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102.06 A new elementary proof of Euler's continued fractions
Introduction

A continued fraction is an expression of the form

a0 +
b0

a1 +
b1

a2 +
b2

.

…

The value of a continuedfraction is defined in a natural way. We
construct  the sequence of convergents  as follows:{cn}

c0 = a0,

c1 = a0 +
b0

a1
=

a0a1 + b0

a1
,

c2 = a0 +
b0

a1 + b1

a2

=
a0a1a2 + a0b1 + a2b0

a1a2 + b1
, …

and if this sequence convergesthen we say that the above infinite
continued fraction converges  and we write

{cn}

a0 + b0

a1 +
b1

a2 + b2

= lim
n → ∞

cn.

…

Continued fractions often reveal beautiful number patterns. The
interestedreader is referred to [1] for a collection of many interesting
continuedfractionsof famousmathematicalconstants.Continuedfractions
alsohaveapplicationsin cryptography− the studyof secretcodesanddata
encryption [2, 3].

Euler was the first person who studied continued fractions
systematically. In his foundationalpublicationon the theory of continued
fractions, De Fractionibus Continuis Dissertatio [4], Euler derived many
interestingcontinuedfractionidentities. In thispaper,wewill presenta new
proof of the following two continued fractions of Euler's constant :e

e = 2 +
1

1 +
1

2 + 2

3 +
3

= 2 +
2

2 +
3

3 +
4

4 +
5

. (1)

… …

Our proof is very elementary and based on simple manipulation of
sequences.
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For thefirst identity,supposethat thecontinuedfractionconvergesto .
Then we can determine a closed form formula for its subfraction as follows:

x

un = n +
n

n + 1 + n + 1

n + 2 +
n + 2

n + 3+
n + 3

= −
n

n + 1
×

x ∑
n

k=0

(−1)k

k!
− 1

x ∑
n+1

k=0

(−1)k

k!
− 1

.

…

This subfraction formula provides a surprising twist for a proof by
contradiction.  Indeed, if  thenx ≠ e

lim
n → ∞

un = −
xe−1 − 1

xe−1 − 1
= −1.

which is utterly untrue as .un > n
Similarly, for the secondidentity, supposethat the continuedfraction

converges to . Thenx

vn = n +
n + 1

n + 1 + n + 2

n + 2 +
n + 3

= −
x ∑

n− 1

k=0

(−1)k

k!
− 1

x ∑
n

k=0

(−1)k

k!
− 1

…

and if  thenx ≠ e

lim
n → ∞

vn = −
xe−1 − 1

xe−1 − 1
= −1 which is false, as above.

Euler-Wallis recurrence formulas
To prove that a continued fraction converges,we often need to

determineits convergentsequence.Thefollowing theoremdueto William
Brouncker[1620-1684],the first Presidentof The Royal Society,gives us
recursiveformulas to calculatethe convergents.John Wallis [1616-1703]
and LeonhardEuler [1707-1783] made extensiveuse of these formulas
which are now called the Euler-Wallis formulas.

 
Theorem1 [5]: For any , the convergentcan be determinedas

wherethenumeratorandthedenominatorsequences and

 are specified as follows (with the convention that ):

n ≥ 0 n th

cn =
pn

qn
{pn}n ≥ −2

{qn}n ≥ −2 b−1 = 1

p−2 = 0,  p−1 = 1,  pn = anpn−1 + bn−1pn−2,  for all n ≥ 0,

q−2 = 1,  q−1 = 0,  qn = anqn−1 + bn−1qn−2,  for all n ≥ 0.
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The theorem can be proved easily by induction. By modifying the

coefficient to be , the convergentis equal to the

modified  convergent, and thus,

an an +
bn

an+1
(n + 1) th

n th

pn + 1

qn + 1
=

(an +
bn

an + 1
) pn − 1 + bn − 1pn − 2

(an +
bn

an + 1
) qn − 1 + bn − 1qn − 2

=
an + 1 (anpn − 1 + bn − 1pn − 2) + bnpn − 1

an + 1 (anqn − 1 + bn − 1qn − 2) + bnqn − 1

= an + 1pn + bnpn − 1

an + 1qn + bnqn − 1
.

UsingtheEuler-Wallisrecurrenceformulas,it is easyto proveby induction
that

pnqn − 1 − qnpn − 1 = (−1)n − 1 b0b1… bn − 1, for all  n ≥ 1,

pnqn − 2 − qnpn − 2 = (−1)n anb0b1… bn − 2, for all  n ≥ 2,
and so

pn

qn
−

pn − 1

qn − 1
=

(−1)n − 1 b0b1… bn − 1

qn − 1qn
,

pn

qn
−

pn − 2

qn − 2
=

(−1)n anb0b1… bn − 2

qn − 2qn
.

It follows that, for positive coefficients  and ,ai bi

p1

q1
> p3

q3
> p5

q5
>… > p2n + 1

q2n + 1
>… > p2n

q2n
>… > p4

q4
> p2

q2
> p0

q0
.

Thus, in this case and always converge,and the continued
fraction converges if, and only if,

{c2n} {c2n + 1}

lim
n → ∞ (p2n + 1

q2n + 1
−

p2n

q2n
) = 0.

Since and , we have for all , and
thus,

q0 = 1 qn ≥ anqn − 1 qn ≥ a1… an n ≥ 1

p2n + 1

q2n + 1
− p2n

q2n
= b0b1… b2n

q2nq2n + 1
≤ b0b1… b2n

a2
1… a2

2na2n + 1
.

To prove the convergenceof a continued fraction with positive
coefficients, it suffices to show that

lim
n → ∞

b0b1… b2n

a2
1… a2

2na2n + 1
= 0.
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For the two continued fractions consideredhere, we have and
, so  

ai ≥ i
bi ≤ i + 2

b0b1… b2n

a2
1… a2

2na2n + 1
≤ (2n + 2)!

((2n)!)2 (2n + 1)
= 2n + 2

(2n)!
→ 0

and the convergence is clearly guaranteed.

The first continued fraction for e

Theorem 2:  For any integer ,n ≥ 1

n +
n

n + 1 +
n + 1

n + 2 + n + 2

n + 3+
n + 3

= −
n

n + 1
×

e∑
n

k=0

(−1)k

k!
− 1

e∑
n+1

k=0

(−1)k

k!
− 1

,

…
and 

2 +
1

1 + 1

2 +
2

3 +
3

= e.

…
Proof: We know thatthefirst continuedfractionof (1) converges.We let
betheconvergencevalueandconstructthesequences , , , ,

 as follows:

x
{un} {an} {bn} {cn}

{dn}
u1 = 1 +

1

2 + 2

3 +
3

=
1

x − 2
=

xa1 + b1

xc1 + d1
,

…

un = n +
n

n + 1 +
n + 1

n + 2 +
n + 2

…

=
n − 1

un − 1 − (n − 1)

=
n − 1

xan − 1 + bn − 1

xcn − 1 + dn − 1
− (n − 1)

=
x (n − 1)cn − 1 + (n − 1) dn − 1

x (an − 1 − (n − 1) cn − 1) + (bn − 1 − (n − 1) dn − 1)
=

xan + bn

xcn + dn
.
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Then we have the following recursive formulas:

a1 = 0, b1 = 1, c1 = 1, d1 = −2

an = (n − 1) cn − 1, bn = (n − 1)dn − 1,

cn = an − 1 − (n − 1) cn − 1, dn = bn − 1 − (n − 1)dn − 1, for all  n ≥ 2.
For any , we haven ≥ 3

an

n − 1
= cn − 1 = an − 2 − (n − 2) cn − 2 = an − 2 − an − 1

⇒ an + (n − 1) an − 1 − (n − 1) an − 2 = 0

⇒ an − an − 2 + (n − 1)an − 1 − (n − 2) an − 2 = 0.
So

∑
n

k = 3

(ak − ak − 2 + (k − 1) ak − 1 − (k − 2) ak − 2) = 0

and this gives

an + an − 1 − a2 − a1 + (n − 1) an − 1 − a1 = 0.
It follows that for any ,n ≥ 2

an + nan − 1 = a2 + 2a1.
Rewriting the above equation as

(−1)n an

n!
−

(−1)n − 1 an − 1

(n − 1)!
= (a2 + 2a1) (−1)n

n!

and taking the summation

∑
n

k = 2
( (−1)k ak

k!
−

(−1)k − 1 ak − 1

(k − 1)! ) = (a2 + 2a1) ∑
n

k = 2

(−1)k

k!

we get

(−1)n an

n!
−

(−1)a1

1!
= (a2 + 2a1) ∑

n

k = 2

(−1)k

k!
, for all  n ≥ 1.

We derive the following closed form for :an

an = (−1)n n! (−a1 + (a2 + 2a1) ∑
n

k = 0

(−1)k

k! ) , for all  n ≥ 1.

Similarly, we get the following closed form for :bn

bn = (−1)n n! (−b1 + (b2 + 2b1) ∑
n

k = 0

(−1)k

k! ) , for all  n ≥ 1.

Substituting the values

a1 = 0,  b1 = 1,  a2 = 1,  b2 = −2
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we obtain

an = (−1)n n! ∑
n

k = 0

(−1)k

k!
,

bn = (−1)n + 1 n! .
It follows that

cn =
an + 1

n
= (−1)n + 1 (n + 1)!

n ∑
n + 1

k = 0

(−1)k

k!
,

dn =
bn + 1

n
= (−1)n (n + 1)!

n
.

Finally, we have

un =
xan + bn

xcn + dn
=

x (−1)n n! ∑
n

k = 0

(−1)k

k!
+ (−1)n + 1 n!

x (−1)n + 1 (n + 1)!
n ∑

n + 1

k = 0

(−1)k

k!
+ (−1)n (n + 1)!

n

= −
n

n + 1
 
x ∑

n

k = 0

(−1)k

k!
− 1

x ∑
n + 1

k = 0

(−1)k

k!
− 1

, for all  n ≥ 1.

From here, it implies that . This is because if  thenx = e x ≠ e

lim
n → ∞

un = −
xe−1 − 1

xe−1 − 1
= −1

which contradicts the obvious fact that .un > n

The second continued fraction for e
By using the samemethodas above,the secondidentity canbe easily

proved and we leave that to the interested reader.

Theorem 3:  For any integer ,n ≥ 1

n +
n + 1

n + 1 +
n + 2

n + 2 + n + 3

= −
e ∑

n − 1

k = 0

(−1)k

k!
− 1

e ∑
n

k = 0

(−1)k

k!
− 1

,

…
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and

2 + 2

2 +
3

3 +
4

4 +
5

= e.

…
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