A new elementary proof of Euler's continued fractions

Joseph Tonien
University of Wollongong, dong@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers1
Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation

Tonien, Joseph, "A new elementary proof of Euler's continued fractions" (2018). Faculty of Engineering and Information Sciences - Papers: Part B. 1450.
https://ro.uow.edu.au/eispapers1/1450

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

A new elementary proof of Euler's continued fractions

Abstract

A new elementary proof of Euler's continued fractions
Keywords
continued, euler's, elementary, proof, fractions

Disciplines

Engineering | Science and Technology Studies

Publication Details

Tonien, J. (2018). A new elementary proof of Euler's continued fractions. The Mathematical Gazette, 102 (553), 105-111.

102.06 A new elementary proof of Euler's continued fractions

Introduction
A continued fraction is an expression of the form

$$
a_{0}+\frac{b_{0}}{a_{1}+\frac{b_{1}}{a_{2}+\frac{b_{2}}{\ddots}}} .
$$

The value of a continued fraction is defined in a natural way. We construct the sequence of convergents $\left\{c_{n}\right\}$ as follows:

$$
\begin{aligned}
& c_{0}=a_{0}, \\
& c_{1}=a_{0}+\frac{b_{0}}{a_{1}}=\frac{a_{0} a_{1}+b_{0}}{a_{1}}, \\
& c_{2}=a_{0}+\frac{b_{0}}{a_{1}+\frac{b_{1}}{a_{2}}}=\frac{a_{0} a_{1} a_{2}+a_{0} b_{1}+a_{2} b_{0}}{a_{1} a_{2}+b_{1}}, \ldots
\end{aligned}
$$

and if this sequence $\left\{c_{n}\right\}$ converges then we say that the above infinite continued fraction converges and we write

$$
a_{0}+\frac{b_{0}}{a_{1}+\frac{b_{1}}{a_{2}+\frac{b_{2}}{\ddots}}}=\lim _{n \rightarrow \infty} c_{n}
$$

Continued fractions often reveal beautiful number patterns. The interested reader is referred to [1] for a collection of many interesting continued fractions of famous mathematical constants. Continued fractions also have applications in cryptography - the study of secret codes and data encryption [2, 3].

Euler was the first person who studied continued fractions systematically. In his foundational publication on the theory of continued fractions, De Fractionibus Continuis Dissertatio [4], Euler derived many interesting continued fraction identities. In this paper, we will present a new proof of the following two continued fractions of Euler's constant e :

$$
\begin{equation*}
e=2+\frac{1}{1+\frac{1}{2+\frac{2}{3+\frac{3}{\ddots}}}}=2+\frac{2}{2+\frac{3}{3+\frac{4}{4+\frac{5}{\ddots}}}} . \tag{1}
\end{equation*}
$$

Our proof is very elementary and based on simple manipulation of sequences.

For the first identity, suppose that the continued fraction converges to x. Then we can determine a closed form formula for its subfraction as follows:

$$
u_{n}=n+\frac{n}{n+1+\frac{n+1}{n+2+\frac{n+2}{n+3+\frac{n+3}{\ddots}}}}=-\frac{n}{n+1} \times \frac{x \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}-1}{x \sum_{k=0}^{n+1} \frac{(-1)^{k}}{k!}-1} .
$$

This subfraction formula provides a surprising twist for a proof by contradiction. Indeed, if $x \neq e$ then

$$
\lim _{n \rightarrow \infty} u_{n}=-\frac{x e^{-1}-1}{x e^{-1}-1}=-1 .
$$

which is utterly untrue as $u_{n}>n$.
Similarly, for the second identity, suppose that the continued fraction converges to x. Then

$$
v_{n}=n+\frac{n+1}{n+1+\frac{n+2}{n+2+\frac{n+3}{\ddots}}}=-\frac{x \sum_{k=0}^{n-1} \frac{(-1)^{k}}{k!}-1}{x \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}-1}
$$

and if $x \neq e$ then

$$
\lim _{n \rightarrow \infty} v_{n}=-\frac{x e^{-1}-1}{x e^{-1}-1}=-1 \quad \text { which is false, as above }
$$

Euler-Wallis recurrence formulas

To prove that a continued fraction converges, we often need to determine its convergent sequence. The following theorem due to William Brouncker [1620-1684], the first President of The Royal Society, gives us recursive formulas to calculate the convergents. John Wallis [1616-1703] and Leonhard Euler [1707-1783] made extensive use of these formulas which are now called the Euler-Wallis formulas.

Theorem 1 [5]: For any $n \geqslant 0$, the nth convergent can be determined as $c_{n}=\frac{p_{n}}{q_{n}}$ where the numerator and the denominator sequences $\left\{p_{n}\right\}_{n} \geqslant-2$ and $\left\{q_{n}\right\}_{n \geqslant-2}$ are specified as follows (with the convention that $b_{-1}=1$):

$$
\begin{aligned}
& p_{-2}=0, \quad p_{-1}=1, \quad p_{n}=a_{n} p_{n-1}+b_{n-1} p_{n-2}, \quad \text { for all } n \geqslant 0, \\
& q_{-2}=1, \quad q_{-1}=0, \quad q_{n}=a_{n} q_{n-1}+b_{n-1} q_{n-2}, \quad \text { for all } n \geqslant 0 .
\end{aligned}
$$

The theorem can be proved easily by induction. By modifying the coefficient a_{n} to be $a_{n}+\frac{b_{n}}{a_{n+1}}$, the $(n+1)$ th convergent is equal to the modified nth convergent, and thus,

$$
\begin{aligned}
\frac{p_{n+1}}{q_{n+1}} & =\frac{\left(a_{n}+\frac{b_{n}}{a_{n+1}}\right) p_{n-1}+b_{n-1} p_{n-2}}{\left(a_{n}+\frac{b_{n}}{a_{n+1}}\right) q_{n-1}+b_{n-1} q_{n-2}} \\
& =\frac{a_{n+1}\left(a_{n} p_{n-1}+b_{n-1} p_{n-2}\right)+b_{n} p_{n-1}}{a_{n+1}\left(a_{n} q_{n-1}+b_{n-1} q_{n-2}\right)+b_{n} q_{n-1}} \\
& =\frac{a_{n+1} p_{n}+b_{n} p_{n-1}}{a_{n+1} q_{n}+b_{n} q_{n-1}} .
\end{aligned}
$$

Using the Euler-Wallis recurrence formulas, it is easy to prove by induction that

$$
\begin{aligned}
& p_{n} q_{n-1}-q_{n} p_{n-1}=(-1)^{n-1} b_{0} b_{1} \ldots b_{n-1}, \text { for all } n \geqslant 1, \\
& p_{n} q_{n-2}-q_{n} p_{n-2}=(-1)^{n} a_{n} b_{0} b_{1} \ldots b_{n-2}, \text { for all } n \geqslant 2,
\end{aligned}
$$

and so

$$
\begin{aligned}
& \frac{p_{n}}{q_{n}}-\frac{p_{n-1}}{q_{n-1}}=\frac{(-1)^{n-1} b_{0} b_{1} \ldots b_{n-1}}{q_{n-1} q_{n}}, \\
& \frac{p_{n}}{q_{n}}-\frac{p_{n-2}}{q_{n-2}}=\frac{(-1)^{n} a_{n} b_{0} b_{1} \ldots b_{n-2}}{q_{n-2} q_{n}} .
\end{aligned}
$$

It follows that, for positive coefficients a_{i} and b_{i},

$$
\frac{p_{1}}{q_{1}}>\frac{p_{3}}{q_{3}}>\frac{p_{5}}{q_{5}}>\ldots>\frac{p_{2 n+1}}{q_{2 n+1}}>\ldots>\frac{p_{2 n}}{q_{2 n}}>\ldots>\frac{p_{4}}{q_{4}}>\frac{p_{2}}{q_{2}}>\frac{p_{0}}{q_{0}} .
$$

Thus, in this case $\left\{c_{2 n}\right\}$ and $\left\{c_{2 n+1}\right\}$ always converge, and the continued fraction converges if, and only if,

$$
\lim _{n \rightarrow \infty}\left(\frac{p_{2 n+1}}{q_{2 n+1}}-\frac{p_{2 n}}{q_{2 n}}\right)=0
$$

Since $q_{0}=1$ and $q_{n} \geqslant a_{n} q_{n-1}$, we have $q_{n} \geqslant a_{1} \ldots a_{n}$ for all $n \geqslant 1$, and thus,

$$
\frac{p_{2 n+1}}{q_{2 n+1}}-\frac{p_{2 n}}{q_{2 n}}=\frac{b_{0} b_{1} \ldots b_{2 n}}{q_{2 n} q_{2 n+1}} \leqslant \frac{b_{0} b_{1} \ldots b_{2 n}}{a_{1}^{2} \ldots a_{2 n}^{2} a_{2 n+1}} .
$$

To prove the convergence of a continued fraction with positive coefficients, it suffices to show that

$$
\lim _{n \rightarrow \infty} \frac{b_{0} b_{1} \ldots b_{2 n}}{a_{1}^{2} \ldots a_{2 n}^{2} a_{2 n+1}}=0
$$

For the two continued fractions considered here, we have $a_{i} \geqslant i$ and $b_{i} \leqslant i+2$, so

$$
\frac{b_{0} b_{1} \ldots b_{2 n}}{a_{1}^{2} \ldots a_{2 n}^{2} a_{2 n+1}} \leqslant \frac{(2 n+2)!}{((2 n)!)^{2}(2 n+1)}=\frac{2 n+2}{(2 n)!} \rightarrow 0
$$

and the convergence is clearly guaranteed.
The first continued fraction for e
Theorem 2: For any integer $n \geqslant 1$,

$$
n+\frac{n}{n+1+\frac{n+1}{n+2+\frac{n+2}{n+3+\frac{n+3}{.}}}}=-\frac{n}{n+1} \times \frac{e \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}-1}{e \sum_{k=0}^{n+1} \frac{(-1)^{k}}{k!}-1}
$$

and

$$
2+\frac{1}{1+\frac{1}{2+\frac{2}{3+\frac{3}{2}}}}=e
$$

Proof: We know that the first continued fraction of (1) converges. We let x be the convergence value and construct the sequences $\left\{u_{n}\right\},\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$, $\left\{d_{n}\right\}$ as follows:

$$
\begin{aligned}
u_{1} & =1+\frac{1}{2+\frac{2}{3+\frac{3}{\ddots}}}=\frac{1}{x-2}=\frac{x a_{1}+b_{1}}{x c_{1}+d_{1}}, \\
u_{n} & =n+\frac{n}{n+1+\frac{n+1}{n+2+\frac{n+2}{\ddots}}} \\
& =\frac{n-1}{u_{n-1}-(n-1)} \\
& =\frac{n-1}{\frac{x a_{n-1}+b_{n-1}-(n-1)}{x c_{n-1}+d_{n-1}}} \\
& =\frac{x(n-1) c_{n-1}+(n-1) d_{n-1}}{x\left(a_{n-1}-(n-1) c_{n-1}\right)+\left(b_{n-1}-(n-1) d_{n-1}\right)} \\
& =\frac{x a_{n}+b_{n}}{x c_{n}+d_{n}} .
\end{aligned}
$$

Then we have the following recursive formulas:

$$
\begin{aligned}
& a_{1}=0, b_{1}=1, c_{1}=1, d_{1}=-2 \\
& a_{n}=(n-1) c_{n-1}, b_{n}=(n-1) d_{n-1}, \\
& c_{n}=a_{n-1}-(n-1) c_{n-1}, d_{n}=b_{n-1}-(n-1) d_{n-1}, \text { for all } n \geqslant 2 .
\end{aligned}
$$

For any $n \geqslant 3$, we have

$$
\begin{aligned}
& \frac{a_{n}}{n-1}=c_{n-1}=a_{n-2}-(n-2) c_{n-2}=a_{n-2}-a_{n-1} \\
\Rightarrow & a_{n}+(n-1) a_{n-1}-(n-1) a_{n-2}=0 \\
\Rightarrow & a_{n}-a_{n-2}+(n-1) a_{n-1}-(n-2) a_{n-2}=0 .
\end{aligned}
$$

So

$$
\sum_{k=3}^{n}\left(a_{k}-a_{k-2}+(k-1) a_{k-1}-(k-2) a_{k-2}\right)=0
$$

and this gives

$$
a_{n}+a_{n-1}-a_{2}-a_{1}+(n-1) a_{n-1}-a_{1}=0
$$

It follows that for any $n \geqslant 2$,

$$
a_{n}+n a_{n-1}=a_{2}+2 a_{1} .
$$

Rewriting the above equation as

$$
\frac{(-1)^{n} a_{n}}{n!}-\frac{(-1)^{n-1} a_{n-1}}{(n-1)!}=\left(a_{2}+2 a_{1}\right) \frac{(-1)^{n}}{n!}
$$

and taking the summation

$$
\sum_{k=2}^{n}\left(\frac{(-1)^{k} a_{k}}{k!}-\frac{(-1)^{k-1} a_{k-1}}{(k-1)!}\right)=\left(a_{2}+2 a_{1}\right) \sum_{k=2}^{n} \frac{(-1)^{k}}{k!}
$$

we get

$$
\frac{(-1)^{n} a_{n}}{n!}-\frac{(-1) a_{1}}{1!}=\left(a_{2}+2 a_{1}\right) \sum_{k=2}^{n} \frac{(-1)^{k}}{k!}, \text { for all } n \geqslant 1
$$

We derive the following closed form for a_{n} :

$$
a_{n}=(-1)^{n} n!\left(-a_{1}+\left(a_{2}+2 a_{1}\right) \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\right), \text { for all } n \geqslant 1 .
$$

Similarly, we get the following closed form for b_{n} :

$$
b_{n}=(-1)^{n} n!\left(-b_{1}+\left(b_{2}+2 b_{1}\right) \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\right) \text {, for all } n \geqslant 1 .
$$

Substituting the values

$$
a_{1}=0, \quad b_{1}=1, \quad a_{2}=1, \quad b_{2}=-2
$$

we obtain

$$
\begin{aligned}
& a_{n}=(-1)^{n} n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}, \\
& b_{n}=(-1)^{n+1} n!.
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& c_{n}=\frac{a_{n+1}}{n}=(-1)^{n+1} \frac{(n+1)!}{n} \sum_{k=0}^{n+1} \frac{(-1)^{k}}{k!} \\
& d_{n}=\frac{b_{n+1}}{n}=(-1)^{n} \frac{(n+1)!}{n} .
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
u_{n} & =\frac{x a_{n}+b_{n}}{x c_{n}+d_{n}}=\frac{x(-1)^{n} n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}+(-1)^{n+1} n!}{x(-1)^{n+1} \frac{(n+1)!}{n} \sum_{k=0}^{n+1} \frac{(-1)^{k}}{k!}+(-1)^{n} \frac{(n+1)!}{n}} \\
& =-\frac{n}{n+1} \frac{x \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}-1}{x \sum_{k=0}^{n+1} \frac{(-1)^{k}}{k!}-1}, \text { for all } n \geqslant 1 .
\end{aligned}
$$

From here, it implies that $x=e$. This is because if $x \neq e$ then

$$
\lim _{n \rightarrow \infty} u_{n}=-\frac{x e^{-1}-1}{x e^{-1}-1}=-1
$$

which contradicts the obvious fact that $u_{n}>n$.

The second continued fraction for e

By using the same method as above, the second identity can be easily proved and we leave that to the interested reader.

Theorem 3: For any integer $n \geqslant 1$,

$$
n+\frac{n+1}{n+1+\frac{n+2}{n+2+\frac{n+3}{\ddots}}}=-\frac{e \sum_{k=0}^{n-1} \frac{(-1)^{k}}{k!}-1}{e \sum_{k=0}^{n} \frac{(-1)^{k}}{k!}-1}
$$

and

$$
2+\frac{2}{2+\frac{3}{3+\frac{4}{4+\frac{5}{\ddots}}}}=e
$$

Acknowledgements

The author wishes to thank the referee for many helpful suggestions, and especially Professor Martin Bunder for his guidance in this research.

References

1. C. D. Olds, Continued fractions, The Mathematical Association of America (1963).
2. M. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Transactions on Information Theory 36 (1990) pp. 553-558.
3. M. Bunder and J. Tonien, A new attack on the RSA cryptosystem based on continued fractions, Malaysian Journal of Mathematical Sciences 11(S) (August 2017) pp. 45-57.
4. L. Euler, De fractionibus continuis dissertatio, Commentarii Academiae Scientiarum Petropolitanae 9 (1744) pp. 98-137.
Available at http://eulerarchive.maa.org/pages/E071.html
5. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, (6th edn.) Oxford University Press (2008).
10.1017/mag. 2018.15

JOSEPH TONIEN
Institute of Cybersecurity and Cryptology, School of Computing and Information Technology, University of Wollongong, Australia e-mail: joseph_tonien@uow.edu.au

