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ABSTRACT

Searching for Darwinian selection in natural popula-

tions has been the focus of a multitude of studies

over the last decades. Here we present the 1000

Genomes Selection Browser 1.0 (http://hsb.upf.edu)

as a resource for signatures of recent natural selec-

tion in modern humans. We have implemented and

applied a large number of neutrality tests as well as

summary statistics informative for the action of se-

lection such as Tajima’s D, CLR, Fay and Wu’s H, Fu

and Li’s F* and D*, XPEHH, "iHH, iHS, FST, "DAF and

XPCLR among others to low coverage sequencing

data from the 1000 genomes project (Phase 1;

release April 2012). We have implemented a publicly

available genome-wide browser to communicate the

results from three different populations of West

African, Northern European and East Asian ancestry

(YRI, CEU, CHB). Information is provided in UCSC-

style format to facilitate the integration with the rich

UCSC browser tracks and an access page is provided

with instructions and for convenient visualization. We

believe that this expandable resource will facilitate

the interpretation of signals of selection on different

temporal, geographical and genomic scales.

INTRODUCTION

Initiatives such as the 1000 Genomes Project (1,2) are
generating resequencing data from world-wide human

populations on a genome-wide scale. Resequencing data
constitutes a major leap for population genomic analysis
due to its higher information density and limited SNP as-
certainment bias compared to genotyping data. Therefore
such data is appropriate to calculate summary statistics
that are based on the site frequency spectrum like CLR
or Tajima’s D. Using the neutral evolutionary model as a
null hypothesis, diverse statistics can be applied to genetic
data to identify deviations from neutrality (Table 1).
These statistical tests show varying degrees of robustness
to demographic events (e.g. population bottlenecks and
expansions) and sensitivity to different types of selection
(e.g. positive, purifying or balancing). For instance, popu-
lation bottlenecks, can lead to footprints that are similar
to those caused by positive selection (21). Therefore,
outlier approaches, which are commonly used to identify
non-neutral loci in the extremes of a genome-wide distri-
bution, are likely to contain a number of false positives in
their extremes. Likewise, a number of false negatives,
hence misidentified truly selected loci, are expected in a
grey zone near the (arbitrary) outlier threshold (22).
Outlier approaches in genome scans have proven
powerful, but certainly they should be interpreted care-
fully in order to avoid storytelling (23). Even more, a
profound understanding of adaptive evolution requires
the integration of biological function (24) and if
possible, validation on an experimental basis (25).
Molecular network approaches can also give a functional
context to the specific genes under adaptive selection
(26,27). In all studies, care should be taken in
communicating putative loci under selection to the
public in order to avoid racist misinterpretation (28).
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Despite of these limitations and the fact that complete
selective sweeps may not be extremely widespread in
humans (29), a large number of regions under strong
positive selection can be expected in the genome (30).

DESCRIPTION OF APPLIED STATISTICAL TESTS

Due to linkage, neutral alleles in the surrounding region
hitchhike with the selected allele. Maynard Smith and
Haigh (31) described this process of genetic hitchhiking
and the so-called selective sweep. More recent studies
showed that genetic hitchhiking generates distinct poly-
morphism signatures on the genome such as: (i) reduction
of polymorphism level and excess of low- and high-
frequency derived variants (32), (ii) spatial patterns of
linkage-disequilibrium (33) and (iii) increased genetic dif-
ferentiation among populations (34). Taking advantage of
these three theoretical expectations, several methods to
detect positive selection have been developed in the last
two decades. This makes reference to the fact that no
single statistic is enough to describe selection under
various demographic models and modes of selection (22).
Here, we implemented a large number of statistical tests

(Table 1) in order to allow for a more comprehensive
analysis of natural selection, especially, positive selection.
In brief, we have assigned the statistical tests to different
method families (Table 1). Within the first family which is
based on the allele frequency spectrum, Tajima’s D (3) is a
classical neutrality test that compares estimates of
the number of segregating sites and the mean pair-wise
difference between sequences. CLR is a multi-locus, com-
posite likelihood ratio test (4,35). Fay and Wu’s H (5)
uses another facet of the site-frequency spectrum, by

comparing the number of derived segregating sites at
high frequencies to the number of variants at intermediate
frequencies. Fu and Li’s F* compares the number of
singletons to the mean pair-wise difference between
sequences and Fu and Li’s D* compares it to the total
number of nucleotide variants in a genomic region (6).
R2 (7) is a statistical test for detecting population
growth based on the comparison of the difference
between the number of singletons per sequence and the
average number of nucleotide differences.

Among the linkage disequilibrium structure methods,
XP-EHH (8) is a cross-population test based on
extended haplotype homozygosity (EHH). �iHH con-
siders the difference between the integrated haplotype
homozygosity scores for each allele in a single population
while iHS (9) is defined as their log ratio. EHH average
and EHH maximum (36); modified from (10) are based on
the extended haplotype homozygosity. Wall’s B (11)
counts the number of pairs of adjacent segregating sites
that are congruent (if the subset of the data consisting of
the two sites contains only two different haplotypes), while
Wall’s Q (12) adds the number of partitions (two disjoint
subsets whose union is the set of individuals in the sample)
induced by congruent pairs to Wall’s B. Fu’s F (13) takes
into account the haplotype diversity in the sample.
Dh (14) is a summary statistic based on the number of
different haplotypes in the sample.

The third family of methods is based on population dif-
ferentiation. FST (37); calculated following the diploid
method in Weir 1996 (p. 178) and�DAF (18) are estimates
of population differentiation based on derived allele
frequencies. XP-CLR (19) is a multi-locus allele-
frequency-differentiation statistic between two populations.

Table 1. List of available summary statistics

Method family Method Reference Window size Rank scores tail

Allele frequency spectrum Tajima’s D Tajima (3) 30 kb Lower
CLR Nielsen et al. (4) Variable size Upper
Fay and Wu’s H Fay and Wu (5) 30 kb Lower
Fu and Li’s F* Fu and Li (6) 30 kb Lower
Fu and Li’s D* Fu and Li (6) 30 kb Lower
R2 Ramos-Onsins and Rozas (7) 30 kb Lower

Linkage disequilibrium
structure

XP-EHH modified from Sabeti et al. (8) SNP-specific Upper
AiHH modified from Voight et al. (9) SNP-specific Upper
his modified from Voight et al. (9) SNP-specific Upper
EHH_average modified from Sabeti et al. (10) 30 kb Upper
EHH_max modified from Sabeti et al. (10) 30 kb Upper
Wall’s B Wall (11) 30 kb Upper
Wall’s Q Wall (12) 30 kb Upper
Fu’s F Fu (13) 30 kb Lower
Dh Nei (14) 30 kb Upper
Za Rozas et al. (15) 30 kb Upper
ZnS Kelly (16) 30 kb Upper
ZZ Rozas et al. (15) 30 kb Upper

Population differentiation Fst (global and pairwise) Weir and Cockerham (17) SNP-specific Upper
�DAF (standard and absolute) Hofer et al. (18) SNP-specific Upper
XP-CLR Chen et al. (19) 0.1 cM (maximum window) Upper

Descriptive statistics Segregating sites 30 kb NA
Singletons 30 kb NA
pi (nucleotide diversity) Nei and Li (20) 30 kb NA
DAF (derived allele frequency) SNP-specific NA
MAF (minor allele frequency) SNP-specific NA
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Additional statistics like segregating sites per 30-kb window
and the nucleotide diversity and others (Table 1) are listed
as descriptive statistics. A thorough description of the tests
is given in the original literature (see Table 1) and in diverse
excellent reviews on the topic (38,39).

COMPUTATIONAL FRAMEWORK AND
DESCRIPTION OF 1000 GENOMES SOURCE DATA

A framework to calculate diverse summary statistics
(Table 1) from 1000 genomes data was developed
(Figure 1). A detailed description of how the statistics
were implemented is given (Supplementary Material).
A genome-wide overview of the results stored in the
database for selected summary statistics is given
(Supplementary Table S1). As described in the 1000
genomes Phase 1 paper (1), the quality of the 1000
genomes low coverage data has improved considerably
over the pilot phase (2), but a number of limitations
need to be kept in mind for population genomic
analysis: (i) singletons and other rare variants are still
underrepresented, (ii) the accessibility of the genome
with the used short-read-sequencing technologies �94%
and (iii) the reported phasing switch error every 250 kb
(median, Supplementary Figure S5 in (1)) likely underesti-
mates the length of long-shared haplotypes expected to
occur around recent selective sweeps. Despite of these
drawbacks which are mainly due to the nature of the
low coverage approach, the short-read technology and dif-
ferences in read depth (40), this dataset has important
advantages over genotyping data, most importantly (i) a
higher SNP density, (ii) the overcoming of ascertainment
bias and (iii) a larger number of individuals per popula-
tion, when compared to previous datasets (HapMap II
and HGDP). We used phased data from the CEU, the
CHB and the YRI populations from the integrated
Phase 1 variant set (April 2012), with 97, 85 and 88 indi-
viduals, respectively. From the input vcf (variant call
format) file we extracted exclusively the low-coverage
VSQR SNP calls in order to avoid any bias that might
result from differences between low-coverage calls and
high-coverage exome SNP calls. Indels were not used.
Ancestral states in this data set were identified using a
4-way alignment of humans, chimp, orangutan and
rhesus macaque, provided by the 1000 genomes consor-
tium (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/
analysis_results/supporting/ancestral_alignments/).

AVAILABILITY OF DATABASE

All data is available via our entry page: http://hsb.upf.edu.
A search mask gives the user easy access to the results for
a specific gene or a genomic region of choice. The ‘submit’
button leads the user to a UCSC-style genome browser
(http://pgb.ibe.upf.edu/) which is a custom installation
of the UCSC Genome Browser (41,42). This UCSC
Genome Browser installment allows for a visual inspec-
tion of the data, and for an integration of our data with
many other available datasets. The raw scores of the
tracks can be conveniently downloaded using the UCSC

Table function (43) and is integrated with the Galaxy
platform (galaxyproject.org). Using the ‘configure’
function on the browser page, the tracks can be further
customized and using ‘right click’ the visualized genomic
regions can be downloaded as a picture in .png format.
For every statistical test, we provide two tracks, one for
the raw scores and one for ranked scores. The purpose of
the rank score tracks is to provide a comparison to the rest
of the genome. Conveniently, the rank scores are pre-
sented in such a way that they present a peak (instead of
a valley) in regions under positive selection. They are
calculated using an outlier approach (22,44) by sorting
all the scores genome-wide and determining the �log10
of the rank divided by the number of values in the distri-
bution, taking the upper tail for most of the tests, or the
lower tail for Tajima’s D, Fay and Wu’s H, Fu and Li’s F
and D, R2 and Fu’s F (see Table 1 and a more detailed
description on the entry page). The main purpose of the
entry page is to provide a channel of communication with
users, following the guidelines in (45). It serves as a
platform for updates, questions and feedback (46).
Therefore the page also provides documentation on the
tracks and on the tests implemented as well as a FAQ
and a feedback section.

Figure 1. Schematic workflow developed in order to calculate diverse
genome-wide summary statistics informative for the action of selection
and to build a database in order to share and visualize the results.
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Figure 2. Examples of genomic regions under selection in the 1000 genomes selection browser. Tracks of statistics from different populations are
visualized in colour (CEU in green, CHB in red and YRI in blue). Additional examples are given at http://hsb.upf.edu (A) The p- and q-arms of
chromosome 2 (�log10 of empirically ranked scores). Recurrent peaks at around 72.5Mb (left green arrow) and 109.5Mb (right green arrow)
indicate the loci CYP26B1/EXOC6B and EDAR, respectively. (B) Signature of positive selection around SLC45A2, another established skin colour
gene, in the CEU population (0.5-Mb window; �log10 of empirically ranked scores). (C) Widespread balancing selection in the HLA region indicated
by strongly positive scores for Tajima’s D in all three analysed human populations (0.5-Mb window).
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EXAMPLE APPLICATIONS

First, we exemplify the use of the database by extract-
ing results for a number of established loci under selection:
EDAR (47), LCT (46), SLC45A2 (48), CD36 (49), HERC2
(50), SLC24A5 (51), CD5 (52) and APOL1 (53). A loci-
specific summary of statistical tests is given
(Supplementary Table S2). Interestingly, for any given
locus, only a subset of statistical tests shows an extreme
outlier score. This is consistent with differences in the
architecture of selective sweeps. iHS scores near to
certain very pronounced selective sweeps (e.g. LCT and
SLC24A5) failed to compute due to inherent properties
of the statistics, because either (i) the selected haplotype
was near fixation or (ii) the EHH did not drop below the
defined threshold in a given window. Examples for both
positive (SLC45A2) and balancing (HLA region) selection
are visualized in Figure 2. As expected, Tajima’s D scores
around HLA (54) as well as the ABO locus (55) (data not
shown) were pronouncedly elevated in all three analyzed
populations, a pattern which is compatible with the action
of balancing selection.

COMPARISON TO OTHER WEB RESOURCES

As for positive selection based on between-species com-
parisons, the Selectome database (http://bioinfo.unil.ch/
selectome/; (56)) presents results based on the dN/dS
method using a branch-site specific likelihood test. As
for recent natural selection within modern humans, a
number of web resources are available. For previous
datasets, e.g. the HapMap 2 and HGDP projects,
several positive selection statistics are available in form
of the haplotter tool (http://haplotter.uchicago.edu/;
(24)) and in form of the HGDP selection browser
(http://hgdp.uchicago.edu/; (57)). For the 1000 genomes
project data, the online tool ENGINES (http://spsmart.
cesga.es; (58)) is useful for the analysis of allele frequencies
and a recent study presented a method to calculate cor-
rected summary statistics from low coverage sequencing
data (40). dbPSHP (http://jjwanglab.org/dbpshp) offers
a large number of statistical tests in a SNP-specific
manner for HapMap 3 and 1000 genomes datasets.
Complementary to these databases, our database gives a
large number of region- and SNP-specific scores (depend-
ing on the test statistic) based on resequencing data (1000
genomes Phase 1), with a special focus on genome-wide
significance (by the ranked scores) and the visualization of
several statistics in parallel (Figure 2).

CONCLUSIONS

By applying a large number of summary statistics to data
from the 1000 genomes project, we have built a timely and
expandable resource for the population genomics research
community. An associated user-friendly genome browser
gives a visual impression of the genetic variation in a
genomic region of interest and offers functionality for an
array of down-stream analyses. While this resource will
not replace a thorough, case by case analysis of selection,
we expect that it will prove useful for the research

community through the large number of test statistics
and the fine-grained character of resequencing data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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and Järvelä,I. (2002) Identification of a variant associated with
adult-type hypolactasia. Nat. Genet., 30, 233–237.

47. Bryk,J., Hardouin,E., Pugach,I., Hughes,D., Strotmann,R.,
Stoneking,M. and Myles,S. (2008) Positive selection in East
Asians for an EDAR allele that enhances NF-kappaB activation.
PLoS One, 3, e2209.

48. Branicki,W., Brudnik,U., Draus-Barini,J., Kupiec,T. and
Wojas-Pelc,A. (2008) Association of the SLC45A2 gene with
physiological human hair colour variation. J. Hum. Genet., 53,
966–971.

49. Fry,A.E., Ghansa,A., Small,K.S., Palma,A., Auburn,S.,
Diakite,M., Green,A., Campino,S., Teo,Y.Y., Clark,T.G. et al.
(2009) Positive selection of a CD36 nonsense variant in sub-
Saharan Africa, but no association with severe malaria
phenotypes. Hum. Mol. Genet., 18, 2683–2692.

50. Duffy,D.L., Montgomery,G.W., Chen,W., Zhao,Z.Z., Le,L.,
James,M.R., Hayward,N.K., Martin,N.G. and Sturm,R.A. (2007)
A three-single-nucleotide polymorphism haplotype in intron 1 of
OCA2 explains most human eye-color variation. Am. J. Hum.
Genet., 80, 241–252.

51. Lamason,R.L., Mohideen,M.-A.P.K., Mest,J.R., Wong,A.C.,
Norton,H.L., Aros,M.C., Jurynec,M.J., Mao,X.,
Humphreville,V.R., Humbert,J.E. et al. (2005) SLC24A5, a
putative cation exchanger, affects pigmentation in zebrafish and
humans. Science, 310, 1782–1786.

D908 Nucleic Acids Research, 2014, Vol. 42, Database issue

 at C
entro de Inform

aciÃ
³n y D

ocum
entaciÃ

³n C
ientÃ

fica on F
ebruary 25, 2015

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


52. Carnero-Montoro,E., Bonet,L., Engelken,J., Bielig,T., Martı́nez-
Florensa,M., Lozano,F. and Bosch,E. (2012) Evolutionary and
functional evidence for positive selection at the human CD5
immune receptor gene. Mol. Biol. Evol., 29, 811–823.

53. Genovese,G., Friedman,D.J., Ross,M.D., Lecordier,L.,
Uzureau,P., Freedman,B.I., Bowden,D.W., Langefeld,C.D.,
Oleksyk,T.K., Uscinski Knob,A.L. et al. (2010) Association of
trypanolytic ApoL1 variants with kidney disease in African
Americans. Science, 329, 841–845.

54. Hedrick,P.W. and Thomson,G. (1983) Evidence for balancing
selection at HLA. Genetics, 104, 449–456.

55. Calafell,F., Roubinet,F., Ramı́rez-Soriano,A., Saitou,N.,
Bertranpetit,J. and Blancher,A. (2008) Evolutionary dynamics of
the human ABO gene. Hum. Genet., 124, 123–135.

56. Proux,E., Studer,R.A., Moretti,S. and Robinson-Rechavi,M.
(2009) Selectome: a database of positive selection. Nucleic Acids

Res., 37, D404–D407.
57. Pickrell,J.K., Coop,G., Novembre,J., Kudaravalli,S., Li,J.Z.,

Absher,D., Srinivasan,B.S., Barsh,G.S., Myers,R.M.,
Feldman,M.W. et al. (2009) Signals of recent positive selection in
a worldwide sample of human populations. Genome Res., 19,
826–837.

58. Amigo,J., Salas,A. and Phillips,C. (2011) ENGINES: exploring
single nucleotide variation in entire human genomes. BMC
Bioinformatics, 12, 105.

Nucleic Acids Research, 2014, Vol. 42, Database issue D909

 at C
entro de Inform

aciÃ
³n y D

ocum
entaciÃ

³n C
ientÃ

fica on F
ebruary 25, 2015

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/

