− 1
3 h− 4

3 as μ ≥ h− 1
2

(5.38)

while for r = 0,

RW′′
x(0) := |e(x, x, τ )− ēx (x, x, τ )| ≤ Cμ

1
2 h− 1

2

+C

{
h−1μ

1
2 for μ ≤ h− 1

2 ,

μ− 1
2 h− 3

2 for μ ≥ h− 1
2

(5.39)

where here and in (iii), ēy is constructed for the toy model in y (with F = F(y)

and V (x) = V (y)+ 〈∇V (y), x − y〉).
(iii) For μ ≥ h−1, τ ≤ cμh,

|e(x, x, τ )− ēx (x, x, τ )| ≤ Cμ
1
2 h− 1

2 . (5.40)

5.5.2 Case d = 3

For d = 3, we cannot expect a remainder estimate better than O(h−1). On the other
hand, the purely Weyl approximation has a better chance to succeed as the loop con-
dition now includes returning free movement along the magnetic line in addition to
the returning circular movement. We formulate only one theorem out of many from
Section 16.6 of [14]:

Theorem 5.16 Let d = 3. Then,

(i) In the general case,

|e(x, x, τ )− h−3N W
x (x, x, τ )| ≤ Ch−2 + Cμ

3
2 h− 3

2 . (5.41)

(ii) Under non-degeneracy condition

|∇⊥F(V − τ)/F | ≍ 1, (5.42)

where ∇⊥ is the component of the gradient perpendicular to F, for μ ≤ h− 1
2 ,

we have the estimates

|e(x, x, τ )− h−3N W
x (x, x, τ )| ≤ Ch−2 + Cμ

5
2 h−1 (5.43)
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and

|e(x, x, τ )− h−3N W
x (x, x, τ )− h−3Nx,corr(r)|

≤ Ch−2 + Cμ
3
2 h− 3

2 (μ2h)r+
1
2 . (5.44)

Here we use stationary phase approximations again.

Remark 5.17 One can also consider the cases h− 1
2 � μ � h−1 and μ � h−1. But

then one needs to include the toy model expression (with constant F and ∇V ) into the
approximation.

5.5.3 Related asymptotics

Apart from the pointwise asymptotics, one can consider the related asymptotics of

∫
ω

(
1

2
(x + y), x − y

)
e(x, y, τ )e(y, x, τ ) dxdy (5.45)

and estimates of

∫
ω

(
1

2
(x + y), x − y

) (
e(x, x, τ )− eW(x, x, τ )

)

×
(
e(y, y, τ )− eW(y, y, τ )

)
dxdy. (5.46)

For all the details, see Chapter 16 of [14]. These expressions play important role in
Sect. 7.

5.6 Magnetic Dirac operators

We discuss the magnetic Dirac operators

H = ((−ih∇ − μA(x)) · σ)+ σ0 M + V (x) (5.47)

and

H = ((−ih∇ − μA(x)) · σ)+ V (x). (5.48)

If d = 3, for the second operator, we can consider 2 × 2 matrices rather than 4 × 4
matrices.

If V = 0 then H2 equals to the Schrödinger–Pauli operator (plus M2) and therefore
the theory of magnetic Dirac and Schrödinger operators are closely connected. If
V = 0 and 0 �= F is constant then the operator for d = 2 has a pure point spectrum
of infinite multiplicity consisting of ±

√
M2 + 2 jμhF with j ∈ Z

+ 39 and for d = 3,

39 However, one of the points ±M is missing depending on whether F12 ≷ 0 and σ1σ2σ3 = ±i .
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this operator has absolutely continuous spectrum (−∞,−M] ∪ [M,∞). Thus we get
corresponding Landau levels.

The results similar to those of Sect. 5.2 hold (for details, exact statements and
proofs, see Chapter 17 of [14]. Further, the results of Sects. 5.3 and 5.5 probably are
not difficult to generalize, and maybe the results of Sect. 5.4 as well under correctly
posed boundary conditions.

6 Magnetic Schrödinger operator: II

6.1 Higher dimensions

6.1.1 General theory

We can consider a magnetic Schrödinger (and also Schrödinger–Pauli and Dirac)
operators in higher dimensions. In this case, the magnetic intensity is characterized
by the skew-symmetric matrix F jk = ∂ j Ak − ∂k A j rather than by a pseudo-scaler
F12 or a pseudo-vector F. As a result, the magnetic Weyl expression becomes more
complicated; as before, it is exactly e(x, x, τ ) for the operator in R

d if F jk and V

constant:

h−dN MW
d (τ )

:= (2π)−rμr h−r
∑

α∈Z+r

⎛
⎝τ −

∑

j

(2α j + 1) f jμh − V

⎞
⎠

1
2 (d−2r)

+

f1 · · · fr
√

g,

(6.1)

where 2r = rank(F jk) and ±i f j (with j = 1, . . . , r , f j > 0) are its eigenvalues40

which are not 0; recall that z0
+ = θ(z).

One can see that H has pure point of infinite multiplicity spectrum when d = 2r

and H has an absolutely continuous spectrum when d > 2r . In any case, the bottom
of the spectrum is μh( f1 + · · · + fr ).

We are interested in the asymptotics with the sharpest possible remainder estimate
like the one for d = 2 or d = 3 in the cases d = 2r and d > 2r respectively.41

Asymptotics without a remainder estimate were derived in [22,23].
As we try to reduce the operator to the canonical form, we immediately run into

problem of resonances when f1m1 + · · · + fr mr = 0 at some point with m ∈ Z
d ;

|m1|+ · · ·+ |mr | is an order of resonance. If the lowest order of resonances is k, then
we can reduce the operator to its canonical form modulo O(μ−k) for μh ≤ 1 (when
μh ≥ 1, this problem is less acute).

It turns out, however, that we can deal with an incomplete canonical form (with a
sufficiently small remainder term).

40 In the general case, the eigenvalues of (F
j

k
) = (g jl )(Flk ) where (g jk ) is a metric.

41 We assume that (F jk (x)) has constant rank.
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Another problem is that we cannot in general assume that the f j are constant

(for d = 2, 3, we could achieve this by multiplying the operator by f
−1/2
1 ) and the

microhyperbolicity condition becomes really complicated.
Case 2r = d

In this case, only the resonances of orders 2, 3 matter as we are looking for an
error O(μ−1h1−d) when μh ≤ 1. If the magnetic field is weak enough, we use the
incomplete canonical form only to study propagation of the singularities and if the
magnetic field is sufficiently strong, the omitted terms O(μ−4) in the canonical form
are small enough to be neglected.

As a result, the indices j = 1, . . . , r are broken into several groups (indices j

and k belong to the same group if they “participate” in the resonance of order 2 or 3
after all the reductions). Then under a certain non-degeneracy assumption called N-
microhyperbolicity (see Definition 19.2.5 of [14]) in which this group partition plays a
role, we can recover the remainder estimate O(μ−1h1−d) for μh � 1 (in which case,
the principal part has magnitude h−d ) and O(μr−1h1−d+r ) forμh � 1 (in which case,
the principal part has magnitude μr hr−d ). If we ignore the resonances of order 3, we
get a partition into smaller groups and we need a weaker non-degeneration assumption
called microhyperbolicity (see Definition 19.2.4 of [14]) but the remainder estimate
would be less sharp.

In an important special case of constant f1, . . . , fr , both these conditions are equiv-
alent to |∇V | disjoint from 0 (on supp(ψ)) but it could be weakened to V having only
non-degenerate critical points (if there are saddles, we need to add a logarithmic factor
to the remainder estimate).

On the other hand, without any non-degeneracy assumptions, the remainder esti-
mate can be as bad as O(μh1−d) for μh � 1 and as bad as the principal part itself for
μh � 1.

For exact statements, details, proofs and generalizations, see Chapter 19 of [14].
Case 2r < d

In this case, only the resonances of order 2 matter since we are expecting a larger
error than in the previous case. As a result, the indices j = 1, . . . , r are broken into
several groups (indices j and k belong to the same group if f j = fk).

Then under a certain non-degeneracy assumption called microhyperbolicity (see
Definition 20.1.2 of [14]) in which this group partition plays a role, we can recover the
remainder estimate O(h1−d) for μh � 1 (then the principal part is of the magnitude
h−d ) and O(μr h1−d+r ) for μh � 1 (then the principal part is of the magnitude
μr hr−d ).

In an important special case of constant f1, . . . , fr , this condition is equivalent to
|∇V | being disjoint from 0 (on supp(ψ)) but it could be weakened to “∇V = 0 �⇒
Hess V has a positive eigenvalue”; if we assume only that “∇V = 0 �⇒ Hess V

has a non-zero eigenvalue”, but we need to add a logarithmic factor to the remainder
estimate.

As expected, for 2r = d − 1, we can recover less sharp remainder estimates even
without any non-degeneracy assumptions and for 2r ≤ d −2, we do not need any non-
degeneracy conditions at all. For exact statements, details, proofs and generalizations,
see Chapter 20 of [14].
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6.1.2 Case d = 4: more results

This case is simpler than the general one since we have only f1 and f2 and resonance
happens if either f1 = f2 or f1 = 2 f2 (or f2 = 2 f1).

If we assume that the magnetic intensity matrix (F jk) has constant rank 4, this
case is simpler than the general one (d = 2r ) and we can recover sharp remainder
estimates under less restrictive conditions. For exact statements, details, proofs and
generalizations, see Chapter 22 of [14].

On the other hand, if we consider (F jk) of variable rank, then in the generic case,
it has the eigenvalues ±i f1 and ±i f2 and � = {x : f1(x) = 0} is a C ∞ manifold of
dimension 3,∇ f1 �= 0 on�, while f2 is disjoint from 0. It is similar to a 2-dimensional
operator which we considered in Sect. 5.3, although with a twist: the symplectic form
restricted to� has rank 2 everywhere except on a 1-dimensional submanifold�where
it has rank 0.

Our results are also similar to those of Sect. 5.3 with rather obvious modifications
but the proofs are more complicated.

For exact statements, details, proofs and generalizations, see Chapter 21 of [14].

6.2 Non-smooth theory

As in Sect. 4, we do not need to assume that the coefficients are very smooth. As
before, we bracket the operator in question between two “rough” operators with the
same asymptotics and with sharp remainder estimates. However, the lack of sufficient
smoothness affects the reduction to the canonical form: it will be incomplete even if
there are no resonances. Because of this, to get as sharp asymptotics as in the smooth
case, we need to request more smoothness than in Sect. 4.
Case d = 2

For d = 2, we require smoothness of F12, g jk and V marginally larger than C 2 to
recover the same remainder estimate as in the smooth case, but there is a twist: unless
the smoothness is C 3, a correction term needs to be included. This is due to the fact
that V (x) and W (x) differ and a more precise formula should use W (x) rather than
V (x). Here, W is V averaged along a magnetron with center x . In fact, it is possible
to consider V of the lesser smoothness than C 2 (but marginally better than C 1), but
one gets a worse remainder estimate. For exact statements, details and proofs, see
Chapter 18 of [14] and especially Section 18.5.
Case d = 3

Results are similar to those in the smooth case. However, in this case, if we assume
no non-degeneracy conditions then the exponent δ in the estimates (5.11) and (5.18)
depends on the smoothness and if we assume a non-degeneracy condition (5.13)
or (5.20) then obviously K depends on the smoothness. Under the non-degeneracy
assumption with K = 1, we need smoothness marginally better than C 1 but again
unless the smoothness is C 2, we need to use the averaged potential W (x) rather than
V (x).

For exact statements, details and proofs, see Chapter 18 of [14] and especially
Section 18.9.
Case d ≥ 4
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Basically, the results are similar to those for d = 2 (if rank(F jk) = d) or for
d = 3 (if rank(F jk) < d), but we cannot recover the sharp remainder estimate if the
smoothness of V is less than C 3 or C 2 respectively because we cannot replace V (x)

by its average W (x) in the canonical form.
For exact statements, details and proofs, see Chapters 19 (if rank(F jk) = d) and

Chapters 20 (if rank(F jk) < d) of [14].

6.3 Global asymptotics

For magnetic Schrödinger and Dirac operators, one can derive results similar to those
of Sects. 3.1 and 3.2. We describe here only some results which are very different from
those already mentioned and only for the Schrödinger operator.

6.3.1 Case d = 2r

Assume that F jk = const, rank(F jk) = 2r = d, μ = h = 1 and V decays at infinity.
Then instead of an eigenvalue of infinite multiplicity λ j,∞ = (2 j1 + 1) f1 + · · · +
(2 jr + 1) fr (with j ∈ Z

+ r ), we have a sequence of eigenvalues λ j,n tending to λ j,∞
as n → ∞ and we want to consider the asymptotics of N−

j (η) which is the number of

eigenvalues in (λ j,∞ − ǫ, λ j,∞ − η) and N+
j (η) which is the number of eigenvalues

in (λ j,∞ + η, λ j,∞ + ǫ), as η → +0.
It turns out that in contrast to the Schrödinger operator without a magnetic field,

there are meaningful results no matter how fast V decays.

Theorem 6.1 Let us consider a Schrödinger operator in R
2 satisfying the above

conditions, μ = h = 1 and

|∇αV | ≤ cαρ
2γ−|α|, (6.2)

with ρ = 〈x〉m, γ = 〈x〉, m < 0. Let

∓ V ≥ −ǫρ2 �⇒ |∇V | ≥ ǫρ2γ−1 for |x | ≥ c. (6.3)∓

Then,

(i) The asymptotics

N∓
j (η) = N∓(η)+ O(log η) (6.4)±

hold with

N∓(η) = 1

2π

∫

{∓V>η}
F dx (6.5)±

and in our conditions N∓(η) = O(η1/m). Moreover, N∓(η) ≍ η1/m provided

that ∓V ≥ ǫρ2 for x ∈ Ŵ, where Ŵ is a non-empty open sector (cone) in R
2.
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(ii) Furthermore, if

∓ V ≥ ǫρ2 for |x | ≥ c, (6.6)±

then the remainder estimate is O(1). In this case, the points (2 j + 1)F ± 0 are

not limit points of the discrete spectrum.

This theorem is proved by rescaling the results of Sect. 5.2.4 which do not require
h ≪ 1, but only μh � 1 and μ−1h ≪ 1 (see Remark 5.4); in our case, after rescaling
μ = 1/ργ and μ = γ /ρ, so that μh = 1/ρ2 and μ−1h = γ−2. Therefore, the
remainder does not exceed

∫
γ−2 dx , where we integrate over {x : |V (x)| ≥ (1−ǫ)η}

in the general case and over {x : (1+ǫ)η ≥ |V (x)| ≥ (1−ǫ)η} under the assumption
(6.6)±.

Remark 6.2 (i) Similar results hold in the d-dimensional case (d ≥ 4) when (F) =
const and d = rank(F): the remainder is O(η(d−2)/2m) and the principal part
is O(ηd/2m).

(ii) One can consider the case ρ = exp(−〈x〉m), γ = 〈x〉1−m , 0 < m < 1,
and recover remainder estimate O(| log η|(d−2)/m+2) in the general case and
O(| log η|(d−2)/m+1)under the assumption (6.6)± withN∓(η) = O(| log η|d/m).

(iii) On the other hand, the cases when V decays like exp(−2〈x〉) or faster, or is com-
pactly supported, are out of reach of our methods but the asymptotics (without
a remainder estimate) were obtained in [21,24,27].

For exact statements, details, proofs and generalizations for arbitrary rank(F jk) =
d = 2r , see Subsection 23.1.1 of [14].

6.3.2 Case d > 2r: I

This case is less “strange” than case d = 2. Here, we can discuss only the eigenvalue
counting function N−

0 (η).

Theorem 6.3 Let us consider a Schrödinger operator in R
3 satisfying F = const and

(6.2) with ρ = 〈x〉m, γ = 〈x〉, m ∈ (−1, 0). Then,

(i) The asymptotics

N−
0 (η) = N−(η)+ O

(
η

1
m
−δ

)
(6.7)−

hold with

N−(η) = 1

2π2

∫
F(−V − η)

1
2
+ dx (6.8)

and arbitrarily small δ > 0, and furthermore,N−(η) = O(η
3

2m
+ 1

2 ). Moreover,

N−(η) ≍ η
3

2m
+ 1

2 , provided −V ≥ ǫρ2 for x ∈ Ŵ where Ŵ is a non-empty open

cone in R
3.
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(ii) Further, under the assumption

∑

|α|≤K

|∇αV | · γ |α| ≥ ǫρ2 for |x | ≥ c, (6.9)

the asymptotics (6.8) hold with δ = 0.

Remark 6.4 (i) Similar results hold in the d-dimensional case when (F jk) = const

and d > 2r = rank(F jk): the remainder estimate is
O(η(d−2r−1)/2+(d−1)/2m−δ) 42 and N−(η) = O(η(d−2r)/2+d/2m).

(ii) Observe that for m = −1, both the principal part and the remainder estimate
have magnitude η−r .

(iii) One can also consider ρ = 〈x〉−1| log〈x〉|α with α > 0.

For exact statements, details, proofs and generalizations, see Subsection 23.1.2 of
[14].

6.3.3 Case d > 2r: II

We now discuss faster decaying potentials. Assume that d = 2r + 1 (otherwise there
will be no interesting results). Assume for simplicity that g jk = δ jk and Fdk = 0.
Further, one can assume that Ad(x) = 0; otherwise one can achieve it by a gauge
transformation. Then, A j = A j (x

′) with x ′ = (x1, . . . , x2r ) and the operator is of the
form

D2
d + V (x)+ H ′

0, with H ′
0 :=

∑

1≤ j≤d−1

(D j − A j (x
′))2. (6.10)

For any fixed x ′ : |x ′| ≥ c, consider the one-dimensional operator

L := D2
t + V (x ′; t) (6.11)

on R ∋ t . It turns out that under the assumption

|V (x ′; t)| ≤ εt−2, (6.12)

with ε ≤ ( 1
4 − ǫ), this operator has no more than one negative eigenvalue λ(x ′);

moreover, it has exactly one negative eigenvalue

λ(x ′) = −1

4
W (x ′)2 + O(ε3), (6.13)

provided

W (x ′) :=
∫

R

V (x ′; t) < 0 and − W (x ′) ≍ ε. (6.14)

42 Where δ = 0 if either d ≥ 2r + 2 or the assumption (6.9) is fulfilled.
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Furthermore, in this case λ(x ′) nicely depends on x ′.
Let

|∇αV | ≤ cαρ
2γ

−|α′|
1 γ−αd , (6.15)

with ρ = 〈x〉l〈x ′〉k , γ = 〈x〉, γ1 = 〈x ′〉 and l ≤ −2, m := 2l + 2k + 1 < 0 and if

W (x ′) < 0, W (x ′) ≍ ρ′, ρ′ := 〈x ′〉m, (6.16)

then we are essentially in the (d−1)-dimensional case of an operator H ′ := H ′
0+λ(x ′),

and for N−(η), we have the corresponding asymptotics of Sect. 6.3.1.
For exact statements, details, proofs and generalizations, see Section 23.1.3 of [14].

7 Applications to multiparticle quantum theory

7.1 Problem set-up

In this section, we discuss an application to Thomas–Fermi Theory. Consider a large
(heavy) atom or molecule; it is described by a Multiparticle Quantum Hamiltonian

HN =
∑

1≤n≤N

HV (xn)+
∑

1≤n<k≤N

1

|xn − xk |
(7.1)

where H is a one-particle quantum Hamiltonian, Planck constant h̄ = 1, electron mass
= 1

2 , electron charge= −1. This operator acts on the space H := ∧1≤ j≤N L 2(R3,C2)

of totally antisymmetric functions �(x1, ς1; . . . ; xN , ςN ) because the electrons are
fermions, xn = (x1

n , x2
n , x3

n) is a coordinate and ςn ∈ {− 1
2 ,

1
2 } is the spin of n-th

particle. We identify the C
2-valued functionψ(x) on R

3 with a scalar-valued function
ψ(x, ς).

If the electrons did not interact between themselves, but the field potential was
−W (x), then they would occupy the lowest eigenvalues and the ground state wave
functions would be the anti-symmetrized productφ1(x1, ς1)φ2(x2, ς2) . . . φN (xN , ςN ),
where φn and λn are the eigenfunctions and eigenvalues of HW respectively.

Then the local electron density would be ρ� =
∑

1≤n≤N |φn(x)|2 and according
to the pointwise Weyl law (if there is no magnetic field)

ρ�(x) ≈
1

3π2
(W + ν)

3
2
+, (7.2)

where ν = λN . We first assume that there is no magnetic field and therefore, HV =
−�− V (x).

This density would generate the potential −|x |−1 ∗ ρ� and we would have W ≈
V − |x |−1 ∗ ρ� .
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Replacing all approximate equalities by strict ones, we arrive to the Thomas–Fermi

equations:

V − W TF = |x |−1 ∗ ρTF, (7.3)

ρTF = 1

3π2
(W TF + ν)

3
2
+, (7.4)

∫
ρTF dx = N , (7.5)

where ν ≤ 0 is called the chemical potential and in fact approximates λN .
Considering atoms and molecules, we assume that

V (x) =
∑

1≤m≤M

Zm

|x − ym | , (7.6)

where ym is the position and Zm is the charge of the m-th nuclei, M is fixed and
Z1 ≍ Z2 ≍ · · · ≍ Z M ≍ N → ∞.

Thomas–Fermi theory has been rigorously justified (with pretty good error esti-
mates) and we want to explain how.

7.2 Reduction to one-particle problem

7.2.1 Estimate from below

We start from the estimate from below. The ground state energy EN := inf 〈HN�,�〉,
taken over all � ∈ H with ‖�‖ = 1, where 〈·, ·〉 denotes the inner product in
H. Classical mathematical physics provides a wealth of results. One of them is the
electrostatic inequality due to Lieb [17]:

∑

1≤ j<k≤N

∫
|x j − xk |−1|�(x1, . . . , xN )|2 dx1 · · · dxN

≥ 1

2
D(ρ� , ρ�)− C

∫
ρ

4
3
�(x) dx, (7.7)

with ρ� defined by (7.2). This inequality holds for all (not necessarily antisymmetric)
functions � with ‖�‖L 2(R3N ) = 1. Therefore,

〈HN�,�〉 ≥
∑

1≤ j≤N

〈HV,x j
�,�〉 + 1

2
D

(
ρ� , ρ�)− C

∫
ρ

4
3
�(x) dx

=
∑

1≤ j≤N

〈HW,x j
�,�〉 + 1

2
D

(
ρ� − ρ, ρ� − ρ

)
− 1

2
D

(
ρ, ρ

)

−C

∫
ρ

4
3
�(x) dx (7.8)
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and HW is a one-particle Schrödinger operator with potential

W = V − |x |−1 ∗ ρ, (7.9)

where ρ is an arbitrarily chosen real-valued non-negative function and therefore,

(V − W, ρ�) = −D(ρ, ρ�). (7.10)

The physical sense of the second term in W is transparent: it is a potential created
by the charge −ρ. Skipping the positive second term in the right-hand expression of
(7.8) and believing that the last term is not very important for the ground state function
�,43 we see that we need to estimate from below the first term. Since the first term is
simply the sum of operators acting with respect to different variables, we can estimate
it from below by

〈(HW,x j
− ν)�,�〉 + λN (7.11)

with arbitrary ν; therefore, it is bounded from below by Tr((HW −ν)−), where (HW −
ν)− denotes the negative part of the operator (HW − ν), and hence its trace is the sum
of the negative eigenvalues.

Here, the assumption that � is antisymmetric is crucial. Namely, for general (or
symmetric—does not matter)�, the best possible estimate is λ1 N where λ1 is the low-
est eigenvalue of HW (we always assume that there are sufficiently many eigenvalues
below the bottom of the essential spectrum of HW ) and we cannot apply semiclassical
theory.

Thus we arrive to

EN ≥ Tr((HW − ν)−)+ νN − 1

2
D

(
ρ, ρ

)
− C N

5
3 , (7.12)

where we used another result of Lieb [17]:
∫
ρ

4
3
�(x) dx ≤ C N

5
3 for the ground state�.

7.2.2 Estimate from above

Here, we simply plug in a test function � which is an (anti-symmetrized) product
φ1(x1, ς1)φ2(x2, ς2) · · ·φN (xN , ςN ) where φn and λn are eigenfunctions and eigen-
values of HW respectively, and we pick W later. It may happen, however, that HW

does not have N negative eigenvalues, then we can reduce N and use the inequality
EN ≤ EN ′ as N ′ ≤ N .

Then, EN is estimated from above by

〈HN�,�〉 =
∑

n

(HW,x j
− λ)�,�〉 + λN − (V − W, ρ�)+

1

2
D(ρ� , ρ�)

− 1

2

∑

n

∫∫
|x − y|−1|ψn(x)|2|ψn(y)|2 dxdy (7.13)

43 When we derive the upper estimate for E, we will get an upper estimate for this term as a bonus.
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and therefore recalling (7.10), we obtain

EN ≤ Tr((HW − λ)−)+ λN + 1

2
D(ρ� − ρ, ρ� − ρ)− 1

2
D(ρ, ρ) (7.14)

and ρ� = tr eN (x, x) where eN (x, y) and e(x, y, λ) are the Schwartz kernels of
the projector to the N lowest eigenvalues of HW and of the operator θ(λ − HW )

respectively; here tr denotes the matrix trace, and λ = λN if λN < 0 and λ = 0
otherwise. Finally, we conclude that

EN ≤ Tr((HW − ν)−)+ νN + |λ− ν| · |N−(HW − ν)− N |

+ 1

2
D(tr eN (x, x)− ρ, tr eN (x, x)− ρ)− 1

2
D(ρ, ρ) (7.15)

with arbitrary ν ≤ 0.

7.3 Semiclassical approximation

7.3.1 Estimate from below

In the estimate from below (7.12), we replace Tr((HW − ν)−) by its semiclassical
approximation

Tr((HW − ν)−) ≈ −
∫

P(W + ν) dx (7.16)

with

P(W + ν) := 2

5π2
(W + ν)

5
2
+, (7.17)

and also plug in ρ = 1
4π�(W − V ); then we obtain the functional

#∗(W, ν) = −
∫

P(W + ν) dx − 1

8π
‖∇(W − V )‖2 + νN ; (7.18)

maximizing it, we arrive to the Thomas–Fermi equations and its maximal value is ETF
N ,

delivered by Thomas–Fermi theory. Then, we need to understand the semiclassical
error. To do this, we use the properties of the Thomas–Fermi potential and rescale

x 
→ x N
1
3 and τ 
→ N− 4

3 τ (so, ν 
→ N− 4
3 ν) with

HW = −h2∇2 − W, (7.19)

where near ym , the rescaled potential is Coulomb-like: W ∼ zm |x − y|−1 with zm =
Zm N−1.

Then, we can apply results Sect. 3.2.6 (see (3.52)): for the operator (7.19),
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Tr((HW − ν)−) = −h−3
∫

P(W + ν) dx + κh−2 + O(h−1), (7.20)

where in this case, the numerical value of κ = 2
∑

m z2
m is well-known. Scaling back,

we obtain ETF
N +Scott + O(N

5
3 ) where the leading term is of magnitude N

7
3 and the

Scott correction term Scott = 2
∑

m Z2
m . Here, we need to assume that |ym −ym′ | � 1

after rescaling (and |ym − ym′ | � N− 1
3 before it).

Indeed, after rescaling, we get an operator which is uniformly in the framework of
Sect. 3.2.6 due to the following properties of the Thomas–Fermi potential:

Claim 7.1 Before rescaling, W TF = Zm |x − ym |−1 + O(N ) for |x − ym | � N− 1
3

and W TF ≍
∑

m

(
|x − ym |−4 + (Z − N )+|x − ym |−1

)
for |x − ym | � 1 for all

m = 1, . . . , M .

In fact, the analysis of Sect. 3.2.6 was mainly motivated by this problem.

7.3.2 Estimate from above

Again, using the semiclassical approximation (7.16) for Tr((HW − ν)−) and also

eN (x, x) ≈ P ′(W + ν) with P ′ = 1
3π2 (W + ν)

3
2 the derivative of P(W + ν), we

arrive to the functional

#∗(W, ν) = −
∫

P(W + ν) dx − 1

8π
‖∇(W − V )‖2 + νN

+D(P ′(W + ν)− 1

4π
�(W − V ), P ′(W + ν)− 1

4π
�(W − V ));

(7.21)

minimizing it, we again arrive to the Thomas–Fermi equations and the minimal value
is ETF

N , again delivered by Thomas–Fermi theory.
However, in addition to the semiclassical error for the trace, we have other errors

from (7.15):

|λ− ν| · |N−(HW − ν)− N |, (7.22)

D(tr e(x, x, ν)− P ′(W + ν), tr e(x, x, ν)− P ′(W + ν)) (7.23)

and

D(tr eN (x, x)− tr e(x, x, ν), tr eN (x, x)− tr e(x, x, ν)). (7.24)

The expression (7.23) is the semiclassical error and after rescaling it, we can estimate
it by O(h−4) (due to the pointwise spectral asymptotics). When scaling back, we gain

the factor N
1
3 , resulting in O(N

5
3 ).

Expressions (7.22) and (7.24) can be also estimated by O(N
5
3 ) based on another

semiclassical error

N−(HW − σ)−
∫

P ′(W + σ) dx = O(h−2), (7.25)
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(for σ ≤ 0) after rescaling and thus, O(N
2
3 ) in the original scale, due to the definitions

of λ and ν. One needs to consider four cases depending on whether λ < 0 (i.e.
N−(HW ) ≥ N ) or λ = 0 (i.e. N−(HW ) < N ) and whether ν < 0 (i.e. N < Z ) or
ν = 0 (i.e. N ≥ Z ), where Z = Z1 + · · · + Z M is the total charge of the nuclei.

7.3.3 More precise estimates

If we want to improve the remainder estimate O(N
5
3 ), then we need to improve the

semiclassical remainder estimates and also deal with O(N
5
3 ) in Lieb’s electrostatic

inequality (7.7).
The first task could be done under the assumption

a := min
m �=m′

|ym − ym′ | ≫ ā := N− 1
3 , (7.26)

which is completely reasonable (see Sect. 7.4). In this case, in each zone Ym := {x :
|x − ym | ≤ a1−ηāη}, with η > 0, both ρTF and W TF are close to those of a single
atom which are spherically symmetric. Then one can prove easily that the standard
conditions to the trajectories are fulfilled and we may use the improved remainder
estimates. On the other hand, contributions of the “outer” zone Y0 := {x : |x −ym | ≥
a1−ηāη ∀m = 1, . . . , M} to these remainders is smaller.

Therefore all remainder estimates acquire the factor (hδ + b−δ) with b = aā−1

before scaling back, i.e. (N
1
3 δ + (aN

1
3 )−δ) after it. However, the trace asymptotics

should also include the term −κ1h−1 before scaling back or −κ1 N
5
3 after it; for the

potential W TF, it is numerically equal to Schwinger = −c1
∫
ρTF 4

3 dx which is
called the Schwinger correction term.

The second task requires an improvement in Lieb’s electrostatic inequality due to
[3,8]: one can replace the last term in (7.8) for the ground state energy � by

− 1

2

∫∫
|x − y|−1 tr

(
e

†
N (x, y)eN (x, y)

)
dxdy − O(N

5
3−δ), (7.27)

where the first term coincides with the last term in (7.13) (the estimates from above)

and again modulo O(N
5
3−δ) can be rewritten as

− 1

2

∫∫
|x − y|−1 tr

(
e†(x, y, ν)e(x, y, ν)

)
dxdy. (7.28)

So far, we have not explored such expressions but we can handle them.
For this expression, after rescaling, we can derive the asymptotics with principal

term−κ2h−4 and with remainder estimate as good as O(h−3), which after scaling back

becomes O(N
4
3 ) (which is an overkill). Here, we use the representation of e(x, y, ν)

by an oscillatory integral modulo a term whose L 2(R6) norm does not exceed Ch−2.
To calculate κ2, we can consider the operator with constant potential W , and

for this operator, we calculate − 1
2

∫
|x − y|−1 tr

(
e†(x, y, ν)e(x, y, ν)

)
dy obtaining
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−const(W + ν)2h−4, then plug in W = W (x) and integrate over x . For W = W TF,

after scaling back, we arrive to Dirac = −c2
∫
ρTF 4

3 dx which is called the Dirac

correction term.
Despite having completely different origins, these correction terms differ only by

numerical constants.
We arrive to the theorem:

Theorem 7.2 As Z = Z1 + · · · + Z M ≍ N → ∞, M remains bounded, a =
minm �=m′ |ym − ym′ | � N− 1

3 and

EN = ETF
N + Scott + Schwinger + Dirac + O(R) with R = N

5
3
(
N−δ + (aN

1
3 )−δ

)

(7.29)

where δ > 0 is unspecified.

As a byproduct of the proof, we obtain

D(ρ� − ρTF, ρ� − ρTF) = O(R). (7.30)

For details and proofs, see Sections 25.1–25.4 of [14].

7.4 Ramifications

First, instead of the fixed nuclei model, we can consider the free nuclei model where
we add to both EN and ETF

N the energy of nuclei-to-nuclei interaction

∑

m<m′
Zm Zm′ |ym − ym′ |−1 (7.31)

and minimize the results by the position of nuclei (y1, . . . , ym); denote the results by
ÊN and ÊTF

N respectively.
Combining (7.29) with the non-binding theorem in Thomas–Fermi theory,44 we

obtain that in the free nuclei model (with Z1 ≍ · · · ≍ Z M ≍ Z ≍ N ),

a = min
m �=m′

|ym − ym′ | � N− 5
3+δ (7.32)

and then (7.29) and (7.30) hold with R = N
5
3−δ .

Next, using methods already developed by mathematical physicists before asymp-
totics (7.29) and (7.30) were derived, we can answer several questions with far better

precision than before; for simplicity, we assume that a ≥ N− 1
3+δ .

(i) How many extra electrons can the system bind? In other words, if EN < EN−1,
what we can say about N−Z? According to a classical theorem due to G. Zhislin,

44 In the Thomas–Fermi theory, molecules do not exist.
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the system can bind at least Z electrons. Our answer: (N − Z)+ = O(N
5
7−δ),

based on the fact that in the Thomas–Fermi theory, negative ions do not exist.
(ii) What we can say about the ionization energy IN = EN−1 − EN ? Our answer:

IN = O(N
20
21−δ) if N − Z ≥ −C N

5
7−δ and IN = −ν + O((Z − N )

17
18 Z

5
18−δ if

N − Z ≤ −C N
5
7−δ; if N ≤ Z ν ≍ (Z − N )

4
3 .

(iii) In the free nuclei model (with M ≥ 2), what can we say about N − Z > 0 if a

stable configuration exists? Our answer: Z − N ≤ C N
5
7−δ (again based on the

non-binding theorem).

For details and proofs, see Sections 25.5 and 25.6 of [14].

7.5 Adding magnetic field

7.5.1 Adding external magnetic field

Consider the Schrödinger–Pauli operator with magnetic field

HA,V = ((−ih∇ − μA(x)) · σ)2 − V (x). (7.33)

Then instead of P(w) defined by (7.17), we need to define it according to (5.5) by

P(w) = 2

π2

(1

2
w

3
2
+B +

∞∑

j=1

(w − 2 j B)
3
2
+B

)
, (7.34)

where B is the scalar intensity of the magnetic field. This changes both the Thomas–
Fermi theory and properties of the Thomas–Fermi potential W TF and Thomas–Fermi
density ρTF.
Case B � Z4/3

For B � Z4/3, the main contributions to the (approximate) electronic charge∫
ρTF dx and the energy ETF come from the zone {x : d(x) ≍ Z−1/3} (d(x) =

minm |x − ym |), exactly as for B = 0.
Furthermore, W TF ≍ Zmd(x)−1 if d(x) � Z−1/3 and (for Z = N ) W TF ≍ d(x)−4

if Z−1/3 ≤ d(x) � B−1/4 but ρTF = 0 if d(x) ≥ C0 B−1/4.45

Finally, as we using scaling to bring our problem to the standard one, we get that in
the zone {x : d(x) ≍ Z−1/3}, the effective semiclassical parameter is heff = Z−1/3

which leads to ETF ≍ Z7/3 again exactly as for B = 0.
As a result, assuming that M = 1, we can recover asymptotics for the ground state

energy E with the Scott correction term but with the remainder estimate O(Z5/3 +
Z4/3 B1/3). For M ≥ 2 and N ≥ Z , our estimates are almost as good (provided
a = minm �=m′ |ym − ym′ | ≥ Z−1/3), but deteriorate when both (Z − N )+ and B are
large.

Moreover, for B ≪ Z assuming (7.26), we can marginally improve these results
and include the Schwinger and Dirac correction terms.

45 So, the radii of atoms in Thomas–Fermi theory are ≍min(B−1/4, (Z − N )
−1/3
+ ).
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The main obstacles we need to overcome are that now W TF is not infinitely smooth
but only belongs to the class C 5/2 and that for M ≥ 2, the nondegeneracy assumption
(|∇W | ≍ 1 after rescaling) fails.
Case B � Z4/3

On the other hand, for B � Z4/3, the main contributions to the (approximate)
electronic charge and the energy ETF come from the zone {x : d(x) ≍ B−1/4} and
(for Z = N ) W TF ≍ Zd(x)−1 if d(x) � B−1/4 but W TF = 0 if d(x) ≥ C0 B−1/4. In
this case, ETF ≍ B2/5 Z9/5.

Further, as we using scaling to bring our problem to the standard one, we see that
in the zone {x : d(x) ≍ B−1/4}, the effective semiclassical parameter is heff =
B1/5 Z−3/5 and therefore unless B ≪ Z3, the semiclassical approximation fails and
the correct answer should be expressed in completely different terms [18]; compare
with [19].

As a result, assuming that M = 1 if Z4/3 ≤ B ≤ Z3, we can recover the asymptotics
for E with the Scott correction term but with the remainder estimate O(B4/5 Z3/5 +
Z4/3 B1/3).

For M ≥ 2 and N ≥ Z , our estimates are almost as good (provided a =
minm �=m′ |ym − ym′ | ≥ B−1/4), but deteriorate when (Z − N )+ is large.

Again the main obstacles we need to overcome are that now W TF is not infinitely
smooth but only belongs to C 5/2 and that for M ≥ 2, the nondegeneracy assumption
(|∇W | ≍ 1 after rescaling) fails.

For details, exact statement and proofs, see Sections 26.1 and 26.6 of [14]. We also
estimate the left-hand expression of (7.20) and are able to obtain results similar to
those mentioned in Sect. 7.4. For details and proofs, see Sections 26.7–26.8 of [14].

7.5.2 Adding self-generated magnetic field

Let

E(A) = inf Spec(HA,V )+ α−1
∫

|∇ × A|2 dx (7.35)

and

E∗ = inf
A∈H 1

0

E(A), (7.36)

where A is an unknown magnetic field and the underlined term is its energy.
One can prove that an “optimal” magnetic field exists (for given parameters
Z1, . . . , Z M , y1, . . . , yM , N ) but we do not know if it is unique.46

Using the same arguments as before, we can reduce this problem to the one-particle
problem with inf Spec(HA,V ) replaced by Tr((HA,W + ν)−) plus some other terms.
However, in the estimate from below, most of the terms do not depend on A and in
the estimate from above, we pick up A.

46 If it was unique, then for M = 1, the spherical symmetry would imply that A = 0.
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Then after the usual rescalings, the problem is reduced to the problem of minimizing

Tr((HA,W + ν)−)+
1

κh2

∫
|∇ × A|2 dx (7.37)

and then the optimal magnetic potential A must satisfy

2

κh2
�A j (x) = # j

:= −Re tr
(
σ j

(
(h D − A)x · σe(x, y, τ )+ e(x, y, τ ) t (h D − A)y · σ

)∣∣∣
y=x

)
,

(7.38)

where e(x, y, τ ) is the Schwartz kernel of the spectral projector θ(−H) of H = HA,W

and tr is the matrix trace. As usual, we are mainly interested in h = Z−1/3 (and then
κ = αZ ).

First, (7.38) allows us to claim a certain smoothness of A. Second, the right-hand
expression is something we studied in pointwise spectral asymptotics, and the Weyl
expression here is 0, so the right-hand expression of (7.38) is something that we could
estimate. Surely, it is not that simple but improving our methods in the case of smooth
W , we are able to prove that A is so small that the ordinary asymptotics with remainder
estimates O(h−2) and O(h−1) would hold in both the pointwise asymptotics and the
trace asymptotics. Moreover, under standard conditions, we would be able to get
the remainder estimates o(h−2) and o(h−1) in the eigenvalue counting and the trace
asymptotics respectively.

However, in reality, the above is not exactly true since W has Coulomb-like singu-
larities W ∼ zm |x − ym |−1 with zm ≍ 1. If M = 1, zm = 1, a singularity leads us to
the Scott correction term S(κ)h−2 derived in the same way as without a self-generated
magnetic field. However, we do not have an explicit formula for S(κ); we even do not
know its properties except that it is non-increasing function of κ ∈ [0, κ∗); we even
do not know if we can take κ∗ = ∞. If the optimal magnetic potential A was unique,
then A = 0 and S(κ) = S(0), which corresponds to this term without a magnetic field.

Then as M ≥ 2, the Scott correction term is
∑

1≤m≤M S(κzm)z
2
mh−2 in the general

case. However, as M ≥ 2 we need to decouple singularities as all of them are served
by the same A and it leads to decoupling errors depending on the internuclei distance.

For details, exact statements and proofs, see Sections 27.2–27.3 of [14].
As a result, we derive the ground state asymptotics with the Scott correction term∑
1≤m≤M S(αZm)Z

2
m . We also estimate the left-hand expression of (7.20) and are able

to obtain results similar to those mentioned in Sect. 7.4. For details, exact statements
and proofs, see Sections 27.3–27.4 of [14].

7.5.3 Combining external and self-generated magnetic fields

We can also combine a constant strong external magnetic field and a self-generated
magnetic field. Results are very similar to those of Sect. 7.5.1, but this time, the Scott
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correction term and the decoupling errors are like in Sect. 7.5.2. For details, exact
statements and proofs, see Chapter 28 of [14].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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