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ABSTRACT

This chapter considers the modeling of electricity forward curve dynamics with parameterized
volatility and correlation structures. We estimate the model parameters by using the Nordic
market’s price data and show how the model can be implemented into everyday industry
practice.

12.1 INTRODUCTION

Electricity markets are different from the usual financial markets and many other commodity
markets due to the non-storability of electricity. The spot price of electricity is set by the short-
term supply–demand equilibrium, and supply and demand must be in balance at each instance.
Because the demand (supply) today does not necessarily have anything to do with the demand
(supply) in the future, the spot electricity today is a different asset from the spot electricity in
the future. This implies that the relation between the spot price and the forward prices in the
electricity markets is not as straightforward as in the usual financial and commodity markets.

In this chapter we develop a simple parameterized model for forward curve dynamics. We
estimate the model parameters by using the data from the Nordic electricity market. The Nordic
electricity market is hydro-dominated with roughly 50% of the electricity supply being hydro-
based. The winters are cold and much of the precipitation comes as snow. In the spring the
snow melts causing floods whose timing varies a lot from year to year due to the temperature.
There is a significant electricity heating load while the mild summers do not require a lot of
air conditioning, so that electricity demand is concentrated on the winter season. The time-
dependent variation present in the demand results in a seasonal, weekly and daily profile in
the electricity spot price and electricity forward curve. However, these price variations are
smoothed to some extent in the Nordic market because of the hydropower production. Some
hydro producers have the possibility to optimize their discharge up to one year ahead, and
many have the possibility for some months ahead. The short-term, i.e. intra-week and intra-
day, variations in the spot prices decrease due to the easily adjustable hydropower. On the other
hand, there is high variation in the price level between different years because the total amount of
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hydropower available in the market depends on the amount of yearly precipitation. The forward
prices of electricity mostly reflect the market expectations on the future reservoir levels.

Stochastic modeling of the deregulated markets has concentrated on the electricity spot
markets. Research is roughly divided into statistical models and fundamental models.
Statistical models depend on the set of parameters that describe the properties of the spot
process while fundamental electricity price models are based on competitive equilibrium
models for the electricity market. Several models are presented in Wallace and Fleten (2002)
and Skantze and Ilic (2001). The statistical models easily fall to over-parameterization and
are often considered to be “black-boxes” while the fundamental models require a complete set
of coherent historical data to be useful. Further, as mentioned earlier, because the electricity
supply–demand equilibrium depends on the time of the year and on the development in the
hydrological situation, the stochastic process for the spot price changes over time. Thus, it
is likely that the form of the stochastic model is not constant and, therefore, the estimation of
the model parameters is difficult.

There are also a few models that study the forward price behavior. The benefit from modeling
the forward curve directly is that unlike with the spot models there is no problem fitting the
model to the current forward curve. This is a similar advantage to when the Heath, Jarrow
and Morton (1992) framework is used in interest rate markets. General statistical analysis on
electricity forward prices is found in Lucia and Schwartz (2002). The similarities between
the interest rate markets and electricity forward markets are studied in detail by Koekebakker
and Ollmar (2001). They find that a simple Heath–Jarrow–Morton approach does not explain
electricity forward curve dynamics as well as interest rate dynamics. However, we partly utilize
their framework and use similar volatility parameterization but we allow the spot volatility to be
time-dependent. Further, we use a parameterized correlation structure and a different estimation
method. Within an infinite-dimensional Heath–Jarrow–Morton type model, Björk and Landén
(2000) study the theoretical properties of futures and forward convenience yield rates in a case
where the underlying asset can be non-tradable, like electricity.

In this chapter we study the dynamics of the whole forward curve. Implicitly this also gives
the relationship between the spot price and the forward prices. This is important for the market
participants in many business applications, such as power plant optimization, risk management
and in the pricing of exotic derivative instruments [see e.g. Geman and Vasicek (2001), Keppo
(2002a,b), Vehviläinen (2002), Deng et al. (2001)]. For example, the understanding of the
relation between the spot and forward prices is needed when hedging electricity production
with the forward contracts. In this chapter we focus on the modeling of a few key features in the
forward price dynamics and they enable the combined analysis of spot and forward markets.
The features that we study are the spot volatility curve, the volatility curve’s maturity effect and
the forward curve’s correlation structure. The historical daily quotes of electricity forwards and
futures as well as the historical spot prices are used in the estimation of the model parameters.

The rest of the chapter is organized as follows. Section 12.2 introduces the model while the
Appendix illustrates the estimation method of the model parameters. Section 12.3 illustrates
the model estimation with market data. Then Section 12.4 gives three practical examples and
finally Section 12.5 concludes.

12.2 THE MODEL

In this section we introduce our parametric model for electricity forward curve dynamics. We
consider an electricity market where forward contracts are traded continuously within a finite
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time horizon [0, τ ]. When describing the probabilistic structure of the market, we refer to
an underlying probability space (�, F, P), along with the standard filtration {Ft : t ∈ [0, τ ]}.
Here � is a set, F is a σ-algebra of subsets of �, and P is a probability measure on F .

We denote by f (t, T1,T2) the forward price for the time period [T1,T2] at time t . That is,
f (t, T1,T2) is a constant price for the duration T2 − T1 and, therefore, it can be viewed as the
average price for the period [T1,T2]. In order to get the forward curve that depends only on one
maturity date, we model the following theoretical forward prices:

f (t, T ) = lim
T2→T

f (t, T, T2) for all t ∈ [0, T ], T ∈ [0, τ ] (12.1)

That is, f (t, T ) is the forward price at time t for the time period [T ,T + dt]. In contrast to
the usual financial markets, where a price process is usually given by a one-dimensional Itô
process, in electricity markets the corresponding price at time t is the whole forward curve
f (t, ·) : [t, τ ] → R+ [see e.g. Björk and Landén (2000)].

Note that all forward prices are in nominal terms. According to the definition of the forward
price, the spot price is given by

S(t) = f (t, t) = lim
T →t

f (t, T ) for all t ∈ [0, τ ] (12.2)

That is, the forward price converges to the spot price. Later in this chapter we use weekly
average prices for electricity spot price and, therefore, at the expiration date the spot price
equals the weekly future price.

The following assumption characterizes the dynamics of the forward prices, i.e., it gives our
parameterized forward curve dynamics.

Assumption 12.1. The forward prices follow an Itô stochastic differential equation

d f (t, T ) = f (t, T )e−α(T −t)σ (T )d BT (t) for all t ∈ [0, T ], T ∈ [0, τ ] (12.3)

where the forward price f (t, T ) = E[S(T )|Ft ], α is a strictly positive constant, σ : [0, τ ] →
R+ is a bounded and deterministic spot volatility curve, and BT (·) is a Brownian motion
corresponding to the T-maturity forward price on the probability space (�, F, P) along with
the standard filtration {Ft: t ∈ [0, τ ]}. The correlation structure of the Brownian motions is
given by

d BT ∗(t)d BT (t) = e−ρ|T −T ∗|dt for all T, T ∗ ∈ [0, τ ] (12.4)

where ρ is a strictly positive constant.

Assumption 12.1 captures the main elements of our model. Specifically it implies:

� Forward prices are equal to the expected future spot prices and, therefore, forward prices
are martingale under the objective probability measure P .

� The electricity spot volatility curve σ (·) : [0, τ ] → R+ is deterministic.
� A forward price’s volatility is lower than the corresponding spot volatility and the parameter

α models this effect.
� Forward prices with maturity dates that are close to each other are significantly correlated.

Parameter ρ captures this effect.
� The forward prices follow lognormal distributions.
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The expectation hypothesis is made for simplicity and if this is not true under the objective
measure P , it is true under the pricing measure Q [see e.g. Hull (2000)]. Thus, in this chapter
we assume that P equals Q and, therefore, we do not estimate the expected drifts of the
forward prices. According to equation (12.1) the stochastic process for a forward price follows
an exponential process where f 2(t, T )e−2α(T −t)σ 2(T ) is the rate of change of the conditional
variance of f (t, T ). Note that this volatility parameterization is similar to the one used in
Koekebakker and Ollmar (2001). The boundedness of the volatility function guarantees the
existence and uniqueness of the solution to (12.3). The deterministic spot volatility structure is
quite restrictive and it is made in order to ease the estimation and implementation of the model.
In practice there are uncertainties in the spot volatility curve due to the changes in the demand
and supply. Therefore, the stochastic volatility models are important also in electricity markets
[see e.g. Deng (1999)]. With the third and fourth bullets we model the decreasing volatility as
a function of maturity and the decreasing correlation as a function of the difference between
forwards’ expiration dates. The errors from Assumption 12.1 are analyzed in Sections 12.3 and
12.4. Note that since in equation (12.3) we model expected values ( f (t, T ) = E[S(T )|Ft ]), the
spot process S(·) can be e.g. geometric Brownian motion or mean-reverting [see for instance
Schwartz (1997)]. Further, from Assumption 12.1 we get that the distribution of S(T ) is given by

log (S(T )) − log ( f (t, T )) = log ( f (T, T )) − log ( f (t, T ))

∼ φ
(− 1

2 σ̂ 2(T − t), σ̂
√

T − t
) (12.5)

where φ(m, s) is a normal distribution with mean m and standard deviation equal to s, T > t ,
and the average volatility on [t, T ] is according to (12.3) given by

σ̂ = σ (T )√
T − t

√√√√√ T∫
t

exp (−2αy) dy = σ (T )√
2α (T − t)

√
[exp(−2αt) − exp(−2αT )]

Thus, equation (12.5) implies that the electricity prices follow lognormal distributions.
In the Appendix we show how the model parameters are estimated by using a maximum

likelihood method. In the next section we apply our forward model to the Nordic market.

12.3 FORWARD MODEL IN THE NORDIC MARKET

In this section, we estimate the model parameters by using the Nord Pool electricity exchange’s
market data. First we briefly discuss the forward and future contracts in this Nordic market.

12.3.1 Products in the Nordic power market

In the Nordic market around one-quarter of the total physical demand is traded via the Nord
Pool electricity exchange and, therefore, the Nord Pool’s electricity price is a credible reference
index for the whole market. There is an active market for electricity forwards and futures, both
in the exchange and in the OTC markets with volumes nearly 10-fold over the size of the total
physical market.

Spot prices for physical delivery are set by an equilibrium model where the supply and
demand curves of all the market participants are matched day-ahead. The last-minute balance
management is done after the spot market has closed.

Nord Pool’s electricity futures contracts include weeks and blocks. Week contracts are traded
for the nearest four to seven weeks after which there are block contracts for about one year



Modeling Forward Curve Dynamics 255

0

50

100

150

200

250

300

1 6 11 16 21 26 31 36 41 46 51

Contract (week)

Spot price (NOK/MWh)

1999 spot price 2000 spot price 2001 spot price

Figure 12.1 Weekly average for the spot price in 1999, 2000 and 2001

forward. Blocks are combinations of four weeks and split to weekly contracts as time passes.
The electricity forward contracts are years and seasons that divide the year to three periods:
Winter-1, Summer and Winter-2. The closest few years are traded both as seasons and as years.
The difference of settlement between futures and forward contracts is ignored here because
we only model nominal prices. For further information about Nord Pool see Nord Pool (2002)
product information.

We estimate the volatility discount factor, the correlation discount factor and the weekly
volatility structure by using Nord Pool’s prices for weekly future contracts during the years
1999, 2000 and 2001. Our database consists of prices for the weekly products on each trading
day. Figure 12.1 illustrates the realized electricity spot prices in different years. In the Nordic
market the electricity spot price is usually high in the winter and low in the summer, as shown
in years 1999 and 2000. This is due to the cold winter in the Nordic area and, therefore, high
demand during winter. As can be seen from Figure 12.1, year 2001 was different since the
price was all the time close to the yearly average price. The hydrological situation changed
from relatively wet conditions to dry in the beginning of year 2001. The change was due to
cold and relatively dry weather in the first months of 2001 and was reflected as a sharp rise
in the spot price. The hydrological situation improved during the year, thus causing the spot
price to fall towards autumn.

12.3.2 Estimation of the model parameters

The model parameters are estimated by using the maximum likelihood method. All the parame-
ters (volatility curve, volatility and correlation parameters) are calculated in a single estimation
routine. This method is illustrated in the Appendix.

The volatilities of the 52 weekly futures contracts traded during years 1999, 2000 and 2001
are shown in Figure 12.2. This figure indicates that the volatility varies inside the year and also
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Table 12.1 Estimated volatility discount parameter as well
as its standard deviation in different years

Year 1999 Year 2000 Year 2001

Volatility parameter α 2.31 6.06 3.67
Standard deviation 0.25 0.32 0.19
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Figure 12.2 Volatilities of the 52 weekly contracts by using the data from 1999, 2000 and 2001

between different years. As in years 1999 and 2000, the volatility is usually high in the summer
and low in the winter. This is because in the summer the water reservoirs are usually quite
empty and, therefore, small changes in the demand can cause changes in the used production
technologies and production marginal costs. On the other hand, because in the winter mainly
condensing power is used, there are no major changes in the production marginal costs and
the winter volatility is usually lower. The winter 1999–2000 was very snowy whereas during
the winter 2000–2001 there was less snow than normally. The accumulation of snow over the
normal level during the winter 1999–2000 increased the uncertainty in the spot price level
during the possible spring flood period in 2000 and thus caused the high volatility during that
period. However, as mentioned earlier the year 2001 is different because in the beginning of
year 2001 the hydrological situation changed from relatively wet conditions to dry and this
created high spot volatility in the beginning of the year. Because in that year there was not
much snow, there was no uncertainty on the spring flood. In Figure 12.2 the average volatility
from all the volatility structures is 0.5.

Table 12.1 gives the estimated volatility discount factor and its standard deviation in different
years. According to Table 12.1 the volatility of a forward price is lower than the corresponding
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Table 12.2 Estimated correlation discount parameter as well as
its standard deviation in different years

Year 1999 Year 2000 Year 2001

Correlation parameter ρ 3.62 5.30 4.61
Standard deviation 0.04 0.26 0.17

spot volatility and the parameter α (volatility discount factor) models this effect. Each year
the parameter is stable but due to the different annual hydro-inflow the parameter is different
in different years. Since the winter 1999–2000 was very snowy it seems that during snowy
years the volatility discount parameter is high. The average value is α = 4.02 and it implies
that, for instance, if the spot volatility is 50% then a one-month-maturity forward has 36%
volatility. Note that similar parameter changes can be observed with the volatility estimates in
stock markets [see e.g. Schwert (2002)].

Table 12.2 illustrates the estimated correlation discount factor and its standard deviation
in different years. According to Table 12.2 forward prices with maturity dates that are close
to each other are significantly correlated and the parameter ρ (correlation discount factor)
captures this effect. The average value ρ = 4.51 gives, e.g., that two forwards with matu-
rity date one month apart have about a 0.69 correlation. Note that from Tables 12.1 and
12.2 we get that the volatility and correlation discount factors are correlated and their values
are close to each other. Therefore, for instance, during snowy years both the parameters are
high.

12.4 MODEL USAGE EXAMPLES

In this section we illustrate the usage of the model in everyday industry practice. We consider
three cases: conditional forecasting of the forward curve when a forecast for spot price is
available, the pricing of forward options and analysis on the accuracy of a forward curve
model that describes the forward curve dynamics with a finite number of forward curve points.

In the conditional forecasting we update the initial forward curve with spot price predictions
and study whether this kind of forecast model is suited for short or long-term planning. This
conditional forecasting can be used in the production optimization and in the pricing and
hedging of complex path-dependent electricity derivatives such as swing options [see e.g.
Jaillet et al. (2001), Thompson (1995) and Keppo (2002a)].

Many options in electricity markets are options on forward prices. Therefore, the Black-76
model [see Black (1976)] is widely used. The only Black-76 model parameter not received
directly from the market is the underlying forward price’s average volatility during the lifetime
of the option. We estimate this volatility from our forward curve model and show a few
numerical pricing examples.

In the forward curve accuracy analysis we study the percentage of uncertainties described
by a forward curve model that uses a finite number of forward curve points. This is im-
portant in the selection of a convenient forward curve model. For instance, frequently pro-
duction optimization can be carried out by using only a rough estimate of the forward
curve dynamics while in the hedging of derivative instruments better description is needed.
By using the accuracy analysis the convenient model can be selected and its error can be
estimated.
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Figure 12.3 Updated forward curve and the corresponding 95% confidence interval

12.4.1 Conditional forecast for the forward curve

Our conditional prediction model uses the estimated parameters of the previous section to
calculate the corresponding forward curve from a spot price scenario. In order to analyze
our parameterized forward dynamics we assume that the spot price scenario is equal to the
realized spot price during the year 2001. Then we compare our predicted forward curve with
the corresponding realized forward curve in the market. Thus, the possible forward curve
prediction error is from our forward curve model because the spot price scenario is equal to the
realized spot price. We use the estimated parameters from year 2000 and test our model with
independent data from year 2001. Note that based on Figures 12.1 and 12.2 spot dynamics
during years 2000 and 2001 are different. Figure 12.3 illustrates the conditional forecasting.
In the figure an initial forward curve has been updated with a spot price scenario during the
first nine weeks.

We use 25 initial forward curves and create predictions for two-week, one-month, three-
month and six-month horizons. The initial forward curves are updated weekly with the realized
spot prices. For all initial forward curves and scenario horizons we compare our updated curves
with the corresponding realized forward curves in the market. In measuring the differences
between these curves we use the mean square error.

Since the contracts mature weekly, the number of data points in the updated forward curve
decreases as our planning horizon increases and, thus, we normalize the mean square error
by the number of data points. Considering all of the 25 initial forward curves, we take the
average of the mean square errors for each time horizon. Figure 12.4 shows us a summary of
how well our updated forward curve fits the realized forward curve. The solid line is the error
term from our conditional prediction with different prediction horizons. The dotted line is the
corresponding prediction error without the spot price information, i.e., prediction by using
directly Assumption 12.1 and the estimated parameters in Tables 12.1 and 12.2. As expected,
the dotted line is higher than the solid line because in the conditional forecast more information
is used. Further, in practice prediction horizons of less than a month can be used. Thus, Figure
12.4 illustrates that even though one knows the spot price one does not know much about
the forward curve. This is because there are many uncertainties in the forward curve and,
therefore, knowing only one point in the curve gives an accurate situation only close to this
point.
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Figure 12.4 Relationship between the forward curve prediction error and the time horizon. The solid
line is the error from the conditional forecast and the dotted line is the error from the forecast without
the spot price realization

12.4.2 Pricing of forward options

Many options in electricity markets are options on electricity forwards or futures. Therefore, the
Black-76 model [see Black (1976)] is widely used in these markets. In the case of a deterministic
volatility structure the Black-76 model is used with the average volatility during the lifetime
of the option. Therefore, the options on an electricity forward price can be modeled as follows:

c(t, To, T ) = exp (−r (To − t)) [ f (t, T )N (d1) − X N (d2)]

p(t, To, T ) = exp (−r (To − t)) [X N (−d2) − f (t, T )N (−d1)]
(12.6)

where c is the call option price, p is the put price, To is the maturity date of the options, f is
the underlying forward price, X is the strike price, T is the maturity date of the forward, t is
the current time, N (·) is the cumulative normal distribution function:

d1 =
ln

(
f (t,T )

X

)
+ 1

2 σ̂ 2 (t, To, T ) (To − t)

σ̂ (t, To, T )
√

To − t

d2 = d1 − σ̂ (t, To, T )
√

To − t

and σ̂ (t, To, T ) is the average volatility of f (·,T ) during t − To.
The problem with the Black-76 model is to find the correct average volatility for different

maturities. Because in our model we have a deterministic volatility curve, we get from equation
(12.5)

σ̂ 2(t, To, T ) =
σ 2(T )

∫ To

t
exp(−2αy)dy

To − t
= σ 2(T )

2α(To − t)
[exp(−2αt) − exp(−2αTo)]

(12.7)

We illustrate this framework through a numerical example, where we calculate the call prices
with different maturities. The strike price is assumed to be equal to the underlying forward price
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Table 12.3 Call prices on electricity forwards with
different maturities

Call price, % from
Maturity Average volatility, % forward price

2 weeks 46.4 3.6
1 month 42.8 4.9
3 months 33.0 6.4
6 months 24.9 6.8

and the risk-free rate equal to 5% (annual, continuous time). For simplicity, the maturity of each
option is equal to the underlying forward contract’s maturity. The spot volatility structure is
flat and equal to 50%. Using equations (12.6) and (12.7) we calculate the call option prices and
Table 12.3 summarizes the results. According to Table 12.3 the average volatility decreases as
a function of maturity. However, g(To) = σ̂ (t, To, To)

√
To − t is an increasing function of To

even though σ̂ (t, To, To) is a decreasing function of To. Therefore, time to maturity increases
the call prices in Table 12.3.

12.4.3 Accuracy of a forward curve model

In practice the dynamics of the forward curve are modeled by using a finite number of forward
curve points. The advantage of this is that it is easier to analyze these points than the whole
curve. The drawback is that we lose some accuracy because we do not model all the uncertainties
in the curve, i.e., we do not model the area between the points. In this subsection we analyze
this error term and similar accuracy analysis is done in Koekebakker and Ollmar (2001).

By using the correlation discount factor we estimate the percentage of the uncertainties
captured with the selected forward curve points. Let us denote by � the time interval between
the forward curve points and assume that this interval is constant. Then we get, by using the
correlation parameter ρ, that the cumulative correlation between a forward curve point and the
part of the forward curve that is closest to this point is given by

2

�
2∫

0

exp(−ρy)dy = 2

ρ

[
1 − exp

( − ρ �
2

)]
(12.8)

This is because the time interval
(
T − �

2 , T + �
2

)
is closest to the maturity T . Since the time

length of this part is �, we model the uncertainty proportion that the discrete model describes
as follows:

2

�ρ

[
1 − exp

( − ρ �
2

)]
(12.9)

Equation (12.9) models the correlation effect to the forward curve on (T − �
2 , T + �

2 ) from
the single forward curve point f (t, T ). Actually, this equation gives the lower boundary for the
proportion since it ignores the independent effects from other forward curve points. However,
since the closest point has the strongest correlation, for our purposes the above equation is
accurate enough.

We analyze the uncertainty proportion with different discrete time interval � by using
equation (12.9). Figure 12.5 illustrates the results. According to Figure 12.5 the longer the
time interval the less we are able to model the uncertainties. For instance, if we use four
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Figure 12.5 The percentage of forward curve uncertainties described by finite number of forward curve
points. Time interval is the time period between the points

forward curve points (time interval 0.25, times: 0, 0.25, 0.5, 0.75) to model the whole annual
forward curve dynamics we are able to capture at least 76% of the forward curve uncertainties.

12.5 CONCLUSION

In the electricity market the price risk is described by the whole forward curve dynamics.
Therefore, the modeling of the curve dynamics is as important as the stock price modeling in
the usual financial markets. In this chapter we have proposed a simple parameterized model
for forward curve dynamics and estimated the parameters by using the price data from the
Nordic market. According to the estimation results a forward’s correlation with the spot price
and its volatility decrease as a function of maturity. For instance, the volatility of a two-
month-maturity future contract is about half of the corresponding spot price’s volatility and
the correlation between the future price and the current spot price is about 0.5.

We have shown several possible applications for our forward curve model. Firstly, we made a
conditional forecast for the forward curve when a perfect forecast for the spot price is available.
Secondly, we combined our volatility parameterization with a usual option pricing method.
Finally, we estimated the accuracy of a forward curve model by using our correlation parame-
terization. Further application is, e.g., the modeling of a hydropower production. Because the
market is highly competitive we can assume that the producer is a price-taker and, therefore,
the power plant can be modeled as a basket of electricity options. As we have seen in this
chapter, in the calculation of these option prices the forward curve dynamics are crucial. A
similar example is considered in Keppo (2002a), where a power plant is modeled by using a
swing option.

Our forward curve model can be extended in several ways. As was noted, there is considerable
variation in the model parameters between different years. This is due to the fact that in
the Nordic market the forward curve dynamics depend on the hydrological situation, i.e., the
contents of the water and snow reservoirs. To develop the forward curve model further the effect
of the changes in the water and snow reservoir contents into our forward curve parameters could
be modeled.
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APPENDIX: ESTIMATION OF MODEL PARAMETERS

In this Appendix we show how the spot volatility curve, the maturity parameter and the
correlation parameter can be estimated by using a maximum likelihood estimation method. In
this estimation method, we apply an exponential weighting to give more weight to the most
recent data points.

Based on Assumption 12.1 and the properties of the lognormal distribution we get

In

[
f (t + �t, T )

f (t, T )

]
= −1

4α
σ 2(T )

[
e−2α(T −(t+�t)) − e−2α(T −t)

]
+ 1√

2α
σ (T )

√[
e−2α(T −(t+�t)) − e−2α(T −t)

]
ε (A12.1)

where ε is a random variable that is distributed according to a standard normal distribution.
At given time t , one can observe a set of contracts with maturities (Ti )

N (t)
i=n(t), where n(t) and

N (t) denote the upper and lower indices of the contracts for which the price can be observed
at time t . Note that n(t) and N (t) fluctuate with time and the maturities are fixed. Let f i (t)
be the price of the Ti -maturity contract at time t . For our model, we will assume that there
are 250 trading days and 52 weeks per year. Consequently, since we use weekly futures we
define

�t = 1

250

Ti − Tj = i − j

52
(A12.2)

Define vi (t) = log f i (t + �t) − log f i (t). We know that vi (t) is Gaussian, with

E[vi (t)] = −σ 2
i

4α
e−2α(Ti −t)(e2α�t − 1)

Var[vi (t)] = σ 2
i

2α
e−2α(Ti −t)(e2α�t − 1)

Corr[vi (t), v j (s)] =
{

0 t �= s

e−p|Ti −Tj | s = t
(A12.3)

where σi = σ (Ti ). Note that the assumption of no correlation between v(t) and v(s) (s �= t)
implies that v(t) = (vi (t))N (t)

i=n(t) and v(s) = (vi (s))N (s)
i=n(s) are mutually independent.

Define

ui (t) = vi (t) − E[vi (t)]√
Var[vi (t)]

= h(vi (t)) (A12.4)

Equation (A12.4) is simply a centered-reduced form of v since the expected value of u is 0
and its variance is 1.

We assume that we observe ui (t) on a set of dates (τ j )T
j=1, with equally spaced observation

time, so that τ j = j · �t . Denote by u the vector of all the observations of all the contract
maturities, i.e., the vector of ui (τ j ) for all i and j . Using the fact that ui (t) is Gaussian, their
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joint density gu(u) is given by

gu(u) =
T∏

j=1

g j (u(τ j ))

g j (u(τ j )) = (2π )−M(τ j )/2|� j |−1/2 exp

(
− 1

2u
(τ j )

T �−1
j u(τ j )

)

[� j ]
M(τ j )
k,l=1 = ρ̃|k−l|

ρ̃ = e−ρ/52

M(τ j ) = N (τ j ) − n(τ j ) + 1

τ j = j · �t (A12.5)

The first equation of (A12.5) is deduced from the assumption of independence of v(τ j ) and
v(τk)(k �= j) stated in equation (A12.3), which allows us to write the density as the product of
marginal densities of the u(τ j ). The second equation simply expresses the (marginal) density
of the variables ui (τ j ) as a Gaussian density with mean zero, unit variance and a correlation
given by � j . The third and fourth detail the values of the elements of � j , which are obtained
from the third equation of (A12.3). The variable M(τ j ) is the number of observable contracts
that are observable at time τ j .

By expanding the expression for the determinant and the inverse of the correlation matrix
� j , it can be shown that g j may be written as

g j (u(τ j )) = (2π )−M(τ j )
/

2(1 − ρ̃2)−
M(τ j )−1

2

exp

[
− 1

2(1 − ρ̃2)

(
N (τ j )−1∑
i=n(τ j )

(ui+1(τ j ) − ρ̃ui (τ j ))2 + uN (τ j )(τ j )2(1 − ρ̃2)

)]
(A12.6)

We now have an expression for the density of the ui (τ j ) as defined by equation (A12.4).
The density of v(τ j ) is simply obtained by multiplying this density by the Jacobian of the
transformation (A12.4):

d j (v(τ j )) = g(h(v(τ j )))
N (τ j )∏

i=n(τ j )

√
Var(vi (τ j ))

(A12.7)

where V ar (vi (τ j )) is given by (A12.3) and, as mentioned earlier, τ j = j · �t . The denomi-
nator is the determinant of the Jacobian of the transformation from v to u. It can be deduced
immediately from equation (A12.4).

A maximum likelihood estimator of the parameters can be constructed by solving

(α̂ML, ρ̂ML, σ̂ML) = arg max
(α,ρ,σ )

T∑
j=1

log d j (v(τ j )) (A12.8)

Unfortunately, no closed-form solution exists for these estimators and, therefore, the optimiza-
tion must be carried out numerically.
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In order to reduce the risk of instability in the parameters of the model, we introduce the
following objective function:

ϕ j (α, ρ, σ ) = log d j (v(τ j )) · exp(−γ (τTj − τ j )) (A12.9)

The exponential term that is added to the likelihood function acts as a weighting factor that
discounts the likelihood of the observations. This technique is a heuristic way of protecting
the estimators against parameter instability.

The corresponding estimators are therefore given by

(α̂, ρ̂, σ̂ ) = arg max
(α,ρ,σ )

T∑
j=1

ϕ j (α, ρ, σ ) (A12.10)

These estimators are exactly equal to the maximum likelihood estimators if γ is equal to zero.
In that case, the estimator is efficient in the sense that it meets the Cramer–Rao bound [see e.g.
Greene (1997, pp. 133–138)]. If γ > 0, the estimator is still a member of the class of consistent
and asymptotically Gaussian M-estimators [see e.g. Gourieroux and Monfort (1996, chapter
8)]. Defining θ = (α ρ σ )T , the covariance matrix of our estimator is given by

√
T (θ̂ − θ ) →

T →∞
N (0, J−1IJ−1)

J = E

[
∂2ϕ

∂θ∂θT

]

I = E

[
∂ϕ

∂θ

∂ϕ

∂θT

]
(A12.11)

and the covariance matrix is estimated as follows:

Ĵ = 1

T

∑
j

[
∂2ϕ j

∂θ∂θT

]

Î = 1

T

∑
j

[
∂ϕ j

∂θ

∂ϕ j

∂θT

]
(A12.12)
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