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ABSTRACT: 11-� hydroxysteroid dehydrogenase type 2 (HSD2)
oxidizes the biologically active glucocorticoid (GC), cortisol, to
inactive cortisone. We characterized HSD2 gene expression and
activity in human adult and fetal lung tissues and in cultured fetal
lung explants, and examined the potential regulation of HSD2 in the
fetal lung by sex steroids. Human adult lung, fetal lung, and cultured
fetal lung explant tissues contained similar amounts of HSD2 mRNA.
However, higher levels of HSD2 protein were detected in human
fetal lung tissue than in adult lung, with expression being restricted
to a subset of epithelial cells in the fetal lung tissue. Differentiated
fetal lung explants maintained in culture expressed higher levels of
HSD2 protein and enzymatic activity than undifferentiated fetal lung
tissues. Finally, HSD2 protein levels were decreased in male, but not
female, fetal lung explants treated with 17-� estradiol. In contrast,
5-� dihydrotestosterone did not significantly affect HSD2 levels.
These data indicate that HSD2 protein and activity levels increase
in parallel with the differentiation of alveolar type II epithelial
cells in vitro, and that HSD2 protein levels are regulated by 17-�
estradiol in male fetal lung tissue. (Pediatr Res 62: 26–31, 2007)

In humans, the biologically active GC, cortisol, has a hy-
droxyl group at the 11-� position of the steroid ring,

whereas the biologically inactive GC, cortisone, has a ketone
group at this position (1). The interconversion between corti-
sol and cortisone is catalyzed by the HSD, HSD1 and HSD2
(1). HSD1 is an 11-� reductase that converts the 11-keto GC,
cortisone, to the 11-hydroxy GC, cortisol (Fig. 1). In contrast,
HSD2 is an 11-� dehydrogenase that converts cortisol to
cortisone (Fig. 1). Thus, the HSD1 and HSD2 enzymes can
increase or decrease the local concentrations of biologically
active GC in peripheral tissues (1).
Glucocorticoids affect lung fluid transport, cell division,

differentiation, pulmonary surfactant production, and inflam-
mation (2,3). Cortisol levels increase in amniotic fluid during
pregnancy and a surge in fetal GC levels near term is neces-
sary for fetal lung maturation in preparation for extrauterine
life (2,4). Synthetic GCs, such as dexamethasone and pred-
nisone, are used to treat inflammatory lung diseases in chil-
dren and adults, and to promote lung maturity in fetuses at risk

for preterm delivery (2,3,5). However, prenatal exposure to
GC has been associated with immune suppression, hyperten-
sion, altered nutrient metabolism, and decreased growth hor-
mone levels (2,6). Additionally, antenatal administration of
GC to prevent or treat neonatal lung disease has been linked to
decreased somatic growth, altered immune system reactivity,
and an increased risk for developing hypertension and insulin
resistance later in life (7).
Sex-specific differences in fetal lung maturation have been

observed in several species, including humans, with lung
development delayed in males compared with females (8).
Androgens, such as 5-� dihydrotestosterone, counteract the
maturation-promoting effects of GC in human fetal lung ex-
plants, whereas estrogens, such as 17-� estradiol, accelerate
fetal lung maturation (9,10).
The human fetal lung actively oxidizes cortisol to cortisone

(indicative of HSD2 activity) and this activity decreases as the
fetus approaches term, potentially allowing for an increase in
the local concentration of biologically active cortisol in the
maturing lung (11). HSD2 mRNA and protein have been
detected in human adult and fetal lung tissues, as well as in a
number of human lung epithelial cell lines (12,13). In contrast,
the oxidoreduction of cortisone to cortisol (suggestive of
HSD1 activity) is negligible in intact cultured lung explants
and undetectable in human fetal lung in vivo (11,14,15).
Explants of undifferentiated, mid-trimester human fetal

lung tissue maintained in culture for 5–7 d contain newly
differentiated type II alveolar epithelial cells that produce
pulmonary surfactant characteristic of the fetal lung near term
(16). This model system provides a unique opportunity to
study, in vitro, developmental events that normally take sev-
eral months to occur in vivo (16,17). In the present study, we
compared HSD2 expression in undifferentiated human fetal
lung tissue and in cultured human fetal lung explants follow-
ing type II alveolar epithelial cell differentiation. We also
compared HSD2 expression in human adult lung versus hu-
man fetal lung tissues, and looked for sex-specific differences
in HSD2 expression in human fetal lung. Finally, we evalu-
ated the regulation of HSD2 protein in human fetal lung by the
sex steroids, 17-� estradiol and 5-� dihydrotestosterone.
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METHODS

Human lung tissues. Human adult lung tissues were obtained using a
protocol approved by The University of Iowa Human Subjects Review
Committee. Adult lung tissues taken from unused donor lungs were obtained
from Dr. Michael Welsh, Department of Internal Medicine, University of
Iowa. The lungs were maintained in cold isotonic Ringer’s solution until
processing, which occurred within 24 h of clamping of donor circulation.
Lung tissues were dissected free of major blood vessels and airways, frozen
in liquid N2, and stored at –80°C.

Human fetal lung explants. Human fetal lung tissues were obtained from
mid-trimester abortuses using a protocol approved by The University of Iowa
Human Subjects Review Committee. Human fetal lung explants were cultured
as described previously, with or without 5-� dihydrotestosterone (500 ng/mL �
1.7 �M) or 17-� estradiol (500 ng/mL � 1.8 �M) (16). The explants were
incubated at 37°C and media changed daily as previously described (18). Starting
tissue (fetal lung tissue before culture) and the harvested cultured explants were
frozen in liquid N2 and stored at –80°C.

HSD2 enzyme activity assays. Intact control and hormone-treated explants
were washed with PBS and then incubated at 37°C in 1 mL of serum-free
media that contained 1 nM 1,2,4-[3H]-cortisol (41 Ci/mmol, American Ra-
diolabeled Chemicals, St. Louis, MO) for 24 h on either d 1 (starting tissue)
or d 6 (cultured explants). Labeled steroids were then isolated from the media
and the production of tritiated cortisone was assessed via thin layer chroma-
tography as previously described (12). HSD2 oxidase activity was determined
by calculating the percent conversion of [3H]-cortisol to [3H]-cortisone.
Parallel assays were performed with no lung tissue to control for spontaneous
interconversion between 11-hydroxy and 11-dehydro GC. Upon completion
of the assay, the explant tissues were homogenized in 100 �L of lysis buffer
(1 nM phenylmethylsulfonyl fluoride in PBS) and the protein content in the
supernatant was determined using Bio-Rad protein assay reagent (Bio-Rad,
Hercules, CA). Protein levels were used to control for slight variations in
tissue content between experiments. The HSD2 activity was expressed as
picomoles of cortisol converted per microgram of protein.

Protein isolation and immunoblot analysis. Lung tissues were homoge-
nized in lysis buffer, centrifuged at 600 � g to pellet debris, and the
supernatant collected. Supernatant protein concentrations were quantified as
described above. Immunoblotting was performed using a rabbit primary
antibody specific for human HSD2 (2 �g/mL) as previously described
(12,19). HSD2 protein levels were normalized to �-actin levels, which were
determined on membranes that were stripped and reprobed with a �-actin
MAb (1:7500, Chemicon International, Temecula, CA). Total homogenate
proteins from human kidney (15 �g) (BioChain, Hayward, CA) were used as
a positive control for immunoreactive HSD2 protein.

RNA isolation and semi-quantitative real-time reverse-transcriptase
PCR. Lung tissue was homogenized in 1 mL of TRIzol reagent (Invitrogen,
Carlsbad, CA) and total RNA was isolated and quantified as described
previously (12). RNA integrity was monitored by examining the ethidium
bromide stained 28S and 18S rRNA bands after electrophoresis on agarose
gels. Real-time reverse-transcriptase (RT) PCR was performed in reaction
tubes containing 10 ng of total RNA, the Brilliant 1-Step QRT-PCR master
mix (Stratagene, La Jolla, CA) and Assays-On-Demand gene expression
reagents for either human HSD2 or �-actin mRNA. Analysis was performed
using an Mx3000P QPCR instrument (Stratagene). HSD2 mRNA levels were
normalized to those of �-actin in the same sample.

Immunohistochemistry. Fetal lung tissues were fixed in formalin (10%
formaldehyde in PBS) overnight and embedded in paraffin. Sections were
prepared, mounted on glass slides, and immunostaining performed as previ-
ously described using a Vectastain Elite kit (Vector Laboratories, Burlingame,
CA) and the HSD2 antibody (200 ng/mL) (18).

Sex determination of human fetal tissues. Total DNA was isolated from
fetal lung tissues, resuspended in water, and quantified by determining the
absorbance at 260 nm. One microgram of the DNA was used in PCR reactions
with primers specific for a homologous region of the X and Y chromosomes,
as previously described (20).

RESULTS

HSD2 protein localization in fetal lung tissue and in
cultured fetal lung explants. HSD2 protein was present in
epithelial cells at the distal tips of prealveolar lung ducts in
uncultured human fetal lung tissue (Fig. 2A). HSD2 protein
was cytoplasmic and localized to the apical region of the cells
(Fig. 2 B). HSD2 staining was not observed in more proximal
epithelial cells of the lung ducts or in connective tissue.
Following 6 d in explant culture, HSD2 protein was detected
in all of the differentiated type II alveolar epithelial cells lining
the prealveolar lung ducts (Fig. 2C). Additionally, immuno-
reactive HSD2 protein was distributed throughout the cyto-
plasm and nuclei of these epithelial cells (Fig. 2D).

HSD2 gene expression in human adult and fetal lung.
Semi-quantitative real-time RT-PCR using total RNA isolated

Figure 1. Cortisol metabolism by the 11-� hydroxysteroid dehydrogenase
system. Local concentrations of biologically active GC are increased by
HSD1-mediated oxidoreduction of cortisone to biologically active cortisol.
HSD2 decreases the local concentration of biologically active GC via the
oxidation of cortisol to inactive cortisone.

Figure 2. Tissue distribution and subcellular localization of HSD2 protein in
human fetal lung tissue. (A) HSD2 protein in the uncultured human fetal lung
tissue was localized in epithelial cells at the distal (D) tips of the prealveolar
ducts. HSD2 was not present in more proximal (P) epithelial cells of the lung
ducts or in the connective tissue (asterisk). (B) Enlargement of boxed area in
A illustrating localization of HSD2 to the apical cytoplasm of the epithelial
cells. (C) Immunoreactive HSD2 protein was detected in all of the differen-
tiated type II epithelial cells (arrows) in the cultured human fetal lung
explants. (D) Enlargement of boxed area in C illustrating the localization of
HSD2 protein in the cultured fetal lung epithelial cells. Images in A and C
were taken at 40� magnification.
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from adult (n � 4) and fetal lung tissues (n � 4) revealed
similar levels of HSD2 mRNA (Fig. 3A). Immunoblot analy-
ses for HSD2 protein demonstrated that HSD2 protein levels
in human adult (n � 3) and fetal lung tissues (n � 4) were not
significantly different when normalized to those for �-actin
(Fig. 3B).
HSD2 gene expression and activity in starting and cul-

tured fetal lung explants. HSD2 mRNA levels in cultured
fetal lung tissues were not significantly different from those in
starting fetal lung tissues (Fig. 4A). However, immunoblot
analyses revealed significantly higher amounts of HSD2 pro-
tein in cultured fetal lung explant tissue compared with levels
in uncultured fetal lung tissue (Fig. 4B).

As shown in Figure 4 C(a), the cultured fetal lung explants
had higher levels of HSD2 oxidase activity than the starting
fetal lung tissues. The increase in HSD2 enzyme activity in the
cultured fetal lung explants was similar in magnitude to the
increase in HSD2 protein observed in the same tissues (Fig. 4, B
and C), although the increase did not reach statistical significance
(n � 4; p � 0.14, paired t test). A representative scan showing
separation of labeled cortisol and cortisone via thin layer chro-
matography is shown in Figure 4 C(b). Labeled cortisol is the
first major peak, while the more polar compound, cortisone,
migrates further and is the second peak.
HSD2 protein levels in male versus female fetal lungs and

regulation by sex steroids. We performed immunoblot anal-
yses for HSD2 protein on total homogenate proteins from
male and female fetal lung tissues. The gender of the fetal lung
tissue was determined by PCR (Fig. 5A). The relative amounts
of HSD2 protein in male (n � 3) and female (n � 5)
uncultured fetal lung tissues were similar (Fig. 5B). Immuno-
blot analyses for HSD2 protein were also performed on fetal
lung explants that had been cultured in the presence of either
5-� dihydrotestosterone (DHT) (500 ng/mL) or 17-� estradiol
(500 ng/mL). There was a statistically significant down-
regulation of HSD2 protein levels in fetal lung explants
(n � 11) treated with 17-� estradiol, whereas DHT had no
effect (Fig. 6A). When the data were analyzed on the basis
of sex (n � 5, males and n � 6, females), there was a
significant down-regulation of HSD2 protein levels in male,
but not female, fetal lung explants treated with 17-� estra-
diol (Fig. 6B). DHT did not have a significant effect on

Figure 3. HSD2 mRNA and protein in human adult and fetal lung tissues. (A)
Relative amounts of HSD2 mRNA present in fetal lung (n � 4) and in adult
lung (n � 4), which were normalized to one. (B) The relative amount of HSD2
protein in fetal lung (n � 4) and in adult lung (n � 3). (C) Representative
immunoblots for HSD2 and �-actin proteins.

Figure 4. HSD2 mRNA, protein, and enzyme activity in starting fetal lung tissue vs cultured fetal lung explants. (A) Relative amounts of HSD2 mRNA in the
starting fetal lung (n � 4) and in the cultured fetal lung explants (n � 4). (B) HSD2 protein levels in the fetal lung explants before and after 6 d in culture. Data
are from 11 fetal lung samples (starting and cultured fetal lung explant tissues were from same lung). Representative immunoblots for HSD2 and �-actin are
shown on the right. *p � 0.05 using a paired t test. (C) Summary of HSD2 activity assays in starting human fetal lung tissues and in corresponding cultured
explants (n � 5, p � 0.14) (a); scan of representative plate illustrating the separation of labeled steroid metabolites via thin layer chromatography (b).
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HSD2 protein levels in either male or female fetal lung
explants (Fig. 6B).

DISCUSSION

The final maturation of the human fetal lung is mediated by
a surge in endogenous fetal cortisol levels near term (2).
Synthetic GC, e.g. betamethasone and dexamethasone, are
routinely administered to pregnant women at risk for preterm
delivery to accelerate fetal lung maturation (2). These treat-
ments are effective in reducing the incidence of neonatal lung
disease and neonatal mortality (2). GC are also often used in
the treatment of asthma and other inflammatory lung diseases (3).

The human fetal lung actively oxidizes the biologically
active GC, cortisol, to inactive cortisone, which is indicative
of HSD2 activity (14,15). HSD2 gene expression has been
detected in human fetal lung via immunohistochemistry, RT-
PCR, and immunoblot analyses (12,13). In contrast, HSD1
protein is undetectable in human adult and fetal lung tissues
(12,21,22). Additionally, no conversion of cortisone to corti-
sol (indicative of HSD1 activity) has been observed in human
fetal lung in vivo (15).
The human fetal lung explant system has been used to study

type II alveolar cell differentiation (16), the hormonal regula-
tion of gene expression (17,23), the effects of GC on lung
structure (17), as well as the metabolism of GC (24). We
observed that HSD2 is expressed at discrete sites in the
undifferentiated human fetal lung tissue. Specifically, HSD2
protein was restricted to epithelial cells in the distal regions of
the prealveolar ducts where epithelial cell proliferation facil-
itates the branching morphogenesis required to achieve nor-
mal lung structure. The presence of HSD2 in these areas may
serve to limit cortisol exposure, which could inhibit prolifer-
ation and promote the premature differentiation of these epi-
thelial cells (2).
In contrast, in cultured lung explants containing differenti-

ated alveolar type II cells, HSD2 protein levels appeared to be
elevated when compared with levels in the starting fetal lung
tissue and the HSD2 protein appeared to be distributed
throughout the cytoplasm and in the nucleus. These findings
may reflect a nuclear function for HSD2 within differentiated
alveolar epithelial cells. We observed an increase in HSD2
protein levels in cultured fetal lung explants. This increase
paralleled the differentiation of type II alveolar epithelial cells
in the explants (16). HSD2 protein has previously been de-
tected in alveolar type II cells of the human adult lung (25).
Similar increases in HSD2 expression have been observed
concomitant with the differentiation of human colonic epithe-
lial cells and placental trophoblast cells, suggesting that the
expression of this enzyme is influenced by cellular differen-
tiation (26,27).
HSD2 protein in mid-trimester human fetal lung tissue was

localized to the apical region of the undifferentiated alveolar
epithelial cells. The subcellular localization of this microso-

Figure 5. Comparison of the relative amounts of HSD2 protein in male vs
female human fetal lung explants. (A) Representative PCR for X and Y
chromosome sequences for sex determination of human fetal lung. Female
tissues (lanes 1,3) show amplification of only X chromosome sequences,
whereas male tissues show amplification of both X and Y chromosome
sequences (lanes 2,4,5). (B) Immunoblot analysis for HSD2 protein in male
(n � 5) and female (n � 3) fetal lung tissues.

Figure 6. Effects of sex steroids on HSD2 protein levels in cultured fetal lung tissue. Explants were cultured for 6 d in the presence of either no steroids (control),
dihydrotestosterone (DHT), or 17-� estradiol (estradiol). (A) Effects of DHT and estradiol on HSD2 protein levels in human fetal lung tissues. 17-� estradiol
treatment decreased HSD2 protein levels by 26.1 � 11% (n � 11, *p � 0.05 using a paired t test vs untreated controls, which were normalized to one). (B) 17-�
estradiol treatment decreased HSD2 protein levels in male fetal lung explants by 47 � 6% (n � 5, *p � 0.05 using a paired t test vs untreated control tissues,
which were made equal to one), but did not affect HSD2 in female fetal lung explants (n � 6). DHT exposure did not significantly affect HSD2 protein levels
in either male or female fetal lung explants.

29HSD2 IN THE ADULT AND FETAL HUMAN LUNG



mal enzyme may be related to the location of endoplasmic
reticulum in the undifferentiated human lung epithelial cells
(28). In contrast, the cultured fetal lung explant tissues ex-
pressed HSD2 protein throughout the cytoplasm of the epi-
thelial cells lining the prealveolar ducts, with many cells also
exhibiting nuclear localization of HSD2. Nuclear localization
of HSD2 protein has been observed in the epithelial cells of
other human tissues including the kidney, colon, salivary
gland, and endometrium, data suggestive that the metabolism
of GC by HSD2 may also be a nuclear event in these cells
(29–31).
We did not observe a statistically significant difference in

the levels of HSD2 mRNA and protein in adult versus fetal
lung tissues. In addition, undifferentiated, mid-trimester hu-
man fetal lung tissues and cultured, differentiated human lung
explant tissues expressed similar amounts of HSD2 mRNA.
However, the cultured fetal lung explants contained higher
levels of HSD2 protein and HSD2 enzymatic activity than the
starting fetal lung tissues. Thus, HSD2 protein turnover may
be decreased in differentiated type II epithelial cells or the
HSD2 gene may be subject to posttranscriptional regulation,
as has been reported in other cell types (32). Interestingly,
HSD2 activity decreases in the human fetal lung in vivo late in
gestation, presumably to allow maximal amounts of biologi-
cally active cortisol to promote lung differentiation (11).
There are sex-specific differences in human fetal lung mat-

uration (8). Males have a higher incidence and severity of
neonatal lung disease (33). Furthermore, prenatal GC therapy
is more effective in preventing respiratory distress syndrome
(RDS) in female infants than male infants (34). Androgen
exposure has been linked to delayed fetal lung maturation in
humans (9). Conversely, it has been reported that 17-� estra-
diol treatment accelerates fetal lung maturation, and that
estrogen levels are low in human infants with RDS (10,35).
Immunoblot analyses of HSD2 protein in mid-gestation male
and female fetal lung tissues revealed no significant differ-
ences in the baseline levels of HSD2 protein. However, HSD2
levels were significantly decreased by 17-� estradiol (50%
decrease) in male fetal lung explants, whereas HSD2 levels in
female fetal lung explants were not affected by either 17-�
estradiol or DHT treatment. The concentration of 17-� estra-
diol used in this study (500 ng/mL, 1.8 �M) is similar to the
levels of estradiol in fetal plasma (36). The lack of an effect of
sex steroids in the female fetal lung explants may be related to
the concentration of androgen or estrogen receptors in the fetal
lung tissue. The androgen receptor (AR) has been detected in
human fetal lung epithelial cells by immunohistochemistry,
with lower levels of AR in female than in male fetal lung
tissues (37). Human fetal lung tissue specifically binds estro-
gen, and mRNA transcripts for the �- isoform of the estrogen
receptor (ER) have been detected in human fetal lung tissues
(38,39). ER expression has been reported to be similar in male
and female human adult lung (40); however, the relative
amount of ER in male versus female human fetal lung has not
been established.
As pregnancy progresses, the levels of estrogens in fetal

plasma and amniotic fluid rise, with amniotic fluid levels of
17-� estradiol levels higher in mid-gestation pregnancies with

female than with male fetuses (36,41). As a result, female
fetuses are exposed to higher levels of estrogen at earlier
gestational ages than males. Thus, fetal lung tissues obtained
from female fetuses may be less sensitive to exogenous estro-
gen because there may be fewer unliganded ER that can bind
additional estrogen and/or because ER levels can be down-
regulated by estradiol in human cells (42). Indeed, late gesta-
tion male fetal rat lung tissues have been shown to bind
significantly more (50%) 17-� estradiol than age-matched
female fetal rat lung tissues (10).
In summary, we characterized the relative levels of HSD2

mRNA, protein, and enzyme activity in human adult and fetal
lung tissues, and in cultured human fetal lung explant tissues
undergoing differentiation in vitro. We have examined the
relative levels of HSD2 protein in male and female human
fetal lung tissues, as well as the regulation of HSD2 by sex
steroids. Our data demonstrate that the expression of HSD2
protein in human fetal lung is dynamic and affected by the
differentiation state of alveolar epithelial cells. Additionally,
we have shown that the expression of HSD2 protein is regu-
lated by 17�-estradiol in male, but not female, human fetal
lung tissues.
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