
1001 Ways to run AutoDock Vina for virtual screening

Mohammad Mahdi Jaghoori1 • Boris Bleijlevens2 • Silvia D. Olabarriaga1

Received: 6 November 2015 / Accepted: 10 February 2016 / Published online: 20 February 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Large-scale computing technologies have

enabled high-throughput virtual screening involving thou-

sands to millions of drug candidates. It is not trivial,

however, for biochemical scientists to evaluate the tech-

nical alternatives and their implications for running such

large experiments. Besides experience with the molecular

docking tool itself, the scientist needs to learn how to run it

on high-performance computing (HPC) infrastructures, and

understand the impact of the choices made. Here, we

review such considerations for a specific tool, AutoDock

Vina, and use experimental data to illustrate the following

points: (1) an additional level of parallelization increases

virtual screening throughput on a multi-core machine; (2)

capturing of the random seed is not enough (though nec-

essary) for reproducibility on heterogeneous distributed

computing systems; (3) the overall time spent on the

screening of a ligand library can be improved by analysis

of factors affecting execution time per ligand, including

number of active torsions, heavy atoms and exhaustiveness.

We also illustrate differences among four common HPC

infrastructures: grid, Hadoop, small cluster and multi-core

(virtual machine on the cloud). Our analysis shows that

these platforms are suitable for screening experiments of

different sizes. These considerations can guide scientists

when choosing the best computing platform and set-up for

their future large virtual screening experiments.

Keywords High-performance computing � Virtual

screening � AutoDock Vina � Multi-core � Grid computing �

Hadoop � Reproducibility

Introduction

Virtual screening (VS) is nowadays a standard step before

wet-lab experiments in drug discovery [1, 2]. VS involves

calculating the estimated affinities and plausible binding

modes of many drug candidates, other drug-like small

molecules, or fragments of the former when binding onto a

given protein, which is used for short-listing prominent

candidates. Even though VS is much cheaper than the lab

experiments, it requires investing on the proper High-Per-

formance Computing (HPC) infrastructure in order to

enable screening of large ligand libraries. The feasibility of

a VS experiment on a given infrastructure can be measured

in terms of how long the experiment takes. The longer the

calculation time, the less feasible an experiment can

become due to practical reasons. Especially, time is

directly proportional to cost when performing VS on pay-

per-use infrastructures.

The aim of this paper is to provide a concise review toge-

ther with experimental analysis of the impact of variations in

the VS experiment setup and the types of HPC infrastructures

on the execution time. This enables a well-informed decision

Electronic supplementary material The online version of this
article (doi:10.1007/s10822-016-9900-9) contains supplementary
material, which is available to authorized users.

& Mohammad Mahdi Jaghoori

mmajid@gmail.com

Boris Bleijlevens

b.bleijlevens@amc.uva.nl

Silvia D. Olabarriaga

s.d.olabarriaga@amc.uva.nl

1 Department of Clinical Epidemiology, Biostatistics and

Bioinformatics, Academic Medical Center, University of

Amsterdam, Amsterdam, Netherlands

2 Department of Medical Biochemistry, Academic Medical

Center, University of Amsterdam, Amsterdam, Netherlands

123

J Comput Aided Mol Des (2016) 30:237–249

DOI 10.1007/s10822-016-9900-9

http://dx.doi.org/10.1007/s10822-016-9900-9
http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-016-9900-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-016-9900-9&domain=pdf

by biochemists when setting up their experiments on HPC

platforms. In the experiment set-up,we specifically look at the

properties of individual ligands as well as Vina configuration

parameters. We use libraries of known and available drugs

that are common in biomedical studies. These libraries are

also suitable for our purpose because they show a high variety

on ligands properties that influence computing time (see

‘‘Compound libraries’’ section).

Currently more than fifty software packages are avail-

able for protein-ligand docking, for example AutoDock

Vina [3], Glide [4], FlexX [5], GOLD [6], DOCK [7], to

name a few. Also, various methods have been developed to

speed up their execution [8–12]. We take AutoDock Vina

as a typical, arguably most popular, molecular docking tool

available for virtual screening. Popularity is explained by

being free and the quality of the results, especially for

ligands with 8 or more rotatable bonds [13]. Although this

paper is based on AutoDock Vina, the findings reported

here possibly also apply to similar software packages and

analogous types of experiments. For brevity, we will refer

to AutoDock Vina simply as Vina in the rest of the paper.

Paper structure In the rest of this section, we introduce

the basic concepts and features of Vina required for setting

up a VS experiment. We then explain the characteristics of

the four types of computing infrastructures used to run our

experiments. The Methods section presents the ligands and

proteins used in the experiments, their various set-ups and

configurations, as well as the details of how we ran the

experiments on each infrastructure. A complete description

of our findings is given in the ‘‘Results and discussion’’

section.

AutoDock Vina

AutoDock Vina [3] is a well-known tool for protein-ligand

docking built in the same research lab as the popular tool

AutoDock 4 [14, 15]. It implements an efficient opti-

mization algorithm based on a new scoring function for

estimating protein-ligand affinity and a new search algo-

rithm for predicting the plausible binding modes. Addi-

tionally, it can run calculations in parallel using multiple

cores on one machine in order to speed up the computation.

In this paper, we adopt the following terminology (the

italicized terms).

One execution of Vina tries to predict where and how a

putative ligand can best bind to a given protein, in which

Vina may repeat the calculations several times with dif-

ferent randomizations (the configuration parameter ex-

haustiveness controls how many times to repeat the

calculations). The part of the protein surface where the tool

attempts the binding is specified by the coordinates of a

cuboid, to which we refer as the docking box. This is called

the ‘‘search space’’ in the Vina manual.

By default, redoing the same execution on the same

ligand-protein pair can produce varying binding modes

because of the randomized seeding of the calculations.

Nevertheless, Vina allows the user to explicitly specify an

initial randomization seed, so that the docking results can

be reproduced.

Since the repeated calculations in one execution are

independent, Vina can perform them in parallel on a multi-

core machine. To do so, it creates multiple threads: the

threads inside a program will run in parallel whenever the

cores are free. The maximum number of simultaneous

threads can be controlled when starting the docking

experiment (using command-line option cpu). By default,

Vina tries to create as many threads as the number of

available cores.

Infrastructures

High-performance computing infrastructures with several

levels of computational capacity are typically available to

researchers today. In the simplest case, one can take

advantage of personal computer’s multiple cores to speed

up, or scale an experiment. Nowadays, small and medium

research groups and enterprises can afford compelling

computers with tens of cores. Another alternative is to use

accelerators, i.e., hardware that can be used next to the

central processor (CPU) to accelerate computations.

Examples are graphical processing units (GPU) and Intel’s

recent development called Xeon Phi, which can have

hundreds of (special-purpose) processing cores. In the

extreme case, supercomputers with millions of cores can be

used. It is however very economical to make a network of

‘‘ordinary’’ computers and use a so-called middleware to

distribute the jobs among the available computing cores.

This is called distributed computing. We use the term

cluster to refer to a network of computers that are geo-

graphically in the same place, and the term grid for a

network of geographically scattered computers and clus-

ters. A widely used middleware for clusters is called

portable batch system (PBS), which is capable of queuing

incoming jobs and running them one after the other. A

more advanced middleware is Hadoop [16], which has

efficient file management and automatically retries failed

or stalled jobs, thus greatly improving the overall success

rate. Finally, grids may constitute dedicated resources (e.g.,

using gLite [17] middleware) or volunteered personal

computers connected via internet (e.g., BOINC [18]).

Cloud The main idea of cloud computing is to use vir-

tualized systems. It means that organizations do not have to

invest upfront to buy and maintain expensive hardware.

Instead, they can use hardware (or software services run-

ning on that hardware) that is maintained by the cloud

providers. It is possible to use a single virtual machine or

238 J Comput Aided Mol Des (2016) 30:237–249

123

create a cluster on the cloud. Hadoop clusters are usually

among the standard services offered by commercial cloud

providers. With these pay-as-you-go services, cloud users

pay only whenever they use the services and for the

duration of use. Although in this paper we used physical

grid and cluster infrastructures, the results are generally

applicable also to analogous virtual infrastructures.

In this study, we only use national resources that are

available for free to academic researchers in The Nether-

lands, which are maintained by the nationally funded

SURF organization.1 These resources include four different

types of infrastructures that are representative of alterna-

tives typically available to scientists worldwide. Table 1

summarizes the characteristics and capacities of these

systems. The smallest of all is an 8-core virtual machine on

the Dutch Academic HPC cloud. The second is a local

cluster at the Academic Medical Center of the University

of Amsterdam (AMC) with 128 cores and PBS middle-

ware. The third infrastructure considered here is the

Hadoop cluster for scientific research operated by SURF-

sara. This cluster consists of 90 data/compute nodes (add-

ing up to more than 1400 cores) and has a distributed file

system with a capacity of 630 TB. Finally, we use the

Dutch eScience grid which includes a dozen PBS clusters

all around the country (including ours). The Dutch grid

uses the gLite middleware [17].

Note Because the hardware characteristics of the

exploited infrastructures are very diverse (see Table 1), it is

unfair to directly compare them based on the execution

times. The usage of these infrastructures in our experiments

is meant as illustration for a variety of case studies, and not

as a benchmark.

Methods

Virtual screening set-up

The examples and results presented in this paper are based

on virtual screenings for two target proteins and four well-

known ligand libraries. These experiments were run as part

of collaborative efforts with AMC biomedical scientists.

Various combinations are used to create case studies that

are controlled, but at the same time realistic to illustrate

different ways to run Vina in various infrastructures.

Proteins

Target proteins were selected based on current research

interests in the department of Medical Biochemistry at the

AMC.

• Alpha-ketoglutarate-dependent dioxygenase FTO [19]

is a protein implicated in the development of obesity.

FTO is the strongest genetic predictor of increased

body weight [20]. It uses alpha-ketoglutarate as a

cofactor to remove methyl groups from mammalian

mRNA. Substrate binding occurs close to the catalytic

site. To discover potential inhibitors for FTO docking

was performed on the crystal structure 3LFM2 [21]

using a box size of 32� 32� 32 ¼ 32;768 Å
3
, centered

around the enzyme’s active site.

• NUR77 [22]: NUR77 is a nuclear receptor implicated

in vascular remodeling and atherosclerosis. It is clas-

sified as an orphan receptor, as up to now no activating

ligand has been identified. In an attempt to identify

potential binding sites, NUR77 virtual screens were run

on crystal structure 3V3E3 [23] against two docking

box sizes: the complete ligand binding domain (LBD)

surface (Big box) and against a small part of the LBD

surface (Small box). The exact box sizes are:

– Small box: 18� 18� 18 ¼ 5832 Å
3
.

– Big box: 66� 56� 60 ¼ 221;760 Å
3
.

PDB structure files of target proteins were downloaded from

the RCSB repository and the protein structures were analyzed

with PyMOL.4 In case of multiple molecules in the unit cell

(oligomers or hetero-complexes), the target molecule was

isolated either byusing the savemolecule option in PyMOLor

by directly modifying the PDB file. Polar hydrogen atoms

were added to the selected structure and a .pdbqt receptor

file was created using AutoDockTools5 [14].

Compound libraries

The ZINC (ZINC Is Not Commercial) [24] database con-

tains over 20 million chemical compounds, about two

thirds of which are commercially available. Actually,

ZINC contains compound models where a compound may

be represented several times with its different enantiomers

and protonation states in separate models. We use the terms

‘compound’ or ‘ligand’ to refer to these models. We

selected a number of sub-sets from the ZINC database

varying in size from a few dozens to up to almost 100K

compounds. These sub-sets (compound libraries) also

represent diverse types of molecules as explained below.

The libraries were downloaded directly in the .pdbqt format

that is required by Vina.6

1 http://surf.nl.

2 http://www.rcsb.org/pdb/explore/explore.do?structureId=3LFM.
3 http://www.rcsb.org/pdb/explore/explore.do?structureId=3V3E.
4 http://www.pymol.org.
5 http://autodock.scripps.edu.
6 http://zinc.docking.org/pdbqt.

J Comput Aided Mol Des (2016) 30:237–249 239

123

http://surf.nl
http://www.rcsb.org/pdb/explore/explore.do?structureId=3LFM
http://www.rcsb.org/pdb/explore/explore.do?structureId=3V3E
http://www.pymol.org
http://autodock.scripps.edu
http://zinc.docking.org/pdbqt

• Nutraceuticals (Nutra) [25]: A small library of 78

compounds from the Drugbank7 containing, amongst

others, diet supplements, often with therapeutic

indication.

• Human Metabolite Database (HMDB) [26]: This

library with 2,462 compounds contains information

about small molecule metabolites found in the human

body.8

• FDA Approved Drugs (FDA): Database of 3358

commercially available drugs that are approved by

the FDA (US Food and Drug Administration) with

acceptable safety/toxicity for medical treatments.

• Zinc Natural Products (ZNP): This is the biggest library

considered in our experiments, with 89,398 com-

pounds, comprising nature-inspired drug-like

compounds.

These libraries are a logical choice for biomedical scientists

in their virtual screening experiments, because they contain

known and available drugs—see for example these case

[27–29]. This approach has the advantage of avoiding long

drug development, making it possible to move quickly into

more advanced phases of drug testing. Note that these

libraries, however, differ from datasets like DUD-E [30] or

Dekois [31], which are synthetic benchmarks suitable for

evaluating the quality of docking algorithms. Benchmark-

ing is not the goal of this study; the experiments here are

aimed only at illustrating characteristics of this docking tool

under heavy workload in the scope of high performance

computing. Furthermore, the drug compounds included in

the abovementioned libraries display large variation in their

characteristics. Specifically, we are interested in the number

of active torsions (rotatable bonds) and the number of heavy

(i.e., not hydrogen) atoms in the ligands. These are impor-

tant factors affecting the docking process, therefore

expected to affect also the execution time of Vina.

The compounds in these four libraries add up to a total

of 94,649 molecules (considering the duplicates in different

libraries). Figure 1 (left) shows the count of compounds

when grouped based on their number of active torsions. In

all four libraries considered, 7,082 compounds (7.43 %)

have 0 or 1 active torsions and only 6,872 (7.21 %) have 10

or more. In practice, however, compounds with too many

rotatable bonds could be excluded from VS (for example

using tools like Raccoon29), since such compounds are not

expected to produce accurate results with existing docking

tools. Figure 1 (right) shows the distribution of the com-

pounds based on how many heavy atoms they have. We see

again that except for some compounds in FDA (a total of

151), the others are composed of no more than 40 heavy

atoms.

Implementations

The simplest way to screen a ligand library is to run Vina on

a multi-core machine, but this is suitable only for smaller

libraries. For this purpose, many researchers use the readily

available scripts, such as those provided by Vina authors,10

which automatically process all the ligands in a library one

after the other, or Raccoon2 or PyRx.11However, the results

in ‘‘Results and discussion’’ section indicate that these

scripts can be improved. To scale up to bigger libraries, one

may use a cluster or grid. Whenever more processing cores

are available, higher speed-up is expected, but in practice

there are many other determining factors such as the the

balance between overhead vs. efficiency of distributing the

jobs and collecting the results, the chance of job failure and

the ability of the system to recover (fault tolerance). Below

we explain how we performed VS on the different infras-

tructures focusing on high-level considerations that may

affect the execution time.

Multi-core

In processing one ligand, Vina has the ability to take

advantage of multiple cores available and perform the

Table 1 Characteristics of the infrastructures used in the experiments

Total cores CPU speed (GHz) Memory per core (GB) CPU types

Min Max

Single machine (on HPC cloud) 8 2.13 1 Intel Xeon

AMC local cluster 128 2.3 4 AMD Opteron

Dutch Academic Hadoop cluster 1464 1.9 2.0 C6 Intel Xeon - AMD Opteron

Dutch Academic grid [10,000 2.2 2.6 C4 Intel Xeon - AMD Opteron

7 http://www.drugbank.ca.
8 http://www.hmdb.ca.

9 http://autodock.scripps.edu/resources/raccoon2.
10 http://vina.scripps.edu/vina_screen_local.sh.
11 http://pyrx.sourceforge.net/.

240 J Comput Aided Mol Des (2016) 30:237–249

123

http://www.drugbank.ca
http://www.hmdb.ca
http://autodock.scripps.edu/resources/raccoon2
http://vina.scripps.edu/vina_screen_local.sh
http://pyrx.sourceforge.net/

calculations in parallel (called internal parallelism). How-

ever, every execution includes pre- and post-processing

steps which are not run in parallel, e.g., pre-calculating grid

maps describing the target protein or reading/writing files.

Even though very short, these sequential steps cause some

cores to be idle as illustrated in Figs. 2 and 3, which will

increasingly delay the calculations when screening thou-

sands of ligands.

In a virtual screening experiment, multiple ligands are

considered, and can therefore be processed in parallel

(called external parallelism). We used a process pool in the

Python language to start a fixed number of N concurrent

processes on a multi-core machine, each of which running

one instance of Vina. When a Vina instance finishes, the

corresponding process picks up the next outstanding

ligand. Figure 3 shows CPU usage graph (made by the

XRG tool12) for docking one ligand vs. two ligands at a

time.

Suppose N ligands are processed at a time (external

parallelism level), and Vina is configured to create M

threads in parallel for each ligand via the cpu option (in-

ternal parallelism level), the total parallelism level is then

given by N �M. We carried out several tests on an 8-core

machine to see which combinations of internal and external

parallelism produce the best speed-up. We considered all

combinations such that 8�N �M� 32, because these fully

exploit the 8-core capacity without overloading it. The

Python scripts to run the experiments on a multi-core

machine are provided as supplemental material.

Hadoop cluster

Hadoop [16] is an open-source implementation of the map-

reduce paradigm, originally introduced by Google for

parallel processing of many small data items. In this

paradigm, first parallel instances of a mapper job process

the input items, producing a series of key-value pairs. The

system sorts these pairs by their keys and passes them on to

the reducer jobs that will aggregate the outputs. In VS,

each ligand corresponds to one input, thus creating one

mapper job per ligand that runs an instance of Vina. These

jobs output the binding affinities as keys together with the

name of the ligand as the value. Therefore, the binding

affinities are automatically sorted by the system. One

reducer job is enough for collecting all the outputs and the

sorted affinities.

Local cluster and grid

Our first implementation for cluster and grid infrastructures

uses the WS-PGRADE workflow management sys-

tem [32]. The workflow is illustrated in Fig. 4, which can

be built from a graphical user interface. This approach

enables running the virtual screening and collecting its

results as explained below. WS-PGRADE can run this

workflow both on the AMC local cluster and on the Dutch

grid.

When using a cluster or grid, some overhead is intro-

duced to manage the jobs. This disfavors the execution of

many small jobs, as compared to Hadoop and multi-core

infrastructures. To reduce the overhead, a smaller number

of bigger jobs should be created. To do so, more than one

ligand should be put into each compute job [9, 10, 33].

Based on this idea, the three components of the workflow

in Fig. 4 implement respectively the following three steps:

Fig. 1 Distribution of ligands in each library (showing the counts in logarithmic scale) based on the number of active torsions (left) and heavy

atoms (right)

Fig. 2 Schematic diagram of core occupancy along time for a single

execution of Vina on four cores. Each line represents one core. The

preparation steps (marked times symbol) and post-processing (marked

plus symbol) are performed on one core. The actual docking process

(bold black) is parallelized. The dotted lines show when the cores are

idle

12 http://www.gauchosoft.com/Products/XRG/.

J Comput Aided Mol Des (2016) 30:237–249 241

123

http://www.gauchosoft.com/Products/XRG/

• Prepare: splits the input library into several disjoint

groups of ligands to be processed in parallel.

• AdVina: runs Vina on these groups of ligands in

parallel.

• Collect: merges all the outputs and sorts the ligands

based on their binding affinity.

For running on the grid, we made a second implementation

using the DIRAC pilot-job framework [34], which allows

for better exploitation of the resources. Pilot jobs enable us

to take advantage of less busy clusters and therefore avoid

long queuing times. Additionally, one pilot job can run

various instances of Vina jobs without introducing mid-

dleware overhead, therefore increasing efficiency.

For the grid experiments in this paper, we used the AMC

Docking Gateway13 [9] with the DIRAC middleware. This

gateway allows for specifying the basic configurations:

docking box coordinates, exhaustiveness, number of modes

and energy range. The distribution on the grid and collection

of the results are automated, as well as sorting the outcomes

based on the highest binding affinity. Additionally, it allows

the user to download partially completed results [35] and it

provides provenance of previous experiments.

Summary of VS experiments

Considering the three possible docking boxes (FTO,

NUR77 Small and NUR77 Big) and the four ligand

libraries (Nutra, HMDB, FDA and ZNP), there are a total

of 12 cases for virtual screening experiments that have

different computational demands. Table 2 summarizes the

combinations that were tried on the considered infrastruc-

tures. Some cases were repeated with different configura-

tions by varying exhaustiveness, seed, or number of

threads.

On multi-core, we ran the Nutra library a total of 59

times with different parallelism levels. Note that screening

of ZNP library on an 8-core machine is not feasible, as it

would need almost one year to complete. On our local

cluster, we ran all the libraries and with different config-

urations, but due to its relatively small capacity we did not

try all cases. On the bigger platforms, namely Hadoop and

grid, we tried almost all cases.

Whenever we needed comparison of execution times,

we used the experiments executed on the local cluster,

Fig. 3 CPU usage, captured by the CPU monitoring tool XRG,

showing the cumulative load on four cores during virtual screening.

On the left, at every moment two ligands are processed in parallel,

while on the right, standard scripts provided on the Vina website are

used where ligands are processed one at a time. The right figure

shows a visible fall on CPU load when switching to the next ligand as

predicted in Fig. 2

Table 2 This table shows the four ligand libraries, four infrastruc-

tures, and the three docking boxes (FTO and the big and small boxes

on NUR77)

Multi-core AMC cluster Hadoop cluster Grid

Nutra Small Small Small Small

Big Big Big Big

FTO FTO FTO FTO

HMDB Small Small Small Small

Big Big Big Big

FTO FTO FTO FTO

FDA Small Small Small Small

Big Big Big Big

FTO FTO FTO FTO

ZNP Small Small Small Small

Big Big Big Big

FTO FTO FTO FTO

When a name ‘‘Small’’, ‘‘Big’’ or ‘‘FTO’’ is in black, it shows that we

ran VS experiments with that docking box on the corresponding

infrastructure and ligand libraries

Fig. 4 WS-PGRADE workflow for distributed execution of Vina and

collecting the output results on local cluster and grid (see text for

explanation)

13 http://docking.ebioscience.amc.nl/.

242 J Comput Aided Mol Des (2016) 30:237–249

123

http://docking.ebioscience.amc.nl/

which has a homogeneous platform (hardware and software

stack). The analyses were based on average execution

times of repeated runs.

Results and discussion

The results in each of the following subsections are based

on various experiments in Table 2, but we select one of

them in each section in order to exemplify the reported

findings. The graphs are therefore shown only for one case

in each subsection.

Internal versus external parallelization

Figure 5 shows the execution times for 59 combinations of

internal and external parallelism. In these measurements on

this specific setup and hardware, we observe that the fastest

execution time with the smallest load on the system cor-

responds to the parallelism level 20, i.e., with internal and

external parallelism of 4 and 5. This is clearly above twice

the number of available cores, indicating that system sat-

uration is beneficial in this case.

Based on these specific measurements, we cannot give a

golden formula for the best combination of internal and

external parallelism, as it may depend on various factors

ranging from hardware characteristics to configuration

parameters like exhaustiveness. Nevertheless, since we also

observe that increasing internal parallelism at some point

reduces the performance, we can conclude that the optimal

solution is obtained by balancing internal and external

parallelism. We see that this strategy, compared to pure

internal parallelization offered by Vina (first row in Fig. 5),

leads to at least a twofold speed-up. When running on

cloud resources, this speedup would translate to lower

costs, since less time/core can be used for running the VS.

Reproducibility of results

Vina calculations are based on pseudo-random generation.

Such programs, if provided with the same initialization—

called seed, produce the same behavior. By varying the

random seed, different docking results can be generated,

thus allowing the user to select the best results.

We observed that different operating systems, e.g. Mac

vs. Linux, or even different versions of CentOS (a common

Linux-based system), generated different outcomes, even

when Vina was run with the same randomization seed and

input parameters. For example, Fig. 6 shows two binding

modes reported for the same ligand on the surface of

NUR77, using identical seeds but run on different systems.

Since docking studies were performed on an isolated

monomer, both docking poses are definitely different. The

calculated energies for these two binding modes differ by

0.7 kcal/mol. This shows a lack of accuracy in the Vina

manual, which states that ‘‘exact reproducibility can be

assured by supplying the same random seed to both

Internal Parallelism Level

E
x
te
rn
a
l
P
a
ra
ll
e
li
s
m
L
e
v
e
l

1 2 3 4 5 6 7 8 9 10

1 60 78 67

2 32 29 29 30 32 34 31

3 27 25 24 24 25 26 28 27

4 26 24 23 22 23 23 24

5 23 23 22 22 22

6 23 23 23 22

7 23 23 22

8 26 23 22 22

9 25 23 23

10 24 22 22

11 25 23

12 24 23

13 24 22

14 24 22

15 24 22

16 24 22

Color coding:

40 < time

30 < time < 40

25 < time < 30

 time < 25

Fig. 5 Execution time (in min) for combinations of internal and

external parallelism on multi-core. Columns correspond to the level of

internal parallelism (M = 1–10) and rows correspond to external

parallelism (N = 1–16, i.e., up to twice the number of cores

available). Empty boxes represent cases where the system is

underutilized because some cores are left idle (N �M\8), or

overloaded (N �M[32). Color coding: green for fastest runs,

changing to yellow and finally to red for slowest runs

Fig. 6 Two binding modes for the same ligand on NUR77 reported

by Vina with the same configuration, including the randomization

seed, but run on different platforms

J Comput Aided Mol Des (2016) 30:237–249 243

123

calculations, but only if all other inputs and parameters are

the same as well.’’

For reproducibility, one needs to make sure to record the

characteristics of the used platform together with the ran-

dom seed and other configuration parameters. A similar

phenomenon has been reported for DOCK in [36], where

the authors suggest to use virtualized cloud resources to

overcome this issue. Nevertheless, reproducibility of the

results may be completely endangered in the long term

because the exact same platforms may not exist anymore.

For example versions of an operating system are usually

discontinued after at most a decade.

Impact of docking box size

Depending on prior knowledge about the target, the

screening can be constrained to a limited area instead of the

total protein surface, by specifying a docking box. In this

case, one may naively expect that the computation time is

reduced.

Figure 7a compares the execution time of screening

HMDB against NUR77 with exhaustiveness 10 and a fixed

randomization seed on the homogeneous AMC cluster. The

results depicted here show that execution time is not con-

sistently larger or smaller for either Big or Small box. The

same result was obtained for similar experiments we con-

ducted with exhaustiveness 40 on HMDB and with

exhaustiveness 10 on FDA. Keep in mind that the Big box

is more than 38 times larger in volume than the Small box.

We therefore conclude that the time required for every run

is not entirely dependent on the total size of the docking

box. In other words, enlarging the docking box does not

necessarily mean that Vina is going to spend more time on

the calculations. In order to ensure good quality in the

docking results, one needs to enforce more runs. This is

suggested in the Vina manual, which states that when the

docking box volume is above 27;000 Å
3
(as is the case for

the Big box), ‘‘the search algorithm’s job may be harder.

You may need to increase the value of the exhaustiveness

to make up for it’’.

A recent study [37] proposes an algorithm to determine

the optimal box size when a specific pocket is targeted,

such that the quality of Vina calculations is higher. As we

have shown, when using such optimizations, one does not

need to worry about any (consistent) change in execution

time.

Impact of exhaustiveness

In the various settings used for comparison, we see an

almost linear increase in the execution time when

increasing exhaustiveness. In Fig. 7b we show the execu-

tion times for the case of screening HMDB ligands against

the Small box of NUR77 in the two settings of exhaus-

tiveness 10 and 40 with a fixed randomization seed on the

homogeneous AMC cluster.

Our results confirm the Vina manual, which states that

increasing the exhaustiveness ‘‘should increase the time

linearly’’. The manual suggests that higher exhaustiveness

‘‘decreases the probability of not finding the minimum

[binding energy] exponentially’’ because more runs are

performed, however all using the same seed. One may

alternatively perform an equal number of runs by executing

Vina repetitively, but with a smaller exhaustiveness each

time. This will take the same amount of total time (as we

have seen here), but since various randomization seeds can

be used in each Vina run, there could be more variety in the

results with a better chance of finding the minimum bind-

ing energy.

Impact of ligand properties

The Vina authors already show a relationship between

execution time and ligand properties based on a small

(a) (b)

Fig. 7 Comparison of

execution times (in s) for

different Vina configurations.

Every blue dot in the plots

represents one ligand. a NUR77

Small box versus Big box

(HMDB, exhaustiveness = 10).

b Exhaustiveness 40 versus 10

(HMDB, NUR77 small box)

244 J Comput Aided Mol Des (2016) 30:237–249

123

experiment with 190 protein-ligand complexes [3]. Here

we repeat the experiment for a much larger number of

ligands. The graphs in Fig. 8 show execution time in log-

arithmic scale for screening FDA against complete NUR77

surface with exhaustiveness 10, with results grouped into

bins of same number of active torsions or heavy atoms. We

chose FDA because it has a larger variation in both number

of active torsions and heavy atoms (see Fig. 1). Note that

the computation time can vary significantly for different

ligands, from 35 s to 65 min in the case of this target and

library. However, on average the execution time grows

proportionally to the number of active torsions (and simi-

larly, heavy atoms), with a few outliers. Although deriving

the form of this relation, i.e., whether execution time grows

exponentially or polynomially, requires further statistical

analysis, we can nevertheless benefit from this relation in

optimizing overall execution time a VS experiment, as

elaborated below.

First consider systems like a grid, where ligands are

grouped to create bigger compute jobs (cf. ‘‘Methods’’

section). Kreuger et al. [33] have studied the number of

ligands in each group for optimal effiency. But if a group

happens to contain many large or flexible ligands, it will

have a much longer execution time that will dominate the

execution time of the whole VS experiment. Zhang et al.

[38] propose a preprocessing step on the ligands to find

their similarities as a basis of balancing the groups. Using

number of active torsions and heavy atoms requires much

less computational effort, therefore making it easier to

adopt for new ligand libraries. Nevertheless, the effec-

tiveness of this approach for predicting execution time of

each ligand group remains to be studied.

In other systems that handle ligands one by one (for

example on a multi-core machine or a supercomputer), we

recommend to start the VS experiment by first processing

large and flexible ligands. By leaving smaller ligands that

take less time for a later stage, an automatic load balancing

between the processing cores happens, as illustrated in

Fig. 9. Here we show four ligands that are processed on

two cores. On the left scenario, larger ligands A and B are

processed first. Since A takes much longer than B, both C

and D will be processed on the same core. But if we had

started with the smaller ligands C and D in parallel (on the

right), we would end up running A and B also in parallel,

which in the end results in one core being idle while A is

still being processed. Clearly the scenario on the left has a

faster overall execution time as it can better utilize the

available cores. A similar method is used by Ellingson

et al. [39], although in their work only the number of active

torsions were considered and not the number of heavy

atoms.

Choice of infrastructure

We summarize in Table 3 the execution time for various

virtual screening experiments on four different infrastruc-

tures. In these experiments, Vina is configured to use one

processing core only (i.e., turning off the multi-core fea-

ture). Total cores shows the compute capacity of each

infrastructure, which is proportional to the size of virtual

screening experiment (number of ligands to screen). On

multi-core and Hadoop, the docking of each ligand defines

one compute job, whereas for the AMC cluster and grid,

we make compute jobs by grouping ligands to reduce

overhead (see ‘‘Methods’’ section for more explanation).

‘Max Parallelism’ shows the maximum number of ligands

that were being processed at the same time. On the multi-

core machine, this is equal to the external parallelism level.

In other cases, this is equal to the maximum number of

compute jobs that were running at the same time, and

would ideally get as close to the total number of cores as

possible. ‘Avg parallelism’ is calculated by taking the

average of the parallelism level in every second over the

whole experiment time span (disregarding idle times), and

as such shows how effectively the infrastructure has been

utilized in each experiment. The actual level of parallelism

that can be achieved is hampered by various factors as

explained below.

Fig. 8 Average execution time (in s) for ligands grouped by number

of active torsions (left) and heavy atoms (right). Results are for

screening FDA against complete surface of NUR77 with

exhaustiveness 10 on local cluster. Bars represent mean execution

time with standard deviation as error bars

J Comput Aided Mol Des (2016) 30:237–249 245

123

The studied infrastructures comprise shared resources

(except for the multi-core case), which means we may get

only a part of its capacity if other users are running their

experiments at the same time. This is very clearly seen in

the experiments run on the AMC cluster, where the max-

imum parallelism is in most cases much lower than the

number of available cores. In the case of grid, this is not

visible due to its very high capacity, and therefore, given a

fixed number of compute jobs one could truly expect a

more or less fixed level of parallelism.

On a multi-core computer the chance of the machine

failing is very low. But when connecting some computers

(in a cluster or grid), there is a higher chance that at least

one of them fails. Additionally, other factors like physical

network failure or access to remote data mean that, as the

number of connected computers grows, the chance of

failure grows much faster. Fault tolerance in this context

can be simplistically defined as the ability to automatically

restart a docking job whenever the original run fails. Such

failures penalize average parallelism, especially if they are

manually retried, as can be seen for example in the

experiments on the AMC cluster.

From the analysis of Table 3 the following conclusions

can be drawn. Small screening experiments (e.g., using

Nutra library) can be easily performed on a multi-core

machine. Slightly bigger experiments can be done faster

with bigger number of cores. We see that for a few thousand

ligands (like HMDB or FDA), the results are available in a

matter of a day with an eight core machine. A small cluster

can be a reasonable choice for such medium-sized experi-

ments. Nevertheless, we see that failures and manual retries

may gravely increase the perceived execution time (wall

clock). Hadoop’s high fault tolerance mechanisms offer a

good solution, as it has the smallest difference between max

and average parallelism. From our experiments, Hadoop

seems to be the best option when no competition exists for

the resources; otherwise, execution time may be still

affected by interference of other users’ jobs on a shared

infrastructure. Grid is based on resource sharing, with a

stable ratio between average parallelism and number of

compute jobs. But the low ratio between max and average

parallelism show the great deal of overhead and competition

for resources on this type of infrastructure.

Virtualization Typical usage of cloud involves allocat-

ing virtual machines (VM), where it is possible to define—

and pay—for the number of cores, amount of memory and

disk size. Since Vina does not require much memory

(roughly in the order of maximum 100MB per run/thread),

one can invest the available budget on more cores. Most

commercial cloud providers nowadays also offer the pos-

sibility of deploying a Hadoop cluster on virtual resources.

This is a more expensive resource though. Given the

A

AB D

BC

DC

Fig. 9 The effect of load balancing by processing larger and flexible

ligands first on total virtual screening time

Table 3 A summary of execution time and achieved parallelism on various infrastructures and middlewares. See text for details

Total

cores

#

Ligands

#

Compute

jobs

Max

parallelism

Avg

parallelism

Total wall

clock

Avg time per

ligand (sec)

Fault

tolerance

Chance of

failure

Multi-core 8 78 78 8 6.7 0:26:13 20.167 Very low Very low

10 8.7 0:24:40 18.974

12 10.4 0:24:20 18.718

3358 3358 8 7.4 27:11:10 29.145

AMC cluster (WS-

PGRADE)

128 2462 164 14 7.3 34:16:03 50.107 Low Medium

76 34.6 4:49:32 7.056

95 37.9 4:21:33 6.374

3358 223 53 11.4 75:48:44 81.276

124 28.9 12:18:07 13.189

89,398 1004 128 62.0 320:50:22 12.920

Hadoop cluster 1464 89,398 89,398 1384 824.9 8:37:13 0.347 High Medium

1307 761.6 9:56:40 0.400

1361 114.4 54:46:08 2.206

Grid (DIRAC) [10,000 89,398 1116 1080 169.8 23:23:22 0.942 Medium

(DIRAC)

Very high

1070 165.2 25:34:41 1.030

5578 1370 593.7 6:41:02 0.269

246 J Comput Aided Mol Des (2016) 30:237–249

123

importance of handling failures when large VS are per-

formed, it would be interesting to investigate whether the

fault-tolerance facilities of Hadoop might compensate for

its extra cost on the cloud.

Other infrastructuresA supercomputer, if at disposal, is a

suitable platform for large VS experiments. By means of

supercomputers with thousands of cores, one million com-

pounds were screened using Vina in 24 h by Ellingson

et al. [40], and in 1.4 h by Zhang et al. [41]. A powerful

alternative is a grid of volunteer resources, like the World

Community Grid composed of over 2 million personal

computers connected via internet. For example, theGOFight

Against Malaria project on World Community Grid per-

formed over 1 billion different Vina jobs in under 19 months

[42]. For not such large experiments, a good alternative to a

multi-core CPU is to use accelerators. However, this requires

rewriting the docking software; therefore, we did not con-

sider it for Vina. Two options, GPU and Xeon Phi, have been

shown to be suitable for parts of the docking process as

described in [43]. Around 60 times speed up is obtained with

their in-house developed virtual screening software.

Conclusions

Vina has the ability to perform molecular docking calcu-

lations in parallel on a multi-core machine. We found out,

however, that Vina does not exploit the full computing

capacity of a multi-core system, because some pre- and

post-processing needs to be performed using only one core.

Therefore, external parallelization approaches should be

employed for increasing the efficiency of computing

resources usage for VS. In our experiments, this led to

more than a twofold speed-up.

We also found that the use of the same randomization

seed does not always assure reproducibility. In fact, docking

results are reproducible only if performed on the exact same

platform (operating system, etc.). We observed in some

cases that the same seed and calculation parameters can lead

to diverging results when used on different platforms: both

different binding modes and energies were reported.

Further study on the execution time confirmed previous

knowledge about Vina, but on a much larger dataset:

execution time is linearly proportional to exhaustiveness

(number of simulations per run). It is therefore advisable to

run Vina several times rather than increasing the exhaus-

tiveness. It takes as long and at the same time, and in this

way multiple seeds are taken, perhaps elevating the chan-

ces of getting closer to the best binding mode.

We also saw that execution time increases with the

number of active torsions and heavy atoms in the ligands.

This is in line with the Vina manual statement that the

number of steps in one run is ‘‘determined heuristically,

depending on the size and flexibility of the ligand’’ among

others. This heuristic function could be useful to improve

load balancing, for example when ligands are grouped for

execution on the grid, or to order the execution on multi-

core or supercomputers.

A counter-intuitive finding of our study is that we

observed no relation between the size of the docking box

and execution time. Our observations merit further explo-

ration into this issue. It is also of interest to investigate

whether the quality of the results is comparable when

different sizes of the protein surface are covered. Since a

very low exhaustiveness value might lead to premature

results, such a study on the quality of the results must

ensure a suitable exhaustiveness.

Enabling biochemical scientists to perform large VS

experiments is not solely about improving execution time.

Even though we did not consider them all in this paper, these

are topics of continuous research.Wedid not elaborate on the

efforts needed to port Vina to any of the infrastructures,

because this can be a one-time investment. Ideally, all the

details of translating a VS experiment to compute jobs on the

underlying infrastructure, and collecting and aggregating the

outputs can be hidden under the hood of a dedicated gateway

with a simple to use interface [9, 44]. Such gateways can

additionally help the researchers with management of the

large amount of inputs and outputs, including provenance

and post-processing. Analysis and interpreting these big

amounts of data is still a young research topic.

Acknowledgments We thank A. van Altena, J.L. Font, S. Rame-

zani, M. Santcroos, S. Shahand and J. Schot for their contributions to

workflow and software development. This work was carried out on

the Dutch national e-infrastructure with the support of SURF Foun-

dation. The AMC gateway activities are financially supported by the

Dutch national program COMMIT/ funded by the Dutch Organization

for Scientific Research (NWO) and the project ‘‘Science Gateways for

Data Analysis on Advanced e-Infrastructures’’ funded by the High-

Performance Computing and Networking program of University of

Amsterdam (HPCN-UvA).

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Zhu T, Cao S, Su P-C et al (2013) Hit identification and opti-

mization in virtual screening: practical recommendations based

on a critical literature analysis. J Med Chem 56(17):6560–6572

2. Tanrikulu Y, Krüger B, Proschak E (2013) The holistic integra-

tion of virtual screening in drug discovery. Drug Discov Today

18(7–8):358–364

J Comput Aided Mol Des (2016) 30:237–249 247

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

3. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed

and accuracy of docking with a new scoring function, efficient

optimization, and multithreading. J Comput Chem 31(2):455–461

4. Friesner Ra, Banks JL, Murphy RB et al (2004) Glide: a new

approach for rapid, accurate docking and scoring. 1. Method and

assessment of docking accuracy. J Med Chem 47(7):1739–1749

5. Kramer B, Rarey M, Lengauer T (1999) Evaluation of the FlexX

incremental construction algorithm for protein–ligand docking.

Proteins Struct Funct Genet 37(2):228–241

6. Jones G, Willett P, Glen RC (1995) Molecular recognition of

receptor sites using a genetic algorithm with a description of

desolvation. J Mol Biol 245(1):43–53

7. Ewing TJa, Makino S, Skillman aG, Kuntz ID (2001) DOCK 4.0:

search strategies for automated molecular docking of flexible

molecule databases. J Comput Aided Mol Des 15(5):411–428

8. Gesing S, Grunzke R, Krüger J et al (2012) A single sign-on

infrastructure for science gateways on a use case for structural

bioinformatics. J Grid Comput 10(4):769–790

9. Jaghoori MM, van Altena AJ, Bleijlevens B, Ramezani S, Font

JL, Olabarriaga SD (2015) A multi-infrastructure gateway for

virtual drug screening. In: Lengauer C, Bouge L, Silva F, Li Z, Li

K, Gesing S, Wilkins-Diehr N (eds) Concurrency and computa-

tion: practice and experience. Wiley

10. Kiss T, Borsody R, Terstyanszky G et al (2014) Large-scale

virtual screening experiments on windows azure-based cloud

resources. Concurr Comput Pract Exp 26(10):1760–1770

11. Sánchez-Linares I, Pérez-Sánchez H, Guerrero GD, Cecilia JM,

Garcı́a JM (2011) Accelerating multiple target drug screening on

GPUs. In: Proceedings of the 9th international conference on

computational methods in systems biology. ACM, pp 95–102

12. Zhang S, Kumar K, Jiang X, Wallqvist A, Reifman J (2008)

DOVIS: an implementation for high-throughput virtual screening

using AutoDock. BMC Bioinform 9(1):126

13. Chang MW, Ayeni C, Breuer S, Torbett BE (2010) Virtual

screening for HIV protease inhibitors: a comparison of AutoDock

4 and Vina. PLoS ONE 5(8):e11955

14. Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and

AutoDockTools4: automated docking with selective receptor

flexibility. J Comput Chem 30(16):2785–2791

15. Goodsell DS, Morris GM, Olson AJ (1996) Automated docking

of flexible ligands: applications of AutoDock. J Mol Recognit

JMR 9(1):1–5

16. Apache Hadoop framework. Accessed: June 2015. http://hadoop.

apache.org/

17. gLlte: Lightweight middleware for Grid Computing. Accessed:

November 2015. http://glite.cern.ch/

18. Anderson D (2004) BOINC: a system for public-resource com-

puting and storage. In: Fifth IEEE/ACM international workshop

on grid computing, 2004 Proceedings, pp 4–10

19. Zheng G, Fu Y, He C (2014) Nucleic acid oxidation in DNA

damage repair and epigenetics. Chem Rev 114(8):4602–4620

20. Frayling TM, Timpson NJ, Weedon MN et al (2007) A common

variant in the FTO gene is associated with body mass index and

predisposes to childhood and adult obesity. In: Slaughter LM (ed)

Science, vol 316(5826). American Association for the Advance-

ment of Science, New York, pp 889–894

21. Han Z, Niu T, Chang J et al (2010) Crystal structure of the FTO

protein reveals basis for its substrate specificity. Nature

464(7292):1205–9

22. Van Tiel CM, De Vries CJM (2012) NR4A11 in the vessel wall.

J Steroid Biochem Mol Biol 130(3–5):186–193

23. Zhan Y-Y, Chen Y, Zhang Q et al (2012) The orphan nuclear

receptor Nur77 regulates LKB1 localization and activates

AMPK. Nat Chem Biol 8(11):897–904

24. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG

(2012) ZINC: a free tool to discover chemistry for biology.

J Chem Inf Model 52(7):1757–1768

25. Knox C, Law V, Jewison T et al (2011) DrugBank 3.0: a com-

prehensive resource for ’Omics’ research on drugs. Nucleic Acids

Res 39(SUPPL.1):D1035–D1041

26. Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human

metabolome database. Nucleic Acids Res 35(SUPPL. 1):D521–

D526

27. Castillo-González D, Pérez-Machado G, Guédin A, Mergny J-L,

Cabrera-Pérez M-A (2013) FDA-approved drugs selected using

virtual screening bind specifically to G-quadruplex DNA. Curr

Pharm Des 19(12):2164–2173

28. Issa NT, Peters OJ, Byers SW, Dakshanamurthy S (2015)

RepurposeVS: a drug repurposing-focused computational method

for accurate drug-target signature predictions. Combin Chem

High Throughput Screen 18(8):784–794

29. Lynch C, Pan Y, Li L et al (2013) Identification of novel acti-

vators of constitutive androstane receptor from FDA-approved

drugs by integrated computational and biological approaches.

Pharm Res 30(2):489–501

30. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Direc-

tory of useful decoys, enhanced (DUD-E): better ligands and

decoys for better benchmarking. J Med Chem 55(14):6582–6594

31. Bauer MR, Ibrahim TM, Vogel SM, Boeckler FM (2013) Eval-

uation and optimization of virtual screening workflows with

DEKOIS 2.0 a public library of challenging docking benchmark

sets. J Chem Inf Model 53(6):1447–1462

32. Kacsuk P, Farkas Z, Kozlovszky M et al (2012) WS-PGRADE/

gUSE generic DCI gateway framework for a large variety of user

communities. J Grid Comput 10(4):601–630

33. Krüger J, Grunzke R, Herres-Pawlis S, et al. (2014) Performance

studies on distributed virtual screening. BloMed Res Int 7 pp.

doi:10.1155/2014/624024

34. Casajus A, Graciani R, Paterson S, Tsaregorodtsev A, the Lhcb

Dirac Team (2010) DIRAC pilot framework and the DIRAC

workload management system. J Phys Conf Ser 219(6): 062049

35. Jaghoori MM, Ramezani S, Olabarriaga SD (2014) User-oriented

partial result evaluation in workflow-based science gateways. In:

Proceedings 9th workshop on workflows in support oflarge-scale

science (WORKS 14), Held in conjunction with SC14. IEEE,

pp 70–81

36. Yim WW, Chien S, Kusumoto Y, Date S, Haga J (2010) Grid

heterogeneity in in-silico experiments: an exploration of drug

screening using DOCK on cloud environments. Stud Health

Technol Inf 159:181–190

37. Feinstein WP, Brylinski M (2015) Calculating an optimal box

size for ligand docking and virtual screening against experimental

and predicted binding pockets. J Cheminform 7:18

38. Zhang R, Liu G, Hu R, Wei J, Li J (2013) A similarity-based

grouping method for molecular docking in distributed system. In:

MotodaH,WuZ,CaoL,ZaianeO,YaoM,WangW(eds)Advanced

data mining and applications. Springer, Berlin, pp 554–563

39. Ellingson SR, Smith JC, Baudry J (2013) VinaMPI: facilitating

multiple receptor high-throughput virtual docking on high-per-

formance computers. J Comput Chem 34(25):2212–2221

40. Ellingson SR, Dakshanamurthy S, Brown M, Smith JC, Baudry J

(2014) Accelerating virtual high-throughput ligand docking:

current technology and case study on a petascale supercomputer.

Concurr Comput Pract Exp 26(6):1268–1277

41. Zhang X, Wong SE, Lightstone FC (2013) Message passing

interface and multithreading hybrid for parallel molecular dock-

ing of large databases on petascale high performance computing

machines. J Comput Chem 34(11):915–927

248 J Comput Aided Mol Des (2016) 30:237–249

123

http://hadoop.apache.org/
http://hadoop.apache.org/
http://glite.cern.ch/
http://dx.doi.org/10.1155/2014/624024

42. Ferryman AL, Yu W, Wang X et al (2015) A virtual screen

discovers novel, fragment-sized inhibitors of Mycobacterium

tuberculosis InhA. J Chem Inf Model 553:645–659. doi:10.1021/

ci500672v

43. Fang J, Varbanescu AL, Imbernón B, Cecilia JM, Pérez-Sánchez

H (2014) Parallel computation of non-bonded interactions in drug

discovery: Nvidia GPUs vs. Intel Xeon Phi. In: International

work-conference on bio informatics and biomedical engineering

(IWBBIO’14), hgpu.org, pp 579–588

44. Krüger J, Grunzke R, Gesing S et al (2014) The MoSGrid science

gateway—a complete solution for molecular simulations. J Chem

Theory Comput 10(6):2232–2245

J Comput Aided Mol Des (2016) 30:237–249 249

123

http://dx.doi.org/10.1021/ci500672v
http://dx.doi.org/10.1021/ci500672v

	1001 Ways to run AutoDock Vina for virtual screening
	Abstract
	Introduction
	AutoDock Vina
	Infrastructures

	Methods
	Virtual screening set-up
	Proteins
	Compound libraries

	Implementations
	Multi-core
	Hadoop cluster
	Local cluster and grid

	Summary of VS experiments

	Results and discussion
	Internal versus external parallelization
	Reproducibility of results
	Impact of docking box size
	Impact of exhaustiveness
	Impact of ligand properties
	Choice of infrastructure

	Conclusions
	Acknowledgments
	References

