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The article gives an introduction to numerical modeling of flow and transport problems and to software tools that

are currently in use for modeling such phenomena. Details are explained on numerical approximations leading

to different numerical models. Extensions for reactive transport are mentioned. Basic guidelines and criteria

are given that should be taken into account by the modeler in order to improve the accuracy of results. Inverse

modeling is presented as an advanced feature. Some examples of pre- and postprocessing, as implemented in

several codes, are given, in addition to fundamental properties of solution methods. Finally, most common codes

are listed with basic features and web-sites.

INTRODUCTION

The forecast of state variables that describe flow and solute

transport in a given aquifer can be obtained by solving the

mathematical model that describes these phenomena. Such

a model is based on a conceptual model that includes a

set of verbal statements introducing a simplified version of

the various physical, chemical, and biological aspects of

the flow domain and the phenomena of transport that take

place in it. Because, in most cases of practical interest,

analytical solutions of the mathematical models are not

possible, the mathematical models are transformed into

numerical models, which, in turn, are solved by specially

designed computer programs (= codes).

The codes account for physical aspects (e.g. multi-

phase/multicomponent, density-driven, chemical reactions,

inertial/drag dominant, energy considerations, small/large

matrix deformation, Newtonian/nonNewtonian fluids),

modeling aspects (e.g. domain dimensionality, type of

boundary conditions, Eulerian/Lagrangian formulation,

deterministic/stochastic representations, lumped param-

eter/continuum/sharp interface approaches, phreatic/con-

fined, unsaturated/saturated), and optimal management (i.e.

mathematical procedures deriving the optimal extremum

trajectories under different constraints and objectives).

These are addressed by sensitivity and inverse methods,

analytical and/or numerical (e.g. differences, virtual

work/variational approaches) approximations, grid methods

(e.g. finite differences, finite elements, volume elements,

boundary elements, spectral elements), numerical algo-

rithms (Eulerian/Lagrangian coordinates, particle tracking,

explicit/implicit approximations, linear/nonlinear iteration

procedures) and their associated reliability/efficiency mea-

sures (e.g. stability/monotonicity of the numerical scheme,

Peclet/Courant grid based numbers). Such codes, which are

the focus of this chapter, are applied by the modeler to

set up models (in the literature sometimes the term model

is used also for a code, which is not correct). Mostly the

codes are executable software files, mostly equipped with

user-friendly graphical user interfaces (GUIs). Sometimes

source-codes are distributed, which have to be altered, com-

piled, and linked by the user.

A modeling task can be subdivided into several steps:

• Preprocessing (transformation of data into a format

appropriate for the numerical algorithm, including

grid generation)

• Numerical calculation (direct modeling)

• Calibration (inverse modeling)

• Postprocessing

Today’s software packages or codes assist in all of these

modeling steps.
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Calibration as a task cannot be separated from the

other tasks. Inverse modeling includes direct model runs,

performed in order to determine one or more parameter

values, which lead to an optimal approximation of measured

results. Some pre- and postprocessing may be necessary

during the inverse modeling procedure, when its not the

standard in- and output variables, on which the calibration

is based.

Many different software tools are today available to help

users to set up their models. The aim of the models is

to assist in the solution of practical problems, simulat-

ing processes in subsurface fluids and porous media. In

the majority of cases, modeling serves to improve under-

standing of hydrogeological systems. Forecasting and thus

studying the response due to different scenarios is the most

ambitious goal of modeling efforts. In scientific literature,

this is discussed under the term validation

• Validation is a process carried out by comparison of

model predictions with independent field/experimental

observations. A model cannot be considered validated

until sufficient testing has been performed to ensure an

acceptable level of predictive accuracy (IAEA Interna-

tional Atomic Energy Agency, 1988)

• Validation: the process of obtaining assurance that a

model as embodied in a computer program is a correct

representation of the process or system for which it

is intended. (United States NRC – Nuclear Regulatory

Commission, see Silling, 1983)

The task of code verification is a step towards validation

in which numerical results are compared with analytical

solutions or with well accepted published results.

Software tools can be subdivided into different classes,

for which codes that perform numerical calculations are

considered as the core software program. Around these

packages have been developed for several pre- and post-

processing tasks. GMS, Visual MODFLOW, and PMWIN

are examples, which are build around the MODFLOW code

in the core – in most recent versions accompanied by other

numerical codes. Other packages, like FEFLOW, embed all

tasks in one package.

In judging a numerical code for simulating flow and

transport scenarios imposed to a specific aquifer site, one

should first verify what aspects are being addressed by the

code. This in general accounts for:

• the theoretical and mathematical assumptions and other

considerations;

• the numerical method, algorithm, and grid configura-

tion;

• verifications of the code against analytical and numer-

ical solutions as well as laboratory and field observa-

tions;

• performance under a variety of time and space incre-

ments;

• platforms on which the code can be run.

Input data that is required for code simulations can be

classified into:

1. Geometry and topography issues

(a) Site boundaries and dimensions

(b) Surface topography (e.g. to detect zones with

surface infiltration)

(c) Location of streams, divides, ponds and so on

(d) Land use (landfills, dikes, well locations, irriga-

tion systems. . . .)

2. Geology and hydrology issues

(a) Aquifers (stratification, depth, lithologic param-

eters, hydraulic conductivities, longitudinal and

transversal dispersivities, storativities (i.e. matrix

and water compressibilities), porosities)

(b) Porous medium density

(c) Water levels at surface reservoirs (rivers, ponds,

etc.) compressing shallow aquifers

(d) Pumping/recharge point sources (well depth,

intensity, periodicity, and time of application)

(e) Distributed sources of inflow, for example, rain-

fall and irrigation rates

(f) Distributed sources of outflow, for example, evap-

otranspiration

(g) Time dependent data at spatial points

3. Water and porous medium chemical properties

(a) Sorption (adsorption and desorption) factors.

(b) Electrical conductivities.

(c) Temporal and spatial concentration of solutes in

the water and the solid phases of the porous

medium

(d) Solutes associated with sources of recharge fluxes

(rainfall, irrigation, etc.).

(e) Concentration of stable isotopes and microele-

ments.

4. Boundary and initial conditions

(a) Initial field distribution of piezometric head and

components concentration.

(b) Pervious/impervious boundary segments with the

ascribed flux conditions.

(c) Piezometric heads and concentrations along

boundaries.

The user has to take into account that codes often differ

concerning the input parameters, an aspect that may make

some codes more appropriate for a given task than others.

As an example many codes allow conductivity anisotropy

only in direction the principal axes of the coordinate system.

When anisotropies in changing directions have to be taken

into account, the modeler has to choose a code that is

capable of handling such a situation.
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MATHEMATICAL MODELS

Groundwater Flow

Groundwater flow models are based on the differential

equations for groundwater flow. Such differential equations,

as described in Chapter 149, Hydrodynamics of Ground-

water, Volume 4, are usually based on Darcy’s Law as the

linear macroscopic fluid momentum balance equation, con-

sidering the drag terms of the Navier Stokes equation as

dominant, and on the principle of the fluid mass conserva-

tion.

Depending on the special features of the situation to

be modeled, different circumstances have to be taken

into account. A model for a confined aquifer is different

from that for an unconfined (phreatic) aquifer. The spatial

dimensionality (1D or 2D or 3D) depends on the physical

situation and the aim of modeling. Depending on the very

same aspects, a decision about steady state versus unsteady

simulations has to be taken, just to name the most basic

properties of a model.

There are different formulations of the differential equa-

tions. Equation (1) states the mass balance in 3D:

∂

∂t
(φρf ) = −∇·(ρf v) + Q (1)

where φ denotes porosity, ρf fluid density, v the three-

dimensional vector of Darcy velocity, that is specific

discharge, and Q represents mass sources or sinks of

whatever type. Most models work with a simplified version

of equation (1), which is valid for constant density ρf .

With the help of Darcy’s Law, the equation can be

reformulated in terms of hydraulic head h. Simplified 2D

versions of equation (1) are used quite frequently, which

are different for confined or unconfined aquifers. In the

confined situation:

S
∂h

∂t
= −∇·T ∇h + P − Q (2)

in which P and Q represent pumping and recharge rates,

respectively, where S denotes the storativity and T the

transmissivity. Usually the hydraulic head, h is the depen-

dent prime variable, for which the differential flow equa-

tion is formulated and which is calculated by the model.

In 2D problems the stream function can be used as an

alternative (Holzbecher, 1996). For applications involving

variable density, a generalized hydraulic head or pressure

p have to be introduced (Holzbecher, 1998) as dependent

prime variable.

The codes allow the specification of different bound-

ary conditions, which are relevant for groundwater flow

(see Chapter 149, Hydrodynamics of Groundwater, Vol-

ume 4). When the first-type (or Dirichlet) condition is used,

h is specified at that location. For the second-type (or Neu-

mann) condition, the normal velocity has to be specified.

The often-used no-flow condition is a special case (zero

velocity). Third type (or Cauchy) boundary conditions can

be used, when a relation between flux and head has to be

considered, for example, when an aquifer is connected to a

surface water body.

Hydraulic conductivity is an input parameter for most

models. In the case of the 2D flow in a confined aquifer,

transmissivity (integration of the conductivity over the

third spatial direction) is required instead. Unsteady mod-

els require specific storativity for unconfined aquifers, and

storativity as product of specific storativity and layer thick-

ness for confined aquifers (see Chapter 149, Hydrody-

namics of Groundwater, Volume 4). Porosity is needed

when real interstitial velocities have to be determined,

for example, when a transport model is to be set up

in addition or when travel times along flowpaths are

required.

Transport (Mass and Heat)

Transport models are derived from the transport equation,

which is the mass balance equation in terms of the

concentration of a certain substance in case of solute

transport (see Chapter 152, Modeling Solute Transport

Phenomena, Volume 4) through the aquifer system. In case

of heat transport, it is a differential equation for temperature

as the dependent prime variable (Holzbecher, 1998).

The generic form of the solute transport equation in

porous media reads

∂

∂t
(φc) = −∇(vc − φD∇c) + q (3)

with porosity φ, combined coefficient of diffusion and dis-

persion tensor D, specific discharge v and source/sink-term

q. Equation (3) is a balance equation for component mass,

which is valid for constant density fluids (see Chapter 152,

Modeling Solute Transport Phenomena, Volume 4). The

dependent prime variable is the concentration c. The term

on the left side of the equation represents storage in general

(gains or losses). The term vc on the right side represents

advection and φD∇c is the sum of diffusion and dispersion.

The last term is for sources and sinks of all types. Within

the heat transport equation, the same terms can be found

with different parameters:

∂

∂t
T = ∇Dtherm∇T − κv∇T (4)

with thermal diffusivity Dtherm the ratio κ between heat

capacity of the fluid and the heat capacity of fluid and

porous medium. Internal sources and sinks are neglected

in equation (4), which results from the energy balance
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equation by dividing through the heat capacity of the porous

medium. The dependent prime variable is the temperature

T (Holzbecher, 1998).

The types of boundary conditions in general are the same

as in flow models. In the first type, a concentration or a

temperature needs to be specified. The second type accounts

in general for advective and dispersive fluxes. Frequently

used is the no dispersive flux condition, where it is required

that the derivative of the dependent variable normal to the

boundary is zero. The latter condition is not only used at

impermeable boundaries. For lack of alternative, it is most

often also used at outflow edges. Obviously the condition is

not correct for fronts crossing the boundary, or vice versa:

it is only applicable when during the simulation period the

concentration or temperature gradients are small.

Reactive Transport

Taking into account that only few biogeochemical species

in the subsurface are independent from their biogeochemi-

cal surrounding, models couple physical transport processes

and biogeochemical reactions. The basic features concern-

ing the coupling of transport and reactions are outlined

in Chapter 152, Modeling Solute Transport Phenomena,

Volume 4.

When several species, which are linked to each other

by reactions, are modeled, the transport equation has to be

solved for each of these species. Two types of reactions

have to be distinguished: equilibrium or kinetics. If for

an application the timescale of interest exceeds the typical

reaction time, the reaction is fast and it can be assumed that

the equilibrium is reached, when the reaction is reversible.

Equilibria are usually described by the Law of Mass Action.

For the reaction A + B ↔ C between species A, B, and C,

the equilibrium is given by:

aC

aAaB

= K (5)

where a denotes the activity of the species, and K is the

reaction specific equilibrium constant. The activity of a

species is the product of the concentration and an activity

factor γ , which depends on the charge of the species and the

ionic strength of the solution (Krauskopf and Bird, 1995).

When for an application the reaction time is smaller than

the time of interest, an explicit formula for the development

of the reaction rate in time has to be used. Such a reaction

is termed kinetic. The difference concerning the coupling

with transport.

In general for a set of species, the coupled problem for

reactive transport is given by:

φ
∂

∂t
c =

(

∂

∂z
D

∂

∂z
− v

∂

∂z

)

c + Seq
T req + Skin

T rkin (6)

(Saaltink et al., 1998), where the vector c contains all

species concentrations. The vectors req and rkin denote the

reaction rates of equilibrium and kinetic reactions, and the

matrices Seq and Skin relate reactions (in rows) and species

(in columns) for equilibrium and kinetic reactions.

The problem with (6) is that the rates of the equilibrium

reactions are not known beforehand. Thus the entire set of

equations is manipulated by linear transformations in order

to make the term corresponding with equilibrium reactions

vanish. Such a transformation is always possible, but not

unique. It can be described by the multiplication of the

system (6) with another matrix U from the left (Saaltink

et al., 1998), which is equivalent to the transition from

species concentrations to total concentrations, also called

components.

The system for the total concentrations u = U·c is

given by

ϕ
∂

∂t
u =

(

∂

∂z
D

∂

∂z
− v

∂

∂z

)

u + USkin
T rkin (7)

In addition the reaction equilibria have to be taken into

account, which can be noted as:

Seq·log(a) = log(K) (8)

where the vector a denotes all activities, and the vector

K all equilibrium constants. Altogether a mathematical

system results in which transport differential equations (7)

are combined with a set of algebraic equations (8), so-called

algebraic differential equations.

Sorption

Sorption denotes a variety of phenomena and processes,

which concern the interaction between fluid and solid phase.

In the most general approach, sorption reactions can be

treated within an extended concept of reactive transport

as surface reactions (Parkhurst, 1995). More common are

simplified approaches. Kinetic laws can be used to describe

slow (nonequilibrium) sorption. The simplest approach

is to take first-order kinetics, but this may not suffice

for reactive transport, where more complex approaches

(for example: Monod) may become necessary. The most

common situation of fast (equilibrium) sorption is modeled

by combining the transport differential equation with a

sorption isotherm (linear sorption, Freundlich-, Langmuir)

that describes the equilibrium between solid and fluid

phase, leading to the concept of retardation. The details

are outlined in Chapter 152, Modeling Solute Transport

Phenomena, Volume 4.

Different codes handle sorption differently. Some codes

allow the direct input of retardation factors (FAST), while

others require the specification of the isotherm and the cor-

responding parameters. Some codes require one isotherm
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for the entire domain, others allow the sorption character-

istic to change with layers, others by cell (MT3D96).

NUMERICAL MODELS

There are different numerical techniques by which com-

puter algorithms are derived from equations that govern the

model. In order to obtain a numerical model, the mathemat-

ical (e.g. differential) formulation for continuous variables

has to be transformed into discrete form. The discrete vari-

ables (e.g. hydraulic head in flow models, concentration,

or temperature in transport models) of the model are deter-

mined at nodes in the model domain, determined by a grid.

Finite Differences

The method of Finite Differences (FD) is derived as

approximation of the differential equation. Derivatives

(differential quotients) are replaced by difference quotients.

For first and second order derivatives, the simplest central

stencils (CIS = central in space) are given by:

∂f

∂x
≈

fi+1 − fi−1

2�x

∂2f

∂x2
≈

fi+1 − 2fi + fi−1

�x2
(9)

where the f -values denote function values at the grid nodes,

that is, fi is the approximate value of the function at node

i, fi−1 at the previous node, and fi+1 at the following node

(see Figure 1). This leads to a system of equations for

the unknown values (fi, i = 1..N), where N denotes the

total number of nodes. For transport problems, the upwind

scheme (BIS = backward in space) is important:

∂f

∂x
≈

fi − fi−1

�x
(10)

In two space dimensions (2D), the five-point stencils,

describing finite differences, can be visualized as shown

in Figure 1. For example, the Laplace-operator (∂2/∂x2 +

∂2/∂y2)f is represented by a stencil with factor −4 at the

center and 1 in the other four nodes.

FD-grids are usually rectangular, and may be irregular,

that is, each column, row, or layer may possess individual

grid spacing. The values of the dependent variable are

calculated at the nodes, while parameters are specified for

the spacing between the nodes (node centered grid).

Finite Volumes

The method of Finite Volumes (FV) is derived from a

mass or volume balance for all blocks of the model region.

As visualized in Figure 2, the load (e.g. volume or mass)

balance in block ij is obtained by:

∂V

∂t
= Qi− + Qi+ + Qj− + Qj+ + Q (11)

fi,j−1

fi,j+1

f i−1,j f i+1,j
f i j

Figure 1 Finite difference stencil for function f in 2D

Q j−

Q j+

Q i+Q i−

f i j

Vi j

Figure 2 Quadratic finite volume in 2D

where V denotes the volume or mass (see Figure 2) in the

block, Qi−, Qi+, Qj−, Qj+ the fluxes across the block

edges, and Q other sources or sinks for volume or mass.

A set of equations for the values of the unknown

variables in the block centers is obtained by expressing the

fluxes in terms of that variable. With the help of Darcy’s

Law, all volume balance equations come into a form that

expresses relations between hydraulic heads fij = hij .

Similarly, Finite Volume grids may be of general form,

as they are defined by the budget of fluxes across the

boundaries of a block. The dependent variable is calculated

at the center of the block (block centered grid). Parameters

are specified for blocks, that is, around the block centers.

The different form of grids used in FD and FV makes

it difficult to compare results obtained by the different

methods without interpolation.
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Finite Elements

Finite elements grids can be of different shape, but very

often they can be recognized by the simple triangular form

of the single elements. The triangular shape is convenient to

approximate arbitrary shaped regions with small deviations,

where rectangular grids often show stairway structures at

least at parts of the boundaries.

Using Finite Elements, the solution of the differen-

tial equation is found as a combination of shape (or

Lagrangian)-functions. These functions are different for dif-

ferent elements. For the most common triangular elements,

the prescribed Lagrangian functions are linear within each

element (see Figure 3). Thus f is approximated, for exam-

ple, in Cartesian coordinates, by

f (x, y) = aα0 + aα1x + aα2y within element α

(12)

All coefficients aαj for all elements are computed as

solution of a linear or nonlinear system, which is derived

from the so-called weak form of the differential equation

(Huyakorn and Pinder, 1983).

Method of Characteristics / Lagrangian Methods

One approach that has been gaining popularity is the mixed

Eulerian–Lagrangian method that combines the simplicity

of the fixed Eulerian grid with the Lagrangian approach

being especially effective in advective dominant regions.

Following Neuman and Sorek (1982) for transport problems

(e.g. see also Neuman, 1984; Sorek, 1988a,b), for flow

problems (Sorek, 1985; Sorek and Braester, 1988) and a

modified Eulerian–Lagrangian method for coupled flow

and transport model (Bear et al., 1997; Sorek et al., 2000),

a technique consisting of the following two steps is used:

1. Formal decomposition of the dependent variable into

two parts, one controlled by pure Lagrangian advec-

tion and a residual governed by a combination of

Euler–Lagrange approaches.

f j

f i

fk

(xk, yk)

(x j, y j)

(x i, yi)

Figure 3 Finite element in 2D

2. Solution of the resulting advection problem by the

method of characteristics for forward particle tracking.

The residual problem is solved by, for example, an

implicit finite element scheme on a fixed grid.

Information is projected back-and-forth between the

Eulerian–Lagrangian and the Lagrangian schemes. The

major problem of the decomposition strategy is the inter-

polation (coupling) between the residual and translation

solutions as these are obtained at different spatial loca-

tions and should be performed in a manner that is mass

conservative.

To understand the concept of the decomposition, consider

a governing partial differential equation

�f = Q (13)

in which � denotes the differential operator, f denotes the

dependent prime variable, and Q denotes the source term.

We now decompose (13) into translation, ()�, and residual,

()�, terms to read

(�� + ��)(f� + f�) = Q (14)

One way to perform the decomposition is to allow

��f� = 0 (15)

for which f� is solved along a characteristic pathline

defined by

��X = V (16)

where X denotes the position spatial vector known only if

V the velocity vector tangent to the characteristic pathline

is provided, otherwise iterations are required. By virtue

of (14) and (15), the next step is to solve

�f� = Q − ��f� (17)

However, as we may expect the condition

�f� ≫ ��f� (18)

and in view of (17) and (18), we obtain

�f�
∼= Q (19)

which is similar to a Poisson equation and is not expected

to suffer from stability difficulties typical to advection

dominant flow regimes. In cases with dominant source

terms, we allow f� to obey

��f� = Q (20)
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for which by virtue of (17) and (18), we solve f� by a

Laplacian equation in the form

�f�
∼= 0 (21)

which is more stable than (19).

Variations of the method of characteristics are imple-

mented in some of the most used transport codes, as MT3D.

The user can choose between MOC (method of characteris-

tics), Modified MOC (MMOC), and Hybrid MOC (Zheng

and Bennett, 1995). While MOC uses forward tracing along

the flowpaths (characteristics), in the MMOC the charac-

teristics are traced backward from the nodes. The hybrid

scheme combines both approaches (Neuman, 1984).

Time Stepping

The discretization of time is as a rule implemented as time

stepping. The computed values at the previous time level

t are used as initial condition for the calculation at the

new time level t + �t . The time-step �t may vary. The

entire algorithm starts in using the initial condition for the

dependent variable of the problem setup, which has to be

specified by the user in addition to the differential equation

with its boundary conditions.

Simple time-stepping algorithms can be described by the

following formula:

f (t + �t)=f (t) + �t[κ ·C(f (t + �t) + (1 − κ)C(f (t))]

(22)

In the notation, the dependency of f on space variables is

neglected. The operator C denotes the spatial discretization,

which can be achieved using the finite differences (FD),

finite volumes (FV), or finite elements (FE) method. κ

is a parameter, which either has a fixed value for the

implemented method or can be chosen by the modeler.

For κ = 1/2, when both old and new time levels are

equally weighted, one obtains the classical Crank–Nicolson

procedure. For κ = 1, the totally implicit method results,

where the spatial discretization is taken only at the new

time level. For κ = 0, an explicit algorithm results, which

is cheaper to solve (as the solution of a linear system is not

required). But often the accuracy of the explicit algorithm

is poor, or it even does not converge.

Advanced time-stepping algorithms are given by the so-

called Runge-Kutta methods (Holzbecher, 1996), which

can, for example, be found in the FEFLOW code. In

mathematical toolboxes, which can also be applied for

the solution of differential equations, often an automatic

time stepping is implemented, where the accuracy is

checked during the simulation and the time step is reduced,

if necessary.

Mixing Cells

In contrast to the usual aforementioned procedure, in the

mixing cell approach, grid spacing and time stepping are

combined. For given velocity v, time-step �t and grid

spacing �x are related by the formula

�t =
�x

v
(23)

The approach is usually applied for constant velocity

(1D). The technique can also be used for 1D flow fields

with variable velocity, when �x is varied along the flow

paths. But the method is not applicable for general higher

dimensional flow fields. Nevertheless, when transverse

gradients are small, the mixing cell approach can be used

for simulation of 1D transport along a flowpath.

It is obvious from formula (23) that advection with

velocity v is modeled without any discretization error.

It turns out to be advantageous to combine the mixing

cell approach for advection with the conventional FD or

FV approach for dispersion. Such operator splitting is

implemented in the PHREEQC code (Appelo and Postma,

1993). The PHREEQC code was not originally intended

to be combined with a transport model as velocity is not

a prescribed input. Instead lengths (�x), time-step (�t),

cells (number of blocks), and shifts (number of time steps)

have to be specified as parameters (Parkhurst, 1995).

As for general time stepping, the discretization error,

connected with the advection term, turns out to be the

most severe in many applications, and the mixing cell

approach is very competitive, concerning accuracy with

other approaches, when it can be applied.

Reactive Transport

The simultaneous solution of general 3D transport and geo-

chemical speciation is still a challenge for modelers nowa-

days, as there is a high demand on computer resources’

time and space. In the simplest case, the equations for

transport can be solved in a first step, delivering total

concentrations. The second step is the speciation calcula-

tion based on the equilibrium equations (8) depending on

the total concentrations available. Speciation calculations

require the solution of a highly nonlinear problem, for

which the Newton–Raphson algorithm is usually applied

(Parkhurst, 1995).

Unfortunately with respect to the outlined solution strat-

egy, the reaction terms for the kinetic reactions mostly

depend on species concentrations. Thus the first step can-

not be performed without the results of the second step. The

problem is handled using three different strategies (Steefel

and MacQuarrie, 1996):

• the sequential two step is performed (sequential nonit-

erative approach – SNIA)
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• the two-step method is iterated within each time step

(sequential iterative approach – SIA)

• discretized differential and algebraic equations are

gathered in one system and solved (direct solution

approach – DSA)

Surely the SNIA is the cheapest of these methods with

respect to the consumption of computer resources, but it

delivers incorrect results when there is a strong coupling

through the kinetics. Another reason for the popularity of

the SNIA is that different available programs for transport

and programs for speciation calculations can be loosely

coupled, while both other approaches request an internal

coupling during each time step.

The coupling of the popular MT3D-MS code for multi-

species transport and PHREEQC2 is currently in develop-

ment (Prommer et al., 2003), for which the SNIA approach

is applied.

Accuracy and Stability Criteria

The approximation of a differential equation by a numerical

method is not exact, and yields discretization errors. When

derivatives are replaced by finite differences, a truncation

error results, for which formulae can be derived using the

Taylor (or Lagrangian)-series representation. Local errors,

due to truncation of derivatives or due to round-off of

numbers, may be amplified with the further application

of the algorithm. In such a case, the algorithm is called

unstable.

Concerning accuracy and stability, three dimensionless

numbers and three related criteria are relevant:

Grid-Péclet number/criterion : Pe =
v·�x

D
≤ 2 (24)

Courant number/criterion : Cou =
v·�t

�x
≤ 1 (25)

Neumann number/criterion : Neu =
D·�t

�x2
≤

1

2
(26)

The grid-Péclet criterion is relevant for most numerical

methods, although an explicit derivation is seldom found,

except for finite differences. Figure 4 illustrates typical

errors when the criterion is violated. Breakthrough curves

from analytical and numerical solutions for 1D front

propagation with constant parameters are depicted. The

CIS method is burdened by overshooting. In contrast, the

BIS method is burdened by enhanced dispersion, the so-

called numerical dispersion. While the CIS algorithm is

stable, when the grid-Péclet criterion is fulfilled the BIS still

displays numerical dispersion for Pe < 2. An improvement

of the BIS method can then be obtained, when the input

value for dispersion is reduced by the numerical dispersion

value, which according to the truncation error analysis

is given by Dnum = v·�x/2 (Lantz, 1971). The curve,
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Figure 4 The performance of three numerical schemes
for grid-Péclet number Pe = 4; all numerical results
obtained using automatic time stepping with the Euler
method (FIT)

referenced by ‘numerical dispersion’, depicts the analytical

solution for a situation in which Dnum increases D. The

deviation of the BIS-result from that curve shows that the

real error of BIS is slightly less than the one predicted by

truncation error analysis.

The Il’in method (Il’in, 1969) can be described as a

compromise between BIS and CIS. Tests show that it has

advantages compared to the other methods only in the

vicinity of the critical value for the grid-Péclet numbers,

Pe = 2. For higher grid-Péclet numbers, the Il’in scheme

suffers also from severe numerical dispersion.

The grid-Péclet criterion can be fulfilled when the grid

is chosen fine enough, that is, for small �x. For advection-

dominated problems, this may lead to problems when the

number of unknown becomes too high.

The Neumann criterion in the given form is valid for

explicit algorithms and is less strict or can be completely

neglected for implicit algorithms. Both Courant and Neu-

mann criteria can be fulfilled when for a given grid the time

step is chosen small enough. This strategy has its limits, as

the execution time for a computer run increases with the

number of time steps. Especially in 3D modeling, a reduc-

tion of the time step may lead to computation periods that

are unacceptably high.

The mixing cell method has no discretization error for

advection. In order to reduce the discretization error, an

operator splitting approach can be applied. It is convenient

to use a different time step for diffusion that is a fraction

of the advection time step. The PHREEQC code uses

a diffusion time-step �t , which fulfills the condition:
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Figure 5 The performance of the mixing cell algorithm
for different grid-Péclet numbers; all numerical results
obtained using automatic time stepping with the Euler
method (FIT)

Neu ≤
1
3
, and which reduces the numerical error very

effectively (Appelo and Postma, 1993). Figure 5 shows the

performance of a mixing cell method for the 1D front

propagation testcase. For given velocity and diffusivity,

the grid-spacing and corresponding time step have been

reduced, leading to decreasing grid-Péclet numbers Pe. The

breakthrough curves illustrate how the error is reduced upon

reducing of the grid-Péclet number.

INVERSE MODELING

It is the usual task of modeling to determine the dependent

variable while the user provides the parameters as input. In

groundwater flow models, values for the piezometric head

at grid nodes result from using input module for hydraulic

conductivities and boundary conditions. But in practical

problems, it is often the piezometric heads for which field

measurements are available, while hydraulic conductivities

are uncertain by at least 1 order of magnitude. In such

a situation, the model is used in a different manner.

Conductivities as input parameters are varied in order to

obtain an optimal match between numerical and measured

values of heads.

The illustrated strategy is termed inverse modeling, as

the role of parameters and variables is exchanged. Inverse

modeling is treated in more detail in Chapter 156, Inverse

Methods for Parameter Estimations, Volume 4. The

mathematical procedure is the same for calibration or

parameter estimation.

The task of inverse modeling is mostly not implemented

in a groundwater modeling code itself. For example,

in the ProcessingMODFLOW or FEFLOW, the software

package PEST is referred for parameter estimation. PEST

or UCODE (alternative in ProcessingMODFLOW) perform

all operations concerning the parameter estimation task, that

is, new parameter datasets are calculated that are candidates

for a model with a better match with the observed data.

Then a direct model run is started and finally the results of

that run are checked.

Modern GUIs allow the modeler to input measured

datasets, to select parameters to be estimated, and to select

options for the parameter estimation package. When there

are also options for the comparison of measured and

modeled data, there is no need to use any other tool for

direct and inverse modeling.

PREPROCESSING

Preprocessing is the transformation of data into a form

appropriate for the calculating code. Often geologic data

are available in a database that cannot be accessed by the

modeling program directly. Sometimes special transforma-

tion routines are needed to perform this task. Sometimes

GIS software for the visualization of geo-data is used.

All operations that are concerned with the selection of

the model region, which means especially the location of

the boundaries, belong to preprocessing. The modeler can

load a background map from some file and construct the

model region on the screen using the mouse. Parts of the

boundary can be selected for the definition of boundary

conditions. Input boxes that require the relevant parameters

to be specified open immediately.

Preprocessing includes the choice of model char-

acteristics, such as: confined/unconfined/partially con-

fined, 1D/2D/3D, flow/transport/flow and transport, tran-

sient/steady state, solute/heat/solute and heat transport.

Nowadays using GUIs most of these options can be selected

by mouse-click on a virtual button on the display.

Preprocessing includes the representation of data in a

finite grid. Most codes allow external files to be linked

with the model. An interpolation routine is then started

internally, which delivers parameter values for all ele-

ments, blocks, or volumes (see FEFLOW for example).

Some codes have options to define parameters as ran-

dom variable with given statistical properties (see FAST

for example).

Finite Element Codes are usually equipped with a grid

generator. Based on some basic options concerning the

approximate number of elements and the type of elements,

the GUI usually allows an FE-grid to be created by

the push of a button when the model region is defined.
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When the modeler is not content with the grid, it can be

refined entirely or in parts only. The part to be refined

is selected by simple mouse operation. For FD or FV

codes that use rectangular grids, such a gridding is usually

not necessary.

SOLUTION

The solver is the code that really solves the set of

equations for the discrete variable. From GUIs, the solver

is started using a submenu entry (ProcessingMODFLOW,

Visual MODFLOW, GMS) and for standard situations

works with default values for solution parameters. In the

case of problems with the solution, that is, no or poor

convergence to the numerical solution, or when the results

are not accurate enough, the solver or/and parameters

should be changed.

Internally mostly a sparse linear or nonlinear system

has to be solved. Often there are some options concerning

the solution of such a system. Direct solvers can only be

recommended for relatively small number of unknowns,

that is, for coarse grids. An iterative solver usually is

the default. Preconditioned conjugate gradient solvers are

mostly used because they are relatively robust, that is,

with their standard parameters they work well for a wide

range of different problems. For details the reader should

consult textbooks like Barrett et al. (1994). In some codes,

multigrid solvers are included, which are expected to

deliver faster convergence.

POSTPROCESSING

After the run of the solver, the discrete representation of

the dependent variable is calculated. In order to get specific

information from a huge array of numbers, the modeler can

perform various postprocessing tasks.

A major postprocessing tool for groundwater flow models

is the budget calculator. Fluxes of different type (e.g.

inflow, outflow, well recharge, well discharge, groundwater

recharge) can be calculated for the entire model region

or for user-specified parts of it. For most models such a

tool enables quantitative information on the basic fluxes.

That is not only a basic information from a completed

model, before the completion it is also a basic indicator

for errors.

Contour lines (for 2D models) or contour surfaces (for

3D models), which can be plotted for the dependent

variable, provide a picture of the variables distribution.

Isopleths for hydraulic head, isobars for pressure, isotherms

for temperature, isohalines for salt concentration, and

streamlines for streamfunction visualize the results of a

model run. They not only show where the variable is on

an equal level, the minima and maxima also can clearly be

identified when the contour levels are chosen appropriate.

The different GUIs offer different options for the user to

make such a choice.

Contour plots for hydraulic head provide additional

information on the flow because flow is normal to the

contour lines. When contour levels are equidistant, the

density of the isolines gives an impression of the relative

amount of the velocity. Regions with dense isolines have

higher velocities than regions with less isoline density if the

compared regions have the same hydraulic conductivity.

Arrow plots give a direct impression of the velocity

distribution and flow direction. Long thick arrows represent

high velocities in contrast to short thin arrows representing

small velocities. In groundwater, the velocities within

a model region usually differ by at least 1 order of

magnitude, which causes some problem of the arrow plot

representation.

Prominent postprocessing tools are codes for particle

tracking. For MODFLOW, several of such codes are avail-

able (MODPath, PMPath, PATH3D) that visualize stream-

lines and flowpaths. Some tracking software is designed for

steady-state flow fields only, while others can be used for

transient flow fields also. For a given flow field, particles

can be traced forward or backward in time. There are var-

ious different options to set clusters of starting points for

the algorithm at inflow or outflow boundaries and/or in the

vicinity of wells. Backward particle tracking from positions

around a well enables the visualization of the catchments.

Similarly the watersheds of groundwater lakes can be deter-

mined (Holzbecher, 2001).

Time markers on streamlines or flowpaths indicate

isochrones. Most tracking software provides several options

to select time markers appropriately, concerning the time

levels and the outlook of the marker. In order to calculate

traveltimes for a flow field, the porosity has to be specified

by the modeler.

Figure 6 depicts a typical output of a groundwater flow

model worked out with several postprocessing tools. Added

to a background map are well galleries, hydraulic head

contour lines, and flowpaths with time markers.

SOFTWARE OVERVIEW

The most prominent code for groundwater modeling is

MODFLOW. The most recent version is MODFLOW2000,

described by Harbaugh et al. (2000). The origins of MOD-

FLOW can be traced back to the beginning of the 1980s.

An overview on the history of MODFLOW is given by

McDonald and Harbaugh (2003).

Today there are several graphical user interfaces that are

‘built around’ MODFLOW, like ProcessingMODFLOW,

Visual MODFLOW, GMS, and MODFLOW-GUI. These

programs assist the user with various pre- and postpro-

cessing tasks; they call MODFLOW for groundwater flow
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Well galleries

Bank lines

Pathlines

Head contours N

Figure 6 A typical output from a groundwater flow model, depicting background map with well galleries, and the output
from several postprocessing tasks: head contours and flowpaths with time markers for illustration of isochrones. The
model was setup by M. Zippel using FEFLOW code, postprocessing, and GIS-connection. A color version of this image is
available at http://www.mrw.interscience.wiley.com/ehs

models or other codes for transport simulations or other

tasks. Moreover, it is possible to use the GUI for direct and

inverse modeling.

A surely incomplete list of groundwater modeling

codes is given at the end of this chapter. The sec-

ond column explains if the code solves the resulting

systems of equations itself or if it is build around

another solver code as a GUI. Some programs are sim-

ply tools for pre- and postprocessing. GUIs include

tools. The third column indicates the numerical method

used for the discretization (FD = Finite Differences, FE =

Finite Elements, FV = Finite Volumes). GUIs, which are

connected to different solvers, can have more than one

entry. For tools, the discretization method does not have

to be given as it depends on the solver.

Acknowledgments

The authors are grateful to Matthias Zippel for the presen-

tation of results of the FEFLOW model of well galleries
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SOFTWARE LINKS

Code name

Solver
GUI
Tool

FD
FE
FV

Commercial
PD Short Description Internet Link

CFEST S FE Coupled
fluid-energy-solute
transport

http://db.nea.fr/abs/

html/nesc9537.html

CHAIN-2D S FE PD 2D transport of decay
chain

http://www.ussl.ars.

usda.gov/MODELS

/CHAIN2D.HTM

FAST S, GUI FV 3D flow, 2D transport,
2D density driven

http://www.igb-

berlin.de/

abt1/mitarbeiter

/holzbecher/index−e.

shtml

FEFLOW S, GUI FE Com. 3D flow, solute, and
heat transport

http://www.wasy.de/

english/produkte

/feflow/index.html

FEMWATER S, GUI FE 3D groundwater flow http://www.scisoft

ware.com/products

/gms−fem/gms−fem.html

GMS GUI FE, FV Com. for FEMWATER,
MODFLOW, MT3D,
RT3D, SEEP2D,
SEAM3D

http://www.ems-i.com

HST3D S FD PD 3D flow, solute, and
heat transport

http://water.usgs.gov/

software/hst3d.html

MOC3D S PD 3D method of
characteristics (flow
and transport)

http://water.usgs.gov/

software

/moc3d.html

MODFLOW S FV PD 3D flow http://water.usgs.gov/

software/modflow.

html

MODFLOW-
GUI

GUI FV PD for MODFLOW and
MOC3D, works
under ARGUS ONE
only

http://water.usgs.gov/

nrp/gwsoftware/

mfgui4/modflow-

gui.html

MODPATH Tool – PD Particle tracking for
MODFLOW

http://water.usgs.gov/

software/modpath.

html

Model Viewer Tool – PD Visualization of 3D
model results

http://water.usgs.gov/

nrp/gwsoftware

/modelviewer/

ModelViewer.html

MT3D S FV PD 3D transport http://hydro.geo.ua.

edu/

MT3D-MS S FV PD 3D multiple species
transport

http://hydro.geo.ua.

edu/

PATH3D Tool – Particle tracking for
MODFLOW

http://hydro.geo.ua.

edu/mt3d/path3d.htm

PHREEQC S Cellsa PD Geochemistry and 1D
Transport

http://water.usgs.gov/

software/phreeqc.

html

PEST Tool – Com.b Parameter Estimation http://www.parameter-

estimation.com

PMWIN GUI FV Com.b for MODFLOW, MOC,
MT3D, PEST and
UCODE

http://www.scisoft

ware.com/products

/pmwin−details/pmwin−

details.html
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(continued)

Code name

Solver
GUI
Tool

FD
FE
FV

Commercial
PD Short Description Internet Link

PORFLOW FD Com. 3D flow, solute, and
heat transport

http://www.acri.fr/

English/Products

/PORFLOW/porflow.

html

ROCKFLOW FE 3D flow, solute, and
heat transport

http://www.hydromech.

uni-hannover.de

/Projekte/Grundwasser/

misc/news.html

RT3D FV PD Reactive transport
based on MT3D-MS

http://bioprocess.pnl.

gov/rt3d.htm

SEAM3D GUI FV Reactive transport
based on MT3D-MS

http://modflow.

bossintl.com/html/

seam3d.html

SUTRA S, GUI FE PD Flow and Transport http://water.usgs.gov/

software/sutra.html

SWIFT S FV Com. 3D fluid, solute, and
heat transport

http://www.scisoft

ware.com/products/

swift−overview/

swift−overview.html

TBC S FE, FV PD Transport,
Biochemistry, and
Chemistry

http://www.iwr.uni-

heidelberg.de/

∼Wolfgang Schafer/

tbc201.pdf

UCODE Tool – PD Parameter Estimation http://water.usgs.gov/

software/ucode.html

Visual
MODFLOW

GUI FV Com. for MODFLOW, MT3D,
RT3D and PEST

http://www.flowpath.

com/software/

visualmodflow/

visualmodflow.html

aCan be regarded as special type of Finite Volumes, for 1D only.
bLimited version is freeware.

FURTHER READING

Holzbecher E. (2002) Groundwater Modeling – Computer

Simulation of Groundwater Flow and Pollution, FiatLux

Publications: Fremont, http://envirocomp.org
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