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Abstract

Objective This review article gives an account of the development of the MR-encephalography (MREG) method, which 

started as a mere ‘Gedankenexperiment’ in 2005 and gradually developed into a method for ultrafast measurement of physi-

ological activities in the brain. After going through different approaches covering k-space with radial, rosette, and concen-

tric shell trajectories we have settled on a stack-of-spiral trajectory, which allows full brain coverage with (nominal) 3 mm 

isotropic resolution in 100 ms. The very high acceleration factor is facilitated by the near-isotropic k-space coverage, which 

allows high acceleration in all three spatial dimensions.

Methods The methodological section covers the basic sequence design as well as recent advances in image reconstruction 

including the targeted reconstruction, which allows real-time feedback applications, and—most recently—the time-domain 

principal component reconstruction (tPCR), which applies a principal component analysis of the acquired time domain data 

as a sparsifying transformation to improve reconstruction speed as well as quality.

Applications Although the BOLD-response is rather slow, the high speed acquisition of MREG allows separation of BOLD-

effects from cardiac and breathing related pulsatility. The increased sensitivity enables direct detection of the dynamic vari-

ability of resting state networks as well as localization of single interictal events in epilepsy patients. A separate and highly 

intriguing application is aimed at the investigation of the glymphatic system by assessment of the spatiotemporal patterns 

of cardiac and breathing related pulsatility.

Discussion MREG has been developed to push the speed limits of fMRI. Compared to multiband-EPI this allows consider-

ably faster acquisition at the cost of reduced image quality and spatial resolution.

Keywords Magnetic resonance imaging · Functional magnetic resonance imaging

Introduction

The following gives a narrative account of the development 

of the method over the years written by J. Hennig.

The idea to acquire images based on the sensitivity of 

coil profiles alone without any gradients came up during 

the preparation of the Mansfield lecture at ISMRM 2005 

in the Gleason Theater in Miami. My train of thoughts for 

the ultimate speed limit in MR was as follows: What does 

it take to encode an image? Gradients. Why is MR imag-

ing still so painstakingly slow? Because of gradients. So 

how could we get beyond all speed limits for fast imaging? 

By avoiding gradients. Therefore, where do we get spa-

tial information from? Put like that the answer was pretty 

obvious. Around that time multi-coil arrays with multi-

ple individual coil elements became available, so why not 

associate each voxel to one coil element in such an OVOC 
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(one voxel one coil)-experiment [1]? The spatial resolution 

of such an experiment is of course rather poor and given 

by the sensitive volume of each coil element, but the tem-

poral resolution suddenly becomes close to unlimited. The 

OVOC-principle can be applied to any part of the body, but 

we have more or less exclusively focused on brain applica-

tions. Applications for ultrafast BOLD-fMRI as well as 

measurements of breathing- and ECG-related pulsatility 

have been the main areas of application so far. Applied 

to the brain this measurement principle closely resem-

bles the principles of Electroencephalography (EEG), 

therefore, I named the new method MR-Encephalography 

(MREG). The basic principle is the same: measure signals 

within the sensitive range of a detector array. In EEG the 

array consists of multiple electrodes measuring the volt-

age induced by postsynaptic currents at the surface of the 

head, whereas MREG measures the MR-signal under each 

element of a multichannel coil (Fig. 1).

This way one can acquire MR-signals free from the speed 

limitations of gradient switching. The measured signals can 

be presented as signal traces of the individual channels 

(= coils) just as in EEG. Frequency analysis of the measured 

signals shows pronounced peaks corresponding to breathing 

as well as ECG-related signals. Especially the latter shows 

higher harmonics up to ±5 Hz due to the very spiky nature 

of ECG–related signal pulsatility. Signal peaks at higher har-

monics are spread out more and more due to imperfection in 

the periodicity of the ECG-pulse.

Figure 2 shows the result of such an experiment with 

visual stimulation by a flickering checkerboard. Frequency 

analysis of the measured signal traces at the stimulus fre-

quency shows increased signal amplitude in coil elements 

covering the visual cortex.

Compared to EEG a MREG-measurement has some 

intrinsic advantages with respect to localization of the 

signals: In EEG the problem of source localization is a 
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Fig. 1  Basic principle of OVOC-experiment. The signal of each coil 

is separately measured and recorded and can be displayed as multi-

channel signal display just as in EEG (top left). Fourier transfor-

mation of the signal time course reveals distinct peaks attributed to 

breathing and ECG-related signal pulsatility. Due to its very ‘spiky’ 

nature, especially ECG shows pronounced intensity at higher har-

monics. Only the spectrum from channel 10 is shown
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highly underdetermined inverse problem, which produces 

an infinite number of solutions depending on the chosen 

boundary conditions. In MREG we can use a conventional 

MR-image acquired prior to the experiment to set at least 

some boundary conditions to where the signal is coming 

from. A rather direct way to turn the signals into images is 

to multiply independently acquired coil images under the 

respective coil with the respective actual signal amplitude of 

the MREG-acquisition and then do a sum-of-squares com-

bination of the individual coil images (Fig. 3). This way 

one can ultimately reconstruct an image from a single data 

point. Chuck Mistretta, who has adapted this principle in his 

HYPR-scheme [2], was the first to point out that this way the 

signal to noise ratio of the resulting image does not depend 

on the acquisition time of the time-resolved scan, only on the 

template image. He also coined the term ‘Hennig limit’ for 

reconstructing an image from a single data point.

Of course, the spatial information about the location of 

the dynamic signal variation in such an OVOC-experiment is 

rather coarse, but with this approach an imaging speed in the 

megahertz range would be perfectly feasible using a stand-

ard analog-to-digital converter (ADC). There are no physi-

ologically meaningful signals at such high speed, so one 

can invest some of the speed gain into a little bit of spatial 

encoding. Initially the intention was not to make images in 

the true sense, but I thought it would be neat to acquire data 

under, e.g., some ‘depth encoding’ gradient, which encodes 

for the depth localization of some activation signal under the 

skull or by a tangential gradient which would give the lateral 

position with respect to the coil (Fig. 5 in [1]). In this context 

it would make a lot of sense to have the coordinate system 

of the gradients oriented locally to the geometry of each coil 

element rather than globally in the usual x, y, z-directions. 

This led to the concept of parallel imaging in non-bijective, 

curvilinear magnetic field gradients [3] which has become 

a fruitful field of research on its own, culminating in the 

84-channel matrix coil designed and built by Maxim Zait-

sev [4–6]. It has to be shamefully admitted that up to now I 

haven’t succeeded in bringing these two concepts together, 

still too busy optimizing each component on its own. Bring-

ing the concepts of local magnetic fields together with highly 

parallel coil arrays is a considerable technological challenge 

to be explored in the future development of the method.

A sum-of-square reconstruction of weighted template 

images is of course a rather crude way to exploit the infor-

mation content of the measured signals. It does not consider 

that the individual coil profiles show considerable overlap, 

which—together with the coil sensitivities—can be exploited 

using parallel imaging reconstruction. Data acquired with 

one or a few projections are highly undersampled and yield 

very poor image quality when directly subjected to SENSE 

reconstruction. Miki Lustig had published his seminal paper 
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Fig. 2  Relative signal intensity  Ist of the spectral peak at the stimu-

lus frequency compared to baseline in a visual stimulation experiment 

in the individual coil elements of the 64-channel coils used. Sample 

images of coils with high intensity show that the respective coil ele-

ments cover the visual cortex. The relative change is rather small, 

since the activated voxels represent just a small fraction of the total 

signal in each coil
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on compressed sensing in 2007 [7] where he also mentioned 

in the discussion that this can be combined with parallel 

imaging, but I didn’t feel sufficiently confident with this 

new approach to use it for our specific problem. It was not 

quite clear to me, whether the very scarce but rather regular 

undersampled acquisition of a few projections would con-

form to the sparsity constraints which seemed to be essential 

for compressed sensing. I was lucky to know, however, J. 

Honerkamp, Professor for Theoretical Physics at Freiburg 

University, who had supported me a lot in the early days of 

setting up my group. He has published numerous papers and 

books on how to approach ill-posed inverse problems [8] 

using techniques like Tikhonov regularization [9]. So Thimo 

Hugger (publishing under his birthname Grotz), my first 

PhD-student working on MREG, implemented the image 

reconstruction as the regularized solution of an inverse 

problem to improve the spatial definition of our ‘images’. 

The result was what we aptly called the COBRA-sequence 

[10]—a highly undersampled radial acquisition technique 

using only 2–4 projections per time frame. The sampling 

scheme of COBRA is very similar to that of VIPR [11] and 

HYPR [2], all of which use an undersampled radial acquisi-

tion scheme (Fig. 4). In COBRA the same few projections 

are acquired again and again, and the image is reconstructed 

using regularization using a previously acquired reference 

image as template. VIPR uses a golden angle approach to 

radial sampling, where the acquired data can be binned 

together such that a tradeoff between temporal and spatial 

resolution can be made during reconstruction. VIPR recon-

struction does not require a template image as a constraint 

during reconstruction. HYPR uses the same acquisition 

scheme as VIPR but images are reconstructed by incremen-

tally adding multiple projections and using a constrained 

reconstruction based on the fully sampled dataset which 

results from all (or a large number of) projections.

Until then gradients had been used to merely improve 

the spatial localization of the signals and not necessarily to 

produce images. The COBRA-results were very encourag-

ing, however; quite accurate activation maps could be recon-

structed from as few as 3–4 projections (Figs. 7, 8 in [10]). 

The frequency analysis of the signal time courses clearly 

showed the quite strong signals from breathing and ECG 

pulsatility already observed in the OVOC-experiments. The 

high pulsatility of the ECG-dependent signals shows strong 

higher harmonics up to 5 Hz. Based on these findings we set 

our goal to develop spatial encoding schemes which allow 

3D-acquisition within a TR of not more than 100 ms which 

corresponds to a Nyquist limit of ±5 Hz.

VIPR and HYPR are typically applied in 3D-mode. 

Extending the COBRA-approach to 3D by acquiring one 

projection per excitation would not be very time efficient 

especially given the long echo times necessary to achieve 

BOLD contrast. Thimo Hugger together with Benjamin Zah-

neisen showed that multiple projections can be acquired in a 

single shot acquisition by connecting the ends of the single 

projections of a 3D sampling scheme which leads to a rosette 

trajectory [12, 13] (Fig. 4).

The resulting isotropic 3D-volumes showed very high 

sensitivity to detect functional activation. The quality of 

the underlying images is quite reasonable over most of the 

brain but shows pronounced signal loss in areas with strong 

susceptibility effects and field inhomogeneities, which can 

only be gradually improved using a field map correction. 

Closer analyses revealed that the main cause of the signal 

loss lies in the multiple self-crossings of the trajectory in 

the (nominal) center of k-space. Even small off-resonance 

effects lead to data inconsistencies with subsequent signal 

loss and potential artifacts.

As the next step, we, therefore, turned to a non-inter-

secting concentric shell trajectory [14, 15], which led to 

a considerable improvement of the point spread function 

compared to rosettes (Fig. 4 in [15]). The trajectory has an 
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Fig. 3  Activation ‘images’ at the top of the BOLD response (a) and 

during rest (b). Images are generated by sum-of-squares combination 

of reference images of all individual coil elements weighted with the 

actual signal intensity in each coil element. c shows individual sig-

nal time courses in two coils. Signals have been low pass filtered to 

reduce ECG-dependent flickering (solid lines in c). a Corresponds to 

the time indicated by the red vertical line in c, b to the time indicated 

by the blue vertical line
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isotropic PSF which is beneficial for brain wide studies as 

in resting-state fMRI (rsMRI). As shown in Fig. 6 in [15] 

images still show signal voids in areas of strong field inho-

mogeneity, but to a much lesser extent compared to rosettes. 

Since the non-intersecting trajectory avoids data inconsisten-

cies, field map correction works much better.

The isotropic trajectory shows isotropic sensitivity to sus-

ceptibility induced field gradients. It is known, however, that 

susceptibility induced field changes are strongest along the 

main direction of the field (z-direction). This follows from 

the Biot-Savart equation and is also demonstrated experi-

mentally by plotting the histogram of susceptibility induced 

field gradients in the x-, y- and z-direction (Fig. 5). Based on 

this consideration Jakob Asslaender came up with the idea 

to implement a single-shot stack-of-spirals trajectory, which 

is isotropic in x, y but shows a more benign off-resonance 

behavior in the z-direction [16]. At first sight it appears to be 

counterintuitive to use the z-direction—where susceptibil-

ity gradients are strongest—as the slowest encoding direc-

tion. The rationale is given by the monotonous trajectory 

along z which leads primarily to a susceptibility induced 

shift and only to a minor degree to some blurring and signal 

loss. The influence of off-resonance effects and suscepti-

bility gradients is discussed in detail in [16]. Due to the 

3D-acquisition inflowing blood is already at least partially 

saturated. A strong spoiler after the read out trajectory is 

used to minimize spin history effects from flowing blood. 

As shown in Fig. 12 no signals from vessels are directly 

observed, but—predominantly arterial—signals clearly still 

contribute to the observed signal variation. The observed 

pulsations are thus likely a combination of spin history 

effects (especially in CSF regions, where T2 is long) and 

actual local pulsatility [17]. The resulting sequence has 

meanwhile—with some modifications—become our work-

horse sequence for all MREG-applications described in the 

following chapters.

Figure 6 shows an example from mapping the BOLD 

response in the visual cortex and demonstrates the high sen-

sitivity of the technique and its ability to observe and charac-

terize individual activation time courses. Signal time courses 

have been sorted according to the mean arrival time over 

all 4 stimulation periods. Bolus arrival time was calculated 

using the procedure described in [13]: First PCA is applied 

on all activated signal time courses. Individual pixel time 

courses are then modelled by the first n PCA components, 

n = 10 was used here. Pixel timecourses have been smoothed 

and normalized for display. The considerable variability of 

the BOLD response in different voxels is clearly demon-

strated. In the dataset shown, the onset time of the BOLD 

response shows a regional variation with a general tendency 

for the BOLD response to arrive earlier in the central part 

of the visual cortex compared to the peripheral part. The 

a

b

c

Fig. 4  Sampling schemes of COBRA (a) compared to VIPR (b) and 

HYPR (c). The lines under the trajectories indicate the reconstruction 

strategy: COBRA uses repetitive sampling of identical radial spokes 

with reconstruction of each individual timeframe to preserve the tem-

poral fidelity of the scan, VIPR is based on a sophisticated view shar-

ing scheme with a trade-off between temporal and spatial resolution 

(colored lines indicate combinations of data used for reconstruction 

of individual time frames), whereas HYPR generates images with 

high temporal resolution by weighting the final high-resolution image 

with the low-resolution image of individual time frames. Note that 

in all sampling schemes acquisition runs continuously, the collection 

into packages of 4 spokes is for visualization only. The dotted lines 

in the top left diagram in a illustrate how multiple radial spokes are 

converted into a single shot rosette trajectory
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shape of the HRF also shows a considerable variation across 

the activated region. These results are far from definite and 

were shown just for illustration of the capacity of the method 

to detect functional activity of single activations in single 

subject measurements. BOLD onset times between different 

pixels are very consistent within each activation period with 

some distinct variation between activations.

The development of MREG didn’t take place in a vacuum, 

but was accompanied by various approaches of other groups 

to drive the speed limits of (f)MRI. At the time of the origi-

nal conception of the principles of OVOC in 2005, Steve 

Wright had just published his single echo acquisition [18] 

which is based on an array of 64 strip-like coils arranged row 

by row such that gradient encoding for 2D-imaging had to be 

applied only in the direction of the strips, the 2nd direction 

was resolved by the coil array alone. Indeed later I learned 

that the principle of OVOC had been published already in 

1988 by Hutchinson [19]—long before the advent of multi-

coil arrays and parallel imaging. The paper presented purely 

theoretical simulations based on expected individual coil 

profiles placed within each pixel of a MR-image ignoring 

the practical problem of how to actually place an RF-coil 

within the tissue. Coupling between coils was ignored but in 

the discussion a number of quite up-to-date measures were 

described to minimize coupling between coil elements. It 

even mentioned that with a proper solution to the coupling 

problem one might be able to ‘…employ a nest of large 

overlapping detectors in which case the signal-to-noise ratio 

might be largely preserved…’. This barely missed the inven-

tion of the phased array published by Peter Roemer 2 years 

later in 1990 [20].

In parallel to my own work Fa-Hsuan Lin worked on what 

he called Inverse Imaging (InI), the publication of which 

in fact preceded the first MREG-paper and won him the 

Rabi-Award in 2006 [21–25]. In contrast to our isotropic 

approach he used standard parallel imaging with gradient 

encoding in the y–z-(sagittal)-plane and pure coil encoding 

in the x-direction, which resulted in a very anisotropic PSF, 

but still achieved very short acquisition times. A generalized 

version of InI has been suggested by Boyacioğlu [26].

Cartesian single-shot 3D acquisition—echo volumar 

imaging or 3D-EPI—has been around a long time [27] and 

also been used for fMRI [28]. It doesn’t quite reach the tem-

poral performance of MREG, but in combination with con-

trolled aliasing and multi-slab acquisition short repetition 

times down to 371 ms have been reached [29]. A ‘virtual’ 
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Fig. 5  a Field map and (b) map of susceptibility induced field gradient over the brain. c Shows the histogram of the pixel count as a function of 

the field gradient clearly demonstrating the dominance of susceptibility effects in the z-direction



91Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:85–108 

1 3

increase in temporal resolution by time shifted acquisition 

has been demonstrated in [30].

As time went by, simultaneous multi-slice (SMS)-EPI 

was introduced [31–34], which doesn’t quite match the tem-

poral performance of MREG but yields much better image 

quality [35] due to the rather benign artifact behavior of the 

Cartesian k-space trajectory [33, 36–38].

Most recently other groups have been working on ultra-

fast spiral imaging. A repetition time of 200 ms at 2.8 mm 

isotropic resolution has been reported using a T-Hex single-

shot spiral trajectory [39] and 3.5 ms/slice could be achieved 

with 2D-spiral imaging using a dedicated gradient coil [40].

Materials and methods

The k-space trajectory currently used is shown in Fig. 7. It 

consists of a stack of 21 spirals inscribed within a sphere. 

The distance between spirals increases with distance to the 

k-space center, individual spiral elements are sampled with 

variable density. Details about the construction of the trajec-

tory are given in [16].

In a typical acquisition a total of 14,908 data points are 

sampled with a bandwidth of 200 kHz leading to a total 

acquisition time of 74.54 ms. Echo time is 33 ms (k-space 

origin is reached at the beginning of the central spiral seg-

ment). With a TR of 100 ms the flip angle is adjusted to 21° 

corresponding to the Ernst angle for gray matter.

Data are acquired with a 64-channel headcoil, of which 

40 coil elements cover the brain. Based on the reconstructed 

volume of size 64 × 64 × 64 the undersampling factor is ~ 18 

or 2.6 per direction. Direct application of parallel recon-

struction using eg non-Cartesian SENSE shows some arti-

facts due to the high undersampling factor; therefore, a regu-

larized reconstruction is used. Nominal spatial resolution is 

3 mm isotropic, but the actual resolution is lower and ani-

sotropic due to the nature of iterative reconstruction of the 

highly undersampled acquisition. Details are found in [16].

For reference a standard double echo gradient echo 

sequence is typically performed prior to the MREG-acqui-

sition, which is used to calculate coil sensitivity profiles 

as well as a 3D fieldmap. Example settings at 3 T are: 

FOV = 192 mm: TR = 1000 ms, TE1 = 2.3 ms, TE2 = 4.6 ms, 

α = 50° and 64 slices (slice thickness = 3 mm), which yields 
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Fig. 6  Color-coded image display of four consecutive activation peri-

ods of visual stimulation with a flickering checkerboard (20 s on–20 s 

off). Each frame shows normalized signal amplitudes in activated 

voxels (thresholded at t values > 30). The number in each frame repre-

sents the mean and standard deviation of the BOLD arrival time over 

the activated signal time courses. The BOLD arrival time is meas-

ured as the time at which the signal reaches half its maximum in each 

stimulation period. The yellow bar at the bottom indicates the stim-

ulus-on period, which starts 1  s into each frame (vertical red lines). 

The BOLD arrival time map representing the mean arrival time over 

4 stimulation periods is shown on top right, the color bar represents 

the BOLD arrival time in seconds. At bottom right three signal time 

courses at different BOLD arrival times are displayed. Numbers in 

each frame represent the mean BOLD arrival time and standard devi-

ation for each stimulation period. The mean arrival time over all 4 

periods is 5.99 ± 1.25 s



92 Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:85–108

1 3

a 3D-dataset of identical matrix size as the MREG-data in 

in 64 s.

Coil sensitivities are calculated by employing the method 

by Walsh [41] from the same dataset. For fieldmap calcula-

tion coil images are combined voxelwise based on the maxi-

mum intensity of the absolute values over all coils, the field 

map is then calculated from the phase difference between the 

two echoes. Phase unwrapping is performed with PRELUDE 

[42] provided by the FSL toolbox (https ://www.fmrib .ox.

ac.uk/fsl).

Reconstruction

Using the notation from [43] the general signal equation is 

written as

where s represents the measured signal in all coils, E is the 

forward operator representing the measurement process and 

m is the image to be reconstructed. Equation (1) is solved 

by regularized iterative reconstruction minimizing the cost 

function f(m):

Here, Ψ indicates some (optional) sparsity transform such 

as total variation (TV) or wavelet transform, n could be 1 

or 2 representing L1- or L2-Norm. Data in most practical 

applications are reconstructed without additional sparsity 

transform, i.e., Ψ corresponds to the identity matrix.

The reconstruction framework for iterative reconstruc-

tion had already been set up for the previous trajectories. A 

(1)s = Em,

(2)f (m) = ∥Em − s∥2 + �
n
n
∥Ψm∥n

n
.

detailed description is found in [12]. The forward operator 

E is implemented as an operator that first multiplies the 

image with the coil sensitivities and thereafter performs 

a non-uniform fast Fourier transformation (NUFFT) with 

min–max interpolation [44]. Off-resonance correction is 

performed in a segmented approach described by Sutton 

[45].

Various penalty terms for iterative reconstruction have 

been explored, most often used is Tikhonov regularization 

which is based on a linear conjugate gradient (CG) algo-

rithm with L2 norm and L1-norm regularization. The lat-

ter uses a non-linear conjugate gradient algorithm, which 

takes much longer but leads to better image quality by 

its edge-preserving nature. Transformation in the wavelet 

domain did not improve performance, most likely due to 

the non-random sampling trajectory.

Global frequency changes during the acquisition of the 

time series are corrected by the “dynamic off-resonance 

in k-space” (DORK) approach suggested by Pfeuffer [46], 

corrections of field inhomogeneities based on the sepa-

rately acquire field map.

Image reconstruction takes about 50 s per volume per 

core without off-resonance correction and up to 10 times 

longer with off-resonance correction depending on the 

number of time segmentation steps used. Even on a com-

puter cluster with multiple cores total reconstruction time 

of the 3–10,000 time frames typically acquired within an 

experimental session takes several hours or even days if 

the slower L1-reconstruction is used.
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Fig. 7  Projections of the actual k-space trajectory onto the kx-kz-resp. kx-ky-plane
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Real‑time implementation of MREG using targeted 
reconstruction

The application of the ultrafast data acquisition achieved by 

MREG to real time-feedback applications appears to be very 

attractive, since it could reduce the long response delays 

associated with standard acquisitions. However, the long 

reconstruction times necessary seem to defy such an appli-

cation. Given this challenge in a collaboration with Rainer 

Goebel from Maastricht Bruno Riemenschneider came up 

with the concept of targeted reconstruction [43, 47].

Formally the resulting 3D-image m in Eq. (1) is associ-

ated to the measured signal by the pseudoinverse:

If one wants to reconstruct summed data from an arbi-

trary subvolume of the total image m, this can be derived by 

forming the scalar product of m with a vector V containing 

arbitrary voxel weights representing the subvolume. Using 

basic properties of the scalar product this yields

where

is a linear combination of lines of the complete reconstruc-

tion matrix, weighted by V. This means that the time con-

suming iterative reconstruction to form the pseudoinverse 

has to be performed only once, all following signals from 

the desired subvolume can then be calculated as a scalar 

product, which is fast. Implementation is pretty straightfor-

ward for calculation of single pixel time courses (Fig. 4 in 

ref. [43]). Reconstruction over larger ROIs with considerable 

phase variations is more challenging. In fully reconstructed 

datasets absolute values of pixel intensities are used to form 

ROI signals. The targeted reconstruction algorithm works 

inherently on complex data, so any dephasing over a ROI 

will lead to signal loss. This can be avoided by including a 

static phase correction which leads to near-perfect retrieval 

of ROI time courses (Fig. 8).

In the actual implementation it was demonstrated that sig-

nals from up to 30 predefined subvolumes can be calculated 

within the repetition time of 100 ms.

Time‑domain principal component reconstruction 
(tPCR)

The targeted reconstruction algorithm is very efficient 

for reconstructing signal time courses within predefined 

ROIs, but it doesn’t help to accelerate the time consuming 
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framewise reconstruction used for full reconstruction. Fei 

Wang has developed a method to accelerate the recon-

struction by first performing a principal component analy-

sis (PCA) on the raw data, then reconstructing each PCA 

component followed by recombination of all components 

to yield the full 3D-time series [48]. At first sight this time-

domain principal component reconstruction (tPCR) seems 

to increase the computational burden by the additional effort 

to perform PCA on the coil-wise raw data. The rationale 

why this may still reduce overall reconstruction time was 

the insight that higher PCA-components contain less and 

less relevant information and may thus be reconstructed 

with fewer iterations. In simulation experiments as well as 

experimentally it could be demonstrated that the number 

of iterations necessary for reconstruction is higher for the 

low order PCA-components but decreases quickly for higher 

order components. For frame-wise reconstruction the num-

ber of iterations remains constant as individual timeframes 

are highly similar to each other. As a result the overall num-

ber of iterations necessary for tPCR is considerably reduced.

For a linear reconstruction algorithm the recombined 

PCA-components should be exactly identical to the result 

of frame wise reconstruction. Since iterative reconstruction 

introduces some nonlinearity in the reconstruction process, 

this is not necessarily the case for tPCR. The results of the 

simulations shown in [48] indeed demonstrate that tPCR is 

not only faster but also reduces the reconstruction error. This 

can be explained by the fact that PCA represents the densest 

expression of data leading to an overall increase of sparsity 
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Fig. 8  Signal time course over the visual cortex generated as the sum 

of the magnitude signals of a fully reconstructed dataset (black) com-

pared to the complex sum reconstructed with targeted reconstruction 

without (blue) and with (red) correction for static phase (same data 

as in Fig.  5 in ref. [43] were used). Reference signal and complex 

sum with phase correction are nearly identical, the red line has been 

slightly shifted in the plot for clarity
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of components and thus to a reduced regularization error. 

This is supported by the fact that the improvement is larger 

for reconstruction with L1-Norm compared to L2-Norm.

A breathhold paradigm was used for experimental dem-

onstration in [48]. tPCR works equally well for task fMRI 

as well as resting state fMRI. Figure 9 demonstrates results 

from a resting state examination showing practically identi-

cal RSNs for frame wise reconstruction compared to tPCR, 

but with a reduction in overall computation time of a factor 

of ~ 5 for tPCR.

As a next step we are currently looking into how many 

PCA-components are actually necessary to reliably detect 

Fig. 9  Comparison of ICA-

based RSN-analysis for frame-

wise reconstruction (fwR) with 

temporal principle component 

reconstruction (tPCR). Detected 

default mode network (DMN), 

auditory, and primary visual 

networks are virtually identical 

for both reconstruction modes

DMN auditory visual

fwR      tPCR fwR      tPCR fwR      tPCR

0 1 2 3 4 5     1/s

resp. ECG

1st     2nd                       3rd harmonic

Fig. 10  Image representation of frequency spectra of signal time-

course as a function of the percentage of PCA-components used in 

the final reconstruction. The horizontal axis represents frequency, the 

vertical axis represents the percentage of PCA-components used in 

the final recombination of the PCA-components. Signal intensities are 

scaled in arbitrary units, the yellow bands represent physiological sig-

nals as indicated at the top
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activation. Figure 10 shows as a preliminary result the global 

frequency spectrum as a function of the percentage of com-

ponents used. The main effect of leaving out the higher order 

components is a reduction of the noise level in between the 

peaks of the physiological signals while the signals them-

selves stay (nearly) constant. Only towards the very low 

end when < 5% of the components are used the physiologi-

cal signals suddenly vanish. Figure 11 demonstrates that 

this also applies for the detection of RSNs. ICA-analysis 

of a dataset with a varying percentage of components used 

shows hardly any change in the detected networks even when 

much < 10% of the components are used (movie in supple-

mentary materials). A thorough analysis of the sensitivity 

to detect RSNs as well as in task based fMRI is currently 

under way. It should be noted that the gain in computation 

speed does not directly scale with the percentage reduction 

of components, since more iterations are required for the low 

order components (s.Fig. 2 in [48]). Still a reduction of com-

putation time by another factor of 5 appears to be feasible. 

Activation studies

Having resolved many of the technical aspects associated 

with the fast image acquisition and reconstruction, there was 

great excitement to investigate how MREG could improve 

the results of practical fMRI applications. Following the 

analysis of simple fMRI paradigms such as visual or motor 

tasks, it became immediately obvious that MREG led to the 

detection of much stronger functional activations compared 

to EPI [15]. A broad range of fMRI applications could ben-

efit from this improved sensitivity, ranging from research 

into subtle brain activity changes that could now be more 

easily detected, to clinical functional mapping scans that 

might potentially be considerably shortened without having 

to sacrifice statistical power.

Yet, it is actually not trivial why the high temporal resolu-

tions achieved by MREG should yield higher fMRI sensitivi-

ties. While it had long been recognized that fMRI analyses 

would benefit from shortened TRs, this tendency had been 

expected to break down as TRs reached below ~ 1 s [49]. 

This is because TRs much lower than the T1 relaxation time 

(~ 1300 ms in gray matter at 3 T) only allow partial recovery 

of the longitudinal magnetization, necessitating the use of 

lower flip angles and yielding a lower MR signal ampli-

tude (and corresponding lower SNR) which more or less 

balances out the improved sampling efficiency of 3D-acqui-

sitions. However, statistical power in fMRI is only partially 

dependent on image SNR, since noise in fMRI time series 

is actually a combination of both thermal noise, on which 

SNR is based, and physiological noise, which depends on 

MR signal strength [50]. Analysis of the signal variation 

observed in MREG demonstrates that contributions from 

ECG-pulsatility contribute a large part of the physiologi-

cal noise. Figure 12a shows the maximum intensity projec-

tion (MIP) through a 4.8 cm thick slab at the height of the 

visual cortex, and Fig. 12b shows the corresponding MIP 

100 %

50 %

10 % 0.1 %

2 %

5 %

Fig. 11  ICA reconstruction of the default mode network using a different percentage of the PCA components. In the example shown even 2% of 

the components deliver nearly identical networks compared to full reconstruction. Only at 0.1% network reconstruction breaks down



96 Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:85–108

1 3

of the pixel-wise temporal noise measured as the standard 

deviation of the signal timecourse after linear detrending. 

Although no vessels are seen in (a), vascular signals clearly 

stand out in (b) due to their high pulsatility. A plot of the 

signal intensity of the frequency peak at the ECG-frequency 

against temporal noise shows a clear correlation (e). Filter-

ing out the ECG-peak at 1.2 ± 0.1 Hz from the frequency 

spectrum leads to pronounced reduction of vascular signals 

(c), which are, however, still clearly visible. A plot of the 

reduction of temporal noise after filtering (f) shows that 

this alone reduces temporal noise by up to 50%. In spite of 

the reduction, vessels are still clearly visible in (c). After 

low-pass filtering with a cut-off of 1 Hz most (but not all) 

vascular signals vanish.

This clearly demonstrates that at the typical spatial reso-

lutions employed in MREG (3 mm isotropic), physiological 

noise dominates over thermal noise, so that even significant 

reductions in SNR will only result in small degradations in 

temporal SNR (tSNR) [51]. Indeed, we investigated BOLD 

activations associated with interictal epileptic discharges 

recorded with simultaneous EEG; such studies often show 

low sensitivity, yet are highly clinically relevant for the pre-

surgical evaluation of focal epilepsy patients. Compared to 

conventional EPI acquisitions, MREG only resulted in a 

18.4% reduction in tSNR, and this was more than compen-

sated by the increased statistical power from the high tem-

poral resolution, resulting in a much increased detectability 

of epileptic brain areas (Fig. 13; [52]).

As for why a higher temporal resolution yields higher 

fMRI sensitivity, this is primarily because the higher number 

of time points directly leads to higher noise degrees of free-

dom in the fMRI time series analysis, yielding more reliable 

estimates of statistical parameters. The same effect arises 

when increasing the length of the scan, but this is of course 

a more expensive alternative. A key point, however, is that 

a longer scan yields additional fMRI time points that are 
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Fig. 12  a Maximum intensity projection (MIP) through a 4.8 cam 

thick slab at the height of the visual cortex, (b) corresponding MIP of 

the pixel-wise temporal noise measured as the standard deviation of 

the signal timecourse after linear detrending. c MIP of the pixelwise 

temporal noise after filtering out the ECG-peak at 1.2 ± 0.1 Hz from 

the frequency spectrum. d MIP of the temporal noise after low pass 

filtering with a cutoff frequency of 1 Hz. e Plot of the signal intensity 

of the frequency peak at the ECG-frequency against temporal noise 

shows a clear correlation e. f Reduction of temporal noise after filter-

ing out the ECG. Peak alone (corresponding to c)
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largely independent of the initially acquired time points, so 

that the increase in degrees of freedom matches the increase 

in the number of time points, i.e., a doubling of the scan 

length, for example, yields a doubling of the degrees of 

freedom. In contrast, additional time points resulting from 

a higher temporal resolution are not independent of each 

other. As BOLD time series primarily measure vascular 

signals that are physiologically sluggish, neighboring fMRI 

time points exhibit a high degree of correlation, especially at 

high temporal resolutions. As such, the increase in degrees 

of freedom is actually lower than the increase in the number 

of time points. The statistical analysis must then correctly 

model the time series autocorrelations and degrees of free-

dom to avoid any overestimate of the statistical parameters 

and corresponding loss of specificity. The groundwork for 

such modeling had been established early in the history of 

fMRI by Worsley and Friston [53]. Yet, the proposed models 

and subsequent implementations in fMRI statistical analy-

sis packages only considered temporal autocorrelations in 

conventional, low temporal resolution fMRI data. Initial 

activation studies using fast fMRI data thus reported very 

large statistical scores that were, however, somewhat inflated 

[15, 28].We thus started to perform subsequent data analyses 

using the FMRISTAT toolbox, which is not widely used, 

but which allows modeling the noise as a spatially varying, 

high-order autoregressive process [54, 55]. This provided 

a well-fitting model of MREG time series autocorrelations 

while reducing the inflated statistical scores, which were 

nevertheless still ~ 60% higher than the scores obtained with 

conventional EPI [52]. An even higher detectability could 

be obtained using the ability of MREG to characterize the 

region- and patient-specific hemodynamic response function 

at high temporal resolutions [56]. This higher sensitivity 

notably allowed the detection of widespread cerebral areas 

associated with epileptic discharges [57–59]. However, there 

was still some evidence of bias in the statistical analysis 

[60]. It is only recently that analysis methods better suited 

to fast fMRI have emerged, which now allows to take full 

advantage of high temporal resolution data in fMRI activa-

tion studies [34, 61, 62].

Resting‑state networks

More than high statistical power, MREG opened up novel 

opportunities for the characterization of BOLD time series 

that had not been previously accessible at lower temporal 

resolutions. While fMRI signals have long been considered 

to be slowly varying in time, there was now the possibil-

ity to explore whether faster BOLD fluctuations could be 

physiologically meaningful. In addition to cardio-respiratory 

pulsations, which are no longer aliased at high temporal 

resolutions [63], high-frequency signals may also include 

Fig. 13  BOLD activation maps associated with left frontal epileptic 

spikes in a patient with focal cortical dysplasia with a previous frontal 

resection that did not result in seizure freedom. While the EPI map 

shows a small activation near the resection border, the MREG map 

reveals a much larger activated area extending into parietal regions. 

In the left upper corner a typical epileptic spikes is visible in the 

EEG trace over the left fronto-temporal area as well as a voltage map 

derived from this spike. (Fig. 5 from Jacobs et al. [52]) adapted from
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BOLD-related temporal variations, for example due to fast 

transients in the hemodynamic response, which have long 

been described as potentially more direct reflections of neu-

ronal activity than the slow hemodynamic peak [64–66]. 

Moreover, there is evidence that the hemodynamic response 

can actually rise and recover much faster than previously 

thought, particularly during the resting state, which would 

then manifest as BOLD fluctuations at higher frequencies. 

We thus investigated high-frequency functional connectiv-

ity within known resting-state networks [67]. Even when 

the MREG time series were bandpass-filtered between 

0.5–0.8 Hz, thus completely removing the slow 0.01–0.1 Hz 

fluctuations typically associated with BOLD signals (and 

also avoiding frequency bands associated with respiratory 

and cardiac pulsations), strong connectivity was observed in 

primary visual and motor networks (Fig. 14). Moreover, the 

high-frequency networks were much more stable than the 

corresponding low-frequency networks. This was especially 

the case when considering connectivity patterns calculated 

over small time windows, as short as 30 s. This follows from 

the fact that a time window must be of sufficient length to 

cover at least one full cycle of a given oscillation, and there-

fore, slow oscillations require longer windows [68]. Fur-

ther investigations using independent component analysis 

revealed that a more reliable extraction of functional connec-

tivity patterns in short time windows could be obtained with 

MREG in all common resting-state networks (Fig. 15; [69]).

As resting-state networks could now be characterized 

in short time intervals, this may suggest that MREG could 

be used to dramatically shorten the length of resting-state 

fMRI scans without sacrificing sensitivity. However, func-

tional connectivity is known to vary over time, even during a 

supposedly stable resting state. These dynamic connectivity 

fluctuations could be potentially relevant biomarkers of 

brain function and can only be captured over the course of 

several minutes [70]. High temporal resolution fMRI can 

nevertheless be highly beneficial, since it can reliably meas-

ure functional connectivity variations occurring over short 

time scales, even as these fast fluctuations occur as part of a 

longer scan overall [71, 72].

To facilitate the investigation of fast BOLD fluctuations, 

it was then natural to combine MREG with simultaneous 

EEG, whose high temporal resolution would provide useful 

baseline recordings of cerebral activity. While simultane-

ous EEG-fMRI had been previously almost exclusively used 

with EPI, it was quickly established that fast acquisitions and 

spiral trajectories did not cause additional safety issues [40, 

73], nor prevent an effective removal of MR gradient arti-

facts from the EEG [74, 75]. As a starting point, we focused 

on the default-mode network (DMN), which is associated 

with the brain’s baseline state, giving it a central role as 

a hub of global brain activity [76]. Time-varying correla-

tions between BOLD and EEG oscillations closely tracked 

dynamic DMN connectivity, supporting the neurophysi-

ological origin of fMRI dynamic connectivity [77]. A case 

report in an experienced meditator who experienced a state 

of so-called “content-free awareness” further suggested that 

dynamic EEG and DMN connectivities were modulated by 

the state of consciousness [78]. We thus expect fast fMRI to 

keep playing an important role as the field of dynamic con-

nectivity analyses continues to grow.

While resting-state functional connectivity is based on 

time series correlations, which are undirected measures, one 

may wonder whether it may be possible to infer the direc-

tionality of the connections from the fMRI data. In particu-

lar, high temporal resolution fMRI can allow the detection 

Fig. 14  Resting-state connectivity in the primary motor cortex in the 

0.01–0.1 Hz (top row) and 0.5–0.8 Hz (bottom row) frequency bands. 

While the connectivity calculated over the full-length scan (left col-

umn) involves the same motor areas in both frequency bands, the con-

nectivity calculated over 30-s time windows (right columns) is highly 

variable in the 0.01–0.1 Hz band, also involving spurious regions out-

side motor areas. The calculated sliding-window connectivity is much 

more reliable in the 0.5–0.8 Hz band (adapted from Fig. 4 from Lee 

et al. [67])



99Magnetic Resonance Materials in Physics, Biology and Medicine (2021) 34:85–108 

1 3

of small propagation delays of neuronal activity. This was 

well demonstrated by Fa-Hsuan Lin using inverse imaging, 

where time delays of hundreds of milliseconds in visual and 

motor areas could be clearly resolved at the group level [79]. 

In individual subjects, the spatial variability of the hemody-

namic response function is, however, a major confound [80], 

but the results nonetheless showed that at the group level, 

inferences on hemodynamic delays could still be reliably 

performed [79]. Using MREG, we could thus characterize 

the dynamic lag structure of the DMN [81, 82].

Yet, there was still interest in inferring directed connec-

tions from fast fMRI data independently of hemodynamic 

delays, which would allow the analysis to be performed at 

the individual level. We thus developed a method to esti-

mate the directed effective connectivity from the undi-

rected covariance matrix of the BOLD time series [83]. 

The method is based on the fact that so-called “collider” 

structures, in which two uncorrelated variables contribute 

to the activity of a third variable, lead to specific entries 

in the inverse covariance matrix. With the aid of a sparsity 

prior, it then becomes possible to identify a unique directed 

network structure that best explains the observed data. We 

could additionally show that the estimation was much less 

sensitive to hemodynamic variability than lag-based meth-

ods, and that the connectivities were more consistent when 

calculated using high-frequency than low-frequency BOLD 

fluctuations [84]. The measurement of these high-frequency 

temporal signals crucially depended on the high temporal 

resolution provided by MREG.

MREG‑based imaging of physiological brain 
pulsations

Hans Berger, during his development of electroencepha-

lography in early 1900s, described three basic brain waves 

within the brain: “eine pulsatonische, eine respiratorische 

und vasomotorische Bewegung” [85]. In 1995 Bharat Biswal 

connected the vasomotor waves as a phenomenon related to 

the spontaneous functional connectivity fluctuations in pri-

mary sensory cortices [86, 87]. Over decades, the two other 

physiological brain pulsations, i.e., the cardiorespiratory 

pulsations, have largely been regarded as noise that obscures 

Fig. 15  Common resting-state 

networks extracted by ICA 

from EPI (top) and MREG 

(bottom) data using various 

time window lengths (shown in 

the multiple columns). Images 

with a red background denote 

that a component correspond-

ing to the given network could 

not be found. For time window 

longer than 300 s, all networks 

could be successfully detected 

with both sequences. However, 

for shorter time windows, the 

detection is only reliable when 

using MREG data. (adapted 

from Figs.  7, 8 from Akin et al. 

[69])
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and aliases over cued and spontaneous brain activations in 

the fMRI BOLD signal [88–90].

However, the physiological noise structure in even rela-

tively slowly sampled (TR > 1 s) fMRI BOLD signal has 

gained increasing interest in both physiological and clinical 

viewpoints. Heart rate variability and respiration has been 

shown to be modulating cognitive performance and brain 

activation responses [91, 92]. Standard deviation as well as 

variance of the BOLD signal itself has been shown to cor-

relate significantly with pathological conditions like Alzhei-

mer’s disease [93–96], small vessel disease [97], stroke [98], 

and chronic kidney disease-related changes in brain [99].

The interest in brain pulsations as a source of valuable 

new information have surged after the discovery of the 

glymphatic brain clearance system in 2013 by Nedergaard 

[100]. The glymphatic mechanisms have been shown to be 

a key element in several major forms of neuropathology 

including Alzheimer’s disease, stroke, trauma, and epilepsy 

[101–109]. The glymphatic brain clearance is driven by 

vascular pulsations that convect both brain metabolites and 

waste along CSF water in paravascular spaces in humans 

and mice [110, 111].

Glymphatic brain research has mostly focused on follow-

ing contrast media flow along periarterial CSF spaces in 

mice in vivo microscopy and MRI techniques [100, 110, 

112]. In humans the contrast media has been injected in lum-

bar intrathecal space or directly into brain interstitium via 

capillary blood brain barrier-opening in therapeutic AD and 

ALS studies [113–115]. The human interstitial brain tissue 

has been shown to become cleared from contrast media in 

clearly supra-diffusive speeds by the glymphatic mechanism 

[113–115].

Although the contrast media studies precisely map the 

epitope paravascular convection of foreign materials in the 

glymphatic system of the brain, the invasive nature of these 

studies makes them less feasible for routine large scale clini-

cal settings. Instead of invasive MR-contrast media injec-

tions, different novel approaches in estimating brain water 

molecule transport have emerged and these could give 

information on how different diseases affect the glymphatic 

mechanism [116–118].

Ultrafast scanning as a tool for physiological pulse 
mapping.

With the emergence of ultrafast scanning sequences like 

MREG it now became possible to detect physiological 

brain pulsations over the whole brain with critical sam-

pling rates < 300 ms thatavoid pulse aliasing [72, 119]. 

As can be seen from the MREG BOLD signal in Fig. 16, 

both the cardiac and respiratory present clear brain pulsa-

tions that can be separated from the very low frequency 

(VLF < 0.1  Hz) pulsations and also from 1/f thermal 

noise. The fast scanning offers a clear measurement of the 

Fig. 16  Example of human full band MREG signal with FFT power 

spectrum presenting three main physiological pulsations in the spec-

trum peaks. MREG signal was further band passed for quantification 

and mapping into anatomy. The VLF band and representative signal 

in orange, respiratory pulsations in green and cardiac pulsations in 

red, respectively, overlaid over MNI 152 space. Please also notice the 

harmonic power spectrum peaks over the full 5 Hz power spectrum 

highlighting the precision of the MREG signal
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pulsations that may offer an alternative and more accurate 

physiological image contrast, along with the previously 

stated increases in statistical power.

In microscopical in vivo imaging the main drive of the 

glymphatic convection has been related to cardiovascular 

pulsations. In humans; however, the known three sources 

of brain pulsation introduce a more macroscopical scale 

effect that can also be detected by fast MRI scanning 

[119–121]. The cardiovascular pulsation induces a cen-

trifugal pulse in the brain directed from the center outward 

in sync with the cardiac cycle, and the respiration induces 

a more centripetal pulse extending from the brain surface 

towards the center. Both of these pulses also affect the 

CSF spaces throughout the brain, most remarkably in the 

ventricles [119]. The very low frequency (VLF) vasomotor 

waves then present slowly moving patterns of seen over 

brain cortex that can also be seen in conventional fMRI 

BOLD signals [72, 122–124].

It seems that the source of the detected MREG signal 

changes in cardiorespiratory frequencies originate from vas-

cular as well as extravascular sources like the water move-

ment impulses that the physiological pulses induce inside the 

brain [125]. The BOLD signal is reflecting spin coherence 

from intra and perivascular water protons as they are being 

modulated by regional deoxyhemoglobin (Hb) concentration 

(2/3) and blood volume (1/3) as a slow response to neuronal 

activity [126]. In contrast to previous beliefs during the birth 

of theories on BOLD signal origins, the glymphatic research 

clearly shows that the water (and the molecules/aggregates 

it carries) does not stand still in paravascular space but is 

driven by physiological pulsations.

The cardiovascular impulses introduce propagating waves 

of spin coherence perturbations that traverse the very liq-

uiform brain tissue which are captured by the MREG sig-

nal. Both echo-volumar imaging (EVI) as well as MREG 

have detected a drop in arterial signal intensity upon arterial 

impulse arrival and this impulse amplitude reduces when 

moving along the tissue [72, 119, 127]. This signal change in 

the (peri)arterial areas is dominated by the cardiac impulse 

by flow effects. As the arteries continuously have > 97% 

 SpO2 saturation, the BOLD effect from Hb is minimal.

Towards the capillaries and especially in the veins/ven-

ules, the [Hb] concentration increases and BOLD effect 

starts to dominate. Similarly the cardiac flow impulses 

become weakened into a more laminar steady state flow that 

enables better gas exchange between tissue compartments.

The respiration related pressure changes in the thorax are 

the main driver of both the intracranial CSF flow and venous 

blood return. The incompressible skull along with the only 

incompressible venous sinuses in the body surrounded by 

dura mater around the brain and spinal cord introduce unique 

pressure conductance environment for the CNS venous 

sinuses. This unique physiological construction makes it 

possible that the pressure changes in the thoracic area are 

readily conducted into the brain and spinal veins [108].

While the inspiration draws venous blood from the brain, 

the cerebrospinal fluid produces a counter inflow as the rigid 

cranial volume stays constant [120, 121]. The same mecha-

nism may take place in the penetrating paravenous space and 

cortical veins creating efflux waves leading waste material 

out of the CNS. The respiratory pulsation affects both the 

venous blood oxygenation and volume and thus affect T2* 

weighted BOLD signal in MREG measurements; the route 

is reverse to normal activation hyperemia but is based on 

known venous blood flow physiology and it has now become 

more accurately accessible via fast scanning sequences.

Clinical relevance of physiological pulsations

Early MREG experiments have given encouraging results 

with respect to clinically feasible diagnostic markers. In line 

with previous analyses of BOLD signal variance, we have 

been able to show with three distinct datasets that the brain 

BOLD signal variance is altered in Alzheimer’s disease [93, 

94, 96, 97, 99]. An example is shown in Fig. 17.

Furthermore, the source of the abnormal variance seems 

to be the cardiovascular rather than any other pulsation 

source. A novel approach in analyzing the physiological 

brain impulse propagation in the brain—based on optical 

flow analysis—was able to detect markedly altered variance 

also in the propagation of cardiovascular brain impulse in 

Alzheimer brains [128]. Further analyses indicate more pro-

nounced abnormalities in the directionality and magnitude 

of brain pulsations as well (Rajna et al., submitted).

Intractable epilepsy has been shown to be related to 

AQP4 water channel absence from the perivascular astro-

cytic endfeet lining the perivascular glymphatic space [129]. 

The AQP4 molecule is a key molecule for the glymphatic 

clearance of the interstitial space as the removal of b-amy-

loid in AQP−/− knockout mice is reduced by 60% [130]. 

The brain signal variance was shown to be altered in intrac-

table epilepsy patients in the respiratory frequency range 

[131]. Intracranial EcoG needle measurements in intracta-

ble epilepsy patients have also demonstrated a strong drive 

of brain activity LPF, MUA by respiratory brain pulsations 

[132].

Interestingly the MREG data was able to show individual 

abnormalities of brain signal variance in two consecutive 

scans compared to age-matched control population. We have 

enlarged the MREG scan population into a two-center study 

and detected a repeated abnormality of epileptic brain pul-

satility abnormality > 6 standard deviations above normal 

mean values (Kananen et al., submitted) (Fig. 18). This in 

practice means that individual-level changes can be seen 

in patients, which has not been possible with prior BOLD 

scanning methods. The critical sampling rate of the MREG 
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signal ensured separation of pulsations and offers needed 

statistical power that enables individual level diagnostic 

capability. Furthermore, spectral entropy of the MREG and 

other multimodal data (EEG, NIRS) obtained simultane-

ously suggest a spectral entropy alteration in intractable 

epilepsy [133].

Discussion and outlook

The concept of MREG originally formulated as a mere 

‘Gedankenexperiment’ has come a long way since its 

original conception. Originally it was meant to produce 

Fig. 17  Example of optical flow analysis of MREG cardiac pulse 

propagation over the brain from the Alzheimer brain analysis reveal-

ing momentary pulsation abnormality occurring during the cardiac 

impulse arrival in the brain. The abnormality is highly variable over 

time and space and affects the BOLD signal variance significantly, 

see also [81]. Due to critical 10 Hz sampling rate of the MREG, the 

abnormality can be quantified with unprecedented spatiotemporal 

precision. To see how the cardiac impulse propagates over the brain 

in video, please see also: https ://www.newsc ienti st.com/artic le/mg231 

30864 -200-best-look-yet-at-how-our-brain s-sewag e-syste m-flush es-

out-waste /

Fig. 18  The respiratory pulsa-

tion power is altered signifi-

cantly in epilepsy. Top: the 

mean of control and patient res-

piratory brain pulsation power. 

Bottom: the significant pulsa-

tion power changes (p < 0.05 

FSL randomize TFCE-corrected 

for voxel-level). Right panel: 

patient examples showing indi-

vidual patient’s increase > 10 

standard deviations above 

control (n = 100) respiratory 

pulsation power

https://www.newscientist.com/article/mg23130864-200-best-look-yet-at-how-our-brains-sewage-system-flushes-out-waste/
https://www.newscientist.com/article/mg23130864-200-best-look-yet-at-how-our-brains-sewage-system-flushes-out-waste/
https://www.newscientist.com/article/mg23130864-200-best-look-yet-at-how-our-brains-sewage-system-flushes-out-waste/
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time series signals from rather large volumes selected by 

coil sensitivity profiles alone, but it quickly evolved to 

produce quite decent looking 3D-datasets in a time, that 

is still short compared to ‘proper’ imaging. It has to be 

said that with the parallel development of compressed 

sensing the boundary between the concepts of MREG and 

‘proper imaging’ have been smeared out, indeed MREG 

can be regarded as a rather extreme implementation of 

compressed sensing with a high total undersampling factor 

of 18 for a 3D-acquisition. There is no magic associated 

with the ultrafast sampling speed of MREG. The key factor 

is to use a trajectory which allows isotropic undersampling 

in all three spatial dimensions. The undersampling factor 

of 2.6 in each direction is still within the theoretical lim-

its demonstrated by Wiesinger [134]. Other trajectories 

offer similar acceleration, amongst the three types we have 

used (rosettes, concentric shells, stack-of-spirals) the latter 

offers the most benign artifact behavior. One lesson we 

learned in going through various types of trajectories is 

that intersections (like rosettes) are problematic and may 

easily lead to artifacts.

With rectilinear trajectories one gradient (normally called 

the readout gradient) is almost by definition the ‘lazy’ one 

contributing little to acceleration, which has to be made up 

in the other dimensions.

Simultaneous multi-slice (SMS)-InI has reported a short 

TR of 100 ms but at the cost of even lower spatial resolution 

of 5 mm compared to MREG [135].

SMS-EPI has quite dramatically improved acquisition 

speed in conventional fMRI. Multiband excitation in com-

bination with blipped z-gradients allows unprecedented 

acceleration in the z-direction. The rectilinear k-space 

trajectory yields good image quality and benign artifacts 

but allows only modest in-plane acceleration. The lowest 

reasonable TR before through-slice artifacts start creeping 

in has shown to be in the range of 400–600 ms [34] at a 

spatial resolution of 2.5 × 2.5 mm (in plane) and 3 mm slice 

thickness. It has indeed been a quite tantalizing problem to 

find a compromise between the high temporal resolution of 

MREG and the better image quality and spatial resolution of 

SMS-EPI. A combination of a stack-of-spiral trajectory with 

multiband excitation [136] has shown to bring some at least 

nominal improvement in spatial resolution, further improve-

ments have been shown with a rotated stack-of-spirals partial 

acquisition by the same group of authors [137]. We have 

pursued a segmented approach that shows some improve-

ment in image quality at longer TR of ~ 300 ms at still mod-

erate spatial resolution of 3 × 3 × 3  mm3 (Fig. 19). As an 

alternate approach to improve image quality and to introduce 

spin-echo contrast we have implemented a spin-echo based 

MREG. This allows maintaining a still short TR of ~ 250 ms 

at the cost of lower SNR [138] (Fig. 20). We are still work-

ing towards our next goal which would be ~ 2 mm isotropic 

resolution at < 200 ms repetition time. We suspect that this 

will require not only methodological improvements, but also 

improved hardware including coil arrays with more elements 

as well as faster gradients. At the current status MREG is the 

method of choice for applications, where acquisition speed 

is the primary objective, if one can live with lower imaging 

speed, SMS-EPI wins out by its superior image quality. For 

higher fields like 7 T or beyond, rectilinear trajectories seem 

to become a necessity.

It would be actually quite tempting to try out MREG 

on low field systems, where it may offer decent anatomi-

cal imaging at unprecedented imaging speed. This would 

require a low field magnet with still high gradient perfor-

mance—a not too common combination.

So far we have distributed the method to ~ 20 research insti-

tutes worldwide. The main obstacle to a more widespread dis-

tribution most probably lies in the long reconstruction times 

and necessity to perform reconstruction on a separate hard-

ware. The improvement in reconstruction by tPCR together 

1-shot 2-shot 3-shot
a b

Fig. 19  a Result from 1-shot, 2-shot, and 3-shot segmented MREG 

acquired with TR of 96, 180, and 264  ms, respectively, shows 

improvement in image quality of segmented acquisition. b Compari-

son of seed-based RSN for 1-shot (top) and 3-shot (bottom) trajecto-

ries shows nearly identical results
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with new concepts for system architecture may change this in 

the not too distant future.
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Fig. 20  Comparison of activa-

tion maps acquired with spin-

echo MREG (TR = 250 ms) 

(top left) and SMS-EPI 

(TR = 1300 ms) (top right) 

for checkerboard stimulation. 

Activation maps are overlaid to 

a single time frame of the meas-

urement series. Both datasets 

had identical spatial resolution 

(3 × 3 × 3  mm3), stimulus was 

presented in a block paradigm 

with interval times 18 s on–18 s 

off. Color bars represent t values 

with the t threshold indicated by 

the horizontal green bar. The t 

threshold has been determined 

by the method of surrogate 

data [139] to account for the 

different number of data points 

as well as the different noise 

properties dependent on the 

temporal resolution. The bottom 

graph shows the signal time 

course in the activated areas, 

it also includes result from a 

standard EPI experiment
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