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15q11.2 CNV affects cognitive, structural and functional
correlates of dyslexia and dyscalculia
MO Ulfarsson1,2, GB Walters1, O Gustafsson1, S Steinberg1, A Silva3, OM Doyle4, M Brammer4, DF Gudbjartsson1,5, S Arnarsdottir1,6,
GA Jonsdottir1, RS Gisladottir1, G Bjornsdottir1, H Helgason1,2, LM Ellingsen2, JG Halldorsson7, E Saemundsen7,8, B Stefansdottir1,
L Jonsson1, VK Eiriksdottir1, GR Eiriksdottir1, GH Johannesdottir1, U Unnsteinsdottir1, B Jonsdottir9, BB Magnusdottir6,10, P Sulem1,
U Thorsteinsdottir1,7, E Sigurdsson6,7, D Brandeis11,12, A Meyer-Lindenberg12, H Stefansson1 and K Stefansson1,7

Several copy number variants have been associated with neuropsychiatric disorders and these variants have been shown to also
influence cognitive abilities in carriers unaffected by psychiatric disorders. Previously, we associated the 15q11.2(BP1–BP2) deletion
with specific learning disabilities and a larger corpus callosum. Here we investigate, in a much larger sample, the effect of the
15q11.2(BP1–BP2) deletion on cognitive, structural and functional correlates of dyslexia and dyscalculia. We report that the deletion
confers greatest risk of the combined phenotype of dyslexia and dyscalculia. We also show that the deletion associates with a
smaller left fusiform gyrus. Moreover, tailored functional magnetic resonance imaging experiments using phonological lexical
decision and multiplication verification tasks demonstrate altered activation in the left fusiform and the left angular gyri in carriers.
Thus, by using convergent evidence from neuropsychological testing, and structural and functional neuroimaging, we show that
the 15q11.2(BP1–BP2) deletion affects cognitive, structural and functional correlates of both dyslexia and dyscalculia.
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INTRODUCTION
Specific learning disorders, such as dyslexia (DLX) and dyscalculia
(DC), are challenging phenotypes to disentangle. DLX and DC refer
to neurodevelopmental disorders manifested in learning difficul-
ties with impairment in acquiring skills in reading and arithmetic,
respectively, not due to intellectual disabilities or other develop-
mental or neurological disorders.1 Despite being highly heritable,
h2 = 0.52 for DLX and 0.61 for DC,2 genome-wide association
studies have failed to uncover sequence variants conferring risk of
these specific learning disorders.3,4 Hence, larger genome-wide
scans are needed to unravel how a confluence of rare and
common sequence variants confer risk and which biological
pathways are affected.
Prevalence of DLX and DC range from 4 to 7% depending on

the criteria used.5 These learning disorders co-occur much more
frequently than expected by chance; the comorbidity rate has
been estimated as high as 40%.6 Although DLX and DC occur
more often separate from each other, and largely distinct brain
systems handle reading and mathematics, certain brain regions
are important for both. Regions that have been associated with
both disorders include the fusiform gyrus (BA37), which lies below
the lingual and parahippocampal gyri and above the inferior
temporal gyrus, as well as the angular gyrus (BA39), which is
located in the posterior part of the inferior parietal lobe. The
fusiform gyrus is thought to be an important structure for
discriminating between and within categories of objects and
includes the left hemisphere ‘visual word form area’. Dysfunction

in these areas can lead to reading and/or math difficulties; the left
fusiform gyrus has been shown to have less gray matter density
and activation in individuals diagnosed with DLX.7 The angular
gyrus8 has been shown to associate with high-level language and
mathematical tasks, such as arithmetic fact retrieval.9

Some rare copy number variants (CNVs) are associated with
neuropsychiatric disorders. Although little is known about how
these high-impact variants confer risk of disease, they provide a
biologically defined entry point for investigations into the
mechanisms of brain function. These CNVs impact cognitive
functions and learning and are probably the strongest identifiable
factors contributing to the disease in affected carriers.10–12 An
example is the 15q11.2(BP1–BP2) deletion that confers risk of
neuropsychiatric disorders including specific learning difficulties.
We have previously described the impact of the 15q11.2(BP1–BP2)
deletion on cognitive abilities assessed by neuropsychological
tests.11 Deletion carriers show modest impairments in most
cognitive domains and the deletion confers high risk for DLX
and DC. Here we investigate the effect of the 15q11.2(BP1–BP2)
deletion on cognition, brain structures and functions of deletion
carriers in a larger sample. Through neuropsychological testing,
we establish that the cognitive profile of the deletion carriers is
similar to the cognitive profile of the combined phenotype of
dyslexia and dyscalculia. By using magnetic resonance imaging
(MRI) and functional MRI (fMRI), we show that the deletion affects
structural and functional correlates of DLX and DC.
Phenotypic heterogeneity, caused by many different biochem-

ical perturbations, complicates the search for sequence variants
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conferring risk of DLX and DC. Here we focus on the impact
conferred by the 15q11.2(BP1–BP2) deletion and show that the
sequence variant confers risks of both DLX and DC and the carriers
have cognitive, structural and functional aberrations that are
considered to be correlates of both conditions.

MATERIALS AND METHODS
Participants
Subjects carrying the 15q11.2(BP1–BP2) deletion, and controls not carrying
CNVs associated with psychiatric disorders (NoCNV), were recruited from a
large genotyped sample of approximately 160 000 subjects representing
half of the Icelandic population. Only subjects aged between 18 and 65
were included in this study. Subjects were excluded: if they had ICD-10 or
DSM-IV diagnoses for schizophrenia, schizoaffective or bipolar disorder; if
they were diagnosed with autism, intellectual disability or developmental
delay at the State Diagnostic and Counselling Centre of Iceland serving
children and adolescents with a disability; if they met psychoses criteria on
the MINI13 interview; if they were diagnosed with schizophrenia,
schizoaffective, bipolar disorder, autism, intellectual disability or develop-
mental delay according to self-reports (or reports from parents); if they
were using antipsychotic medication. In the neuroimaging experiment, we

used a subset of the NoCNV group of subjects without any large CNVs
(PopCtrl). Supplementary Table 1 shows the population characteristics for
subjects participating in the neuroimaging experiments. All the partici-
pants signed informed consent approved by the National Bioethics
Committee of Iceland.

Cognitive phenotyping
A total of 71 subjects carrying the 15q11.2(BP1–BP2) deletion in the
absence of a schizophrenia, bipolar disorder, autism or intellectual
disability diagnosis were recruited along with 643 controls not carrying
CNVs associated with psychiatric disorders (NoCNV). Participants were
assessed with a battery of neuropsychological tests measuring cognitive
traits, the global assessment of functioning scale and self-reported
questionnaires on reading (adult reading history questionnaire, ARHQ)
and mathematics (adult mathematical history questionnaire, AMHQ).
Psychologists and others phenotyping the study subjects were blind to
the genotype. Large lists of CNV-carriers and non-carriers were sent to a
clinic overseeing the phenotyping. Identifiers were encrypted and sent
back to researchers working on the genetic data. A detailed definition of
the tests and questionnaires is given in a previous study (see also
Figure 1).11 Supplementary Table 2 shows the sample sizes for the tests
and questionnaires. To investigate the deletion group with respect to

Figure 1. Association of the 15q11.2(BP1–BP2) deletion group and subgroups of NoCNV with cognitive traits, GAF, ARHQ, AMHQ and
functional MRI test scores. (a) Average standardized scores for 15q11.2(BP1–BP2) deletion, DLX&DC and NoCNV without (w/o) learning
difficulties. (b) Average standardized scores for DLXonly, DConly and NoCNV w/o learning difficulties. (c) Mean accuracy for fMRI phonological
lexical decision tasks (words) and multiplication verification tasks (mult) for 15q11.2(BP1–BP2) deletion, DLXonly, DConly, DLX&DC and NoCNV.
The tests are verbal IQ (V-IQ); performance IQ (P-IQ); logical memory I and II (LM I and II); letter fluency (LF); category fluency (CF); Stroop (the
difference between the time it takes to name the color of the ink of a word that is actually the name of another color and to name the color of
colorpads); trail making test (TMT), TMT trail B–TMT trail A; perseverative errors in the Wisconsin card sorting test (Pers. Err); spatial working
memory (SWM); rapid visual information processing (RVIP); TMT trail A (TMT-A); Str-bl (Stroop: time it takes to read the names of colors written
in black ink); global assessment of function (GAF); adult reading history questionnaire (ARHQ); adult mathematical history questionnaire
(AMHQ). Word experiment: orthographic familiar forms of Icelandic nouns (W); phonologically correct but orthographically unfamiliar forms
of the same word (PH); phonologically and orthographically unfamiliar forms (PW); false fonts (FF). Multiplication experiment: correct equation
(C); incorrect equation (NC); false equation (F). See previous study11 for more information about tests in a and b, and the functional MRI
section below for more information about tests in c. Error bars represent standard error. Impairment is in s.d. units. The sample size given in
the figure legend for a and b refer to the number of subjects with available scores. Some individual scores are missing. The sample size for
each test is given in Supplementary Table 2. CNV, copy number variation; DC, dyscalculic; DConly, dyscalculic but not dyslexic; DLX, dyslexic;
DLX&DC, dyslexic and dyscalculic; DLXonly, dyslexic but not dyscalculic; IQ, intelligence quotient; MRI, magnetic resonance imaging.
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reading and math, the NoCNV group was further separated into six
subgroups defined by using a score greater than 0.43 on the ARHQ,14 and
a score greater than 12 on the AMHQ11 as a surrogate for dyslexia and
dyscalculia, respectively. These subgroups contain (i) 80 dyslexic but not
dyscalculic (DLXonly), (ii) 69 dyscalculic but not dyslexic (DConly), (iii) 42
dyslexic and dyscalculic (DLX&DC), (iv) 452 NoCNV without specific
learning difficulties, (v) 123 dyslexic (without regard to the dyscalculic
status) (DLX), (vi) 111 dyscalculic (without regard to the dyslexic status).
Supplementary Table 3 presents the carrier status and the number of
individuals in each subgroup.

Statistical analysis of cognitive traits
The scores from each cognitive test or questionnaire were inverse normally
transformed and then adjusted for gender, age at testing and where
indicated, intelligence quotient (IQ) based on data from controls only. The
scores were shifted and scaled so that controls had a mean of 0 and a
standard deviation of 1, and also arranged so that higher scores indicated
greater impairment. Fisher’s exact test and the DLX and DC subgroup
information in Supplementary Table 3 was used to estimate the deletions’
risk of DLX, DC and DLX&DC. A result was judged as significant when the P-
value was less than 0.05 Bonferroni corrected for the number of cognitive
tests or questionnaires.

Structural MRI data acquisition
The subjects listed in Supplementary Table 1 were scanned using an MRI
scanner (1.5 T Philips Achieva, Philips Medical Systems, Eindhoven,
Netherlands). The scans were performed with a three-dimensional fast
T1-weighted gradient echo sequence (TR = 8.6 ms, TE = 4 ms, flip angle = 8
degrees, slice thickness 1.2 mm, matrix = 192× 192, field of
view=240× 240 mm). This MRI protocol was selected as it yields good
contrast between white matter (WM), gray matter (GM) and cerebrospinal
fluid. Quality control consisted of visual inspection as well as a test of
homogeneity of the image covariance, which is a part of the voxel-based
morphometry (VBM) protocol described below. A total of 716 participants
were scanned with 707 subjects passing quality checks.

Voxel-based morphometry
By using VBM,15,16 we analyzed the allele dose-dependent effect of CNV on
white and gray matter tissue across subjects, while controlling for age and
gender. VBM is a technique that allows investigation of regional
differences in the brain anatomy. In this study, the T1-weighted structural
brain MRIs were analyzed using VBM as implemented by the VBM8
software (http://dbm.neuro.uni-jena.de (version r351)), which is integrated
into the SPM8 software (Wellcome Department of Cognitive Neurology,
Institute of Neurology, London, UK, (http://www.fil.ion.ucl.ac.uk/spm))
implemented in MATLAB R2013b (Mathworks, Sherborn, MA, USA). Briefly,
each T1-weighted structural brain MRI is tissue-segmented into WM, GM
and cerebrospinal fluid images, which are then registered to the MNI
(Montreal Neurological Institute)17 space using an affine transformation.
After the tissue segmentation step, a spatial normalization step was
performed where each tissue segment is brought into a common
stereotactic space. This step uses the DARTEL algorithm18 and a brain
template derived from 550 healthy control subjects in the IXI-database
(http://www.brain-development.org). Finally, the maps from the normal-
ization step were modulated, that is, intensity-corrected for local volume
changes during the spatial normalization. To accommodate for noise and
registration errors, the modulated maps were smoothed with a 12 mm full-
width half-maximum Gaussian filter.

Statistical analysis of the structural brain MRI data
Multiple regression analysis was used to test carrier status effects on brain
volume on a voxel-wise basis using SPM8. We examined regions
throughout the entirety of the brain for volume differences using the
model:

Volume ¼ ðbaselineÞβ0+ðcarrierstatus)β1+ðageÞβ2+ðgenderÞβ3+noise:
The carrier status was modeled by using a regressor coding deletion as 0,
PopCTRL as 1 and duplication as 2. Age and gender were added in the
statistical model as covariates of no interest. Furthermore, we inspected
the effects of adding intracranial volume as a covariate of no interest but it
had minor effect on the results and did not change the conclusions. The
carrier status effects were tested using one-sided t-tests and the voxel-wise

effects on gray and white matter volume were reported as significant
when a whole-brain family-wise error-corrected P-value was less than 0.05.
Owing to the intrinsic spatial smoothness of the data, the Bonferroni
correction procedure is overly conservative. Therefore, we use the random
field theory19,20 correction method as implemented in the SPM8 toolbox to
correct for multiple comparisons.

Functional MRI
The subjects listed in Supplementary Table 1 participated in two fMRI
experiments, the first involving a phonological lexical decision task (word
experiment), and the second involving a multiplication verification task
(multiplication experiment).

Functional MRI acquisition
The data were collected using a 1.5 T Philips Achieva MRI scanner. Two
hundred and sixty-five volumes (185 volumes in the short version; see
below) and 215 volumes were acquired for the words and multiplication
experiments, respectively. In both experiments, 28 axial brain slices were
acquired using an echo planar imaging pulse sequence (TR = 3 s;
TE = 55 ms; image matrix = 64 × 64; voxel size = 3.75 × 3.75 × 5 mm3; flip
angle = 90°; slice order = ascending, sequential; coverage=whole brain).

fMRI word experiment
During the fMRI scanning, the participants were asked to decide
whether a visually presented letter string sounded like a real word
or not. The experimental design follows a previous fMRI study21 closely
with the main difference being that it was modified for Icelandic
native speakers. There were two versions of the experiment: the long
version and the short version. In the long version, there were 176
stimuli, lasting one second each, consisting of four types: 44 orthographi-
cally familiar forms of Icelandic nouns (W), 44 pseudohomophones that
were phonologically correct but an orthographically unfamiliar form of the
same word (PH), phonologically and orthographically unfamiliar forms
(PW) and 44 false fonts (FF). In addition, there were 59 null events where
only the fixation cross was presented. In the short version, there were 120
stimuli, 30 for each stimuli type (W, PH, PW and FF) and 43 null events.
Subjects were excluded from the analysis if they (i) exceeded a priori
maximum movement criterion (±3 mm translation or ± 3° rotation), (ii)
performed poorly in the phonological lexical decision task (o60%
accuracy in one or more stimuli type) or (iii) had poor quality MR data.
A total of 337 participants were scanned with 284 subjects passing quality
checks.

fMRI multiplication paradigm
During fMRI scanning, the participants were asked to verify whether a
visually presented multiplication equation was correct or not. There were
132 stimuli consisting of three types: 44 correct (C) multiplication
equations, for example, 5 × 9= 45; 44 incorrect (NC) multiplication
equations, for example, 6 × 6 = 21; 44 false (F) equations, for example, 9
q 4 = lv. The correct equations were selected from the 10 × 10 multi-
plication table. Subjects were excluded from the analysis according to the
same exclusion criteria as in the word experiment. A total of 117
participants were scanned with 110 subjects passing quality checks.

Statistical analysis of the fMRI data
The data were analyzed using SPM12. The statistical analysis described
here is only for the word experiment, the analysis was similarly performed
for the multiplication test. The data were first realigned to the mean, using
a rigid model, followed by a slice timing correction. After that, the mean
image of each echo planar imaging time series was spatially normalized to
the SPM's MNI152 template. The images were then spatially resampled to
2 × 2× 2 mm3. Finally, the images were spatially smoothed using a 9 mm
full-width at half-maximum Gaussian kernel.
A two-stage model was used for statistical analysis assuming a mixed-

effect design. In the first stage, event types representing the correct
responses for each stimuli type (W, PH, PW and FF) were modeled using
the standard SPM hemodynamic function with its temporal derivative. The
incorrect stimuli responses were modeled the same way and were also
included in the model. The model also included six movement regressors
from the realignment step.
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In the second stage, the following contrasts W, PH, PW, FF, W vs FF, FF vs
W, PH vs W, W vs PH, W vs PW and PW vs W, were tested using a one-sided
t-test using the following multiple regression model:

Contrast ¼ ðbaselineÞβ0+ðcarrier status)β1+ðageÞβ2+ðgenderÞβ3+ðscan lengthÞβ4+noise;

where the carrier status was modeled using a regressor coding deletion as
0, PopCTRL as 1 and duplication as 2, and the scan length was modeled by
coding the long-word version with 1 and the short-word version with 2;
scan length was not included as a covariate in the regression model for the
multiplication test. Given our a priori hypothesis and the brain-wide
significant results from the structural analysis, we constructed a mask using
the Automatic Anatomic Labeling atlas22 consisting of the left fusiform
gyrus, left parahippocampal gyrus, inferior parietial lobule, angular gyrus,
and supramarginal gyrus. We reported voxel-wise carrier status effects on
the contrasts significant when the family-wise error-corrected19,20 (within
this mask) P-value was less than 0.05. In the case of the multiplication test,
the contrasts C, F, F vs C, C vs F, NC, NC vs C, C vs NC, F vs NC and NC vs F
were analysed.

Correlations between the brain imaging and the cognitive
phenotypes
The Pearson’s correlation measure between each of the cognitive tests/
questionnaire score in Figure 1 and the brain imaging phenotype in
Table 1 for both the NoCNV group and the 15q11.2(BP1–BP2) deletion
group was computed. All the scores were corrected for gender and age
before the correlation was computed. The brain phenotypes were the raw
volume scores (for the VBM data) and contrast scores (for the fMRI data) at
the locations indicated in Table 1. A result was judged as significant when
the P-value was less than 0.05 Bonferroni corrected for the number of
correlations computed.

RESULTS
Neuropsychology
The same neuropsychiatric CNV often confers risk of a range of
neurodevelopmental phenotypes including schizophrenia, autism,
intellectual disability, attention deficit hyperactivity disorder and
epilepsy. The 15q11.2(BP1–BP2) deletion has been associated with
schizophrenia as well as specific learning disorders.11

Our previous results show that 15q11.2(BP1–BP2) deletion
carriers unaffected by neuropsychiatric disorders do perform

worse on neuropsychological tests and are more likely to suffer
from specific learning disorders than population controls.11 Hence,
when learning difficulties are considered, the deletion is likely to
be fully penetrant although the expressivity may vary substan-
tially. The deletion confers high risk of DLX (odds ratio = 3.0,
P= 2.2 × 10− 4) and DC (odds ratio = 3.4, P = 4.9 × 10− 5) when
using a score greater than 0.43 on the ARHQ14 and a score greater
than 12 on the AMHQ11 as a surrogate for dyslexia and dyscalculia,
respectively. The deletion confers a greater risk when considering
the comorbid phenotype DLX&DC (odds ratio = 4.4, P= 1.3 × 10− 4).
Considering all the tests in Figure 1a except for the ARHQ and

the AMHQ tests, it can be seen that the deletion group and the
DLX&DC group have a similar profile (Spearman’s correlation
between mean profile scores = 0.58, P= 0.042). The impairments
(again excluding the ARHQ and the AMHQ tests) present in the
DLXonly, and the DConly phenotypes combine additively to
produce the impairments in the DLX&DC phenotype (Spearman’s
correlation between the sum of the DLXonly and DConly means
and the DLX&DC means = 0.63, P= 0.023). The DLXonly and
DConly groups (Figure 1b) clearly have different profiles, especially
with regards to the IQ scores, perseverative errors in the Wisconsin
card sorting test, spatial working memory and trail making test A.
The deletion group was compared with the combined group of

DLXonly, DConly, DLX&DC and NoCNV without learning difficul-
ties. The largest impairment is observed on the ARHQ (0.58 s.d.,
P= 1.5 × 10− 4) and the AMHQ scores (0.75 s.d., P= 7.4 × 10− 7).
However, the deletion group also shows impairment on other
scores. When the scores are corrected for performance IQ and
verbal IQ, the impairments on ARHQ (0.44 s.d., P= 0.0044), and
AMHQ (0.64 s.d., P= 3.5 × 10− 5) remain, whereas the impairments
measured by the other scores are not significant compared with a
Bonferroni threshold of P= 0.05/30 = 0.0017 accounting for the 15
tests with and without the IQ adjustment.
The deletion group shows impairments in reading and

mathematics, based on the phonological lexical decision task
(PW) and the multiplication task (NC; see Figure 1c for a definition)
used to assess how well carriers recognize words and understand
mathematical equations. The deletion carriers perform worse on
both tests than controls (Figure 1c).

Table 1. Carrier status-dependent functional, gray and white matter volume changes

Hemisphere MNI coordinates
(x, y, z)

Effect (%)
95% CI

P-value
(corrected)

Brodmann
area

sMRI: gray matter
Fusiform gyrus Left (−35, − 36, − 15) +3.0 (2.9, 3.1) 0.045 BA37
Superior occipital Left (−22, − 78, 24) − 4.8 (−5.0, − 4.6 ) 0.016 BA19
Superior frontal Right (20, 30, 52) − 5.0 (−5.2, 4.8 ) 0.016 BA8

sMRI: white matter
Cerebellum cruz 1 Right (28, − 72, − 32) +7.7 (7.6, 7.9) 6.84 × 10− 5

Paracentral lobule Right (10, − 30, 54) +4.6 (4.5, 4.7) 6.93 × 10− 4

Superior temporal Left (−52, − 12, 13) +5.0 (4.5, 5.1) 1.94 × 10− 3

Anterior corpus callosum NA (4, 0, 22) − 4.6 (−4.7, − 4.5) 6.84 × 10− 4

Amygdala Right (26, 2, − 17) − 4.7 (−4.8, − 4.6) 5.57 × 10− 3

fMRI word paradigm: PW vs W
Fusiform gyrus Left (−28, − 36, − 14) +68.2 (63.7, 72.8) 0.007a BA37

fMRI multiplication paradigm: C vs F
Angular gyrus Left (−50, − 66, 24) +87.2 (80.8, 93.8) 2.08 × 10−4a BA39

Abbreviations: C, correct equation; CI, confidence interval; F, false equation; fMRI, functional MRI; MNI, Montreal Neurological Institute; MRI, magnetic
resonance imaging; NA, not available; PW, phonologically and orthographically unfamiliar forms; sMRI, structural brain MRI; W, orthographic familiar forms of
Icelandic nouns. aP-values marked with a are corrected with respect to a region of interest (the left occipito-temporal lobe and the left parietal lobe). All the
brain regions highlighted in Figures 1–3 are listed here. The sample sizes are n= 707 for sMRI, n= 284 for the fMRI word paradigm and n= 110 for the fMRI
multiplication paradigm. The effects are calculated as (carrier status effect−mean)/|mean|.
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Subjects carrying 15q11.2(BP1–BP2) duplications were also
investigated with respect to the aforementioned tests. No
significant impairments in the 15 tests presented in Figures 1a
and b were detected in the 15q11.2(BP1–BP2) duplication carriers
as compared with the rest of the NoCNV group.

Structural MRI phenotypes
We obtained structural brain MRI of 51 carriers of the 15q11.2
(BP1–BP2) deletion not diagnosed with defined neuropsychiatric
disorders, 104 carriers of the reciprocal duplication and 552
controls not carrying CNVs associated with psychiatric disorders
and without large CNVs (PopCtrl).
We examined regions throughout the entirety of the brain and

analysed the result using whole-brain family-wise error multiple
comparison correction. For both GM and WM, the carriers of a
deletion vs duplication showed mirrored effects, that is, the
deletion carriers show opposite changes to the duplication carriers
(Supplementary Figures 1 and 2). The 15q11.2(BP1–BP2) deletion
carriers have less GM volume in the left fusiform gyrus extending
into the parahippocampal gyrus, and greater GM volume in the
superior occipital gyrus (which is a part of the visual association
area) and the superior frontal regions (Figure 2 and Table 1). The
area in the superior frontal gyri has been implicated in visual
attention.23 The deletion carriers have less WM volume in the right
cerebellum, the right paracentral lobule and the left superior
temporal lobe. On the other hand, the deletion carriers have
greater WM volume in the anterior corpus callosum and the right
amygdala (Figure 3 and Table 1). We observed a significant
interaction between carrier status of the CNV and gender in the
right caudate nucleus (Supplementary Figure 3), that is, the female
deletion carriers have greater GM volume than female duplication
carriers, and on the other hand, male deletion carriers have less
GM volume than the male duplication carriers (Supplementary
Figure 4).

Functional MRI phenotypes
Based on our a priori hypothesis, we performed two fMRI
experiments: a phonological lexical decision task (word experi-
ment) and a multiplication verification task (multiplication
experiment). Given the results of the structural analysis, we
restricted our fMRI analysis to the left occipito-temporal cortex
and the left parietal lobe.
A total of twenty nine 15q11.2(BP1–BP2) deletion carriers, 191

PopCtrl subjects and 60 duplication carriers took part in the word
experiment. The participants were asked to decide whether a
visually presented letter string sounded like a real word or not.
There were four types of letter strings: (i) orthographically familiar
forms of Icelandic nouns (W), (ii) pseudohomophones that were
phonologically correct but orthographically unfamiliar forms of
the same words (PH), (iii) pseudowords that were phonologically
and orthographically unfamiliar forms (PW) and (iv) false fonts (FF).
The experimental design follows that of van der Mark et al.,21 with
the main difference being the translation to Icelandic.
As with the structural MRI results, the effect of deletion vs

duplication carrier status on brain volumes was mirrored
(Supplementary Figure 5). The results show that the deletion
carriers have less PW vs W contrast in the left fusiform gyrus
(Figure 4, Table 1). A previous report demonstrated the presence
of phonological and orthographic familiarity effects in non-
dyslexic children. Non-dyslexic children showed higher activation
for unfamiliar (PH and PW) rather than familiar (W) word-forms,
whereas this effect was absent in children with dyslexia.21 The
results presented here are in line with this, showing that the
phonological/orthographic familiarity effect is decreased in the
left fusiform gyrus of deletion carriers.
The multiplication experiment was performed on 18 deletion

carriers, 40 PopCTRL and 52 duplication carriers. They were asked
to determine whether a visually presented multiplication equation

Figure 2. The effect of the CNV carrier status (deletion, PopCtrl, duplication) on gray matter volume difference. The T-scores for the CNV carrier
status are displayed where findings are highlighted in red or blue if Po0.001 with red indicating less gray matter volume for the 15q11.2
(BP1–BP2) deletion carriers, and blue indicating greater volume. The first three figures are sagittal slices while the last figure shows a coronal
slice where the location of the sagittal slices are denoted by vertical lines. CNV, copy number variation.

Figure 3. The effect of the CNV carrier status (deletion, PopCtrl, duplication) on white matter volume change. The T-scores for the CNV carrier
status are displayed where findings are highlighted in red or blue if Po0.001 with red indicating less white matter volume for the 15q11.2
(BP1–BP2) deletion carriers, and blue indicating greater volume. The first five images are axial slices (inferior to superior). The rightmost image
shows the locations of the axial slices on a sagittal view. CNV, copy number variation.
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was correct or not. The equations were either correct (C), incorrect
(NC) or false (F).
The 15q11.2(BP1–-BP2) deletion carriers have less C vs F

contrast in the left angular gyrus (Figure 4, Table 1). It has been
proposed that the left angular gyrus supports the retrieval of
mathematical facts such as the multiplication table24 and also the
usage of previously learned facts.25

Correlations between the brain imaging and the cognitive
phenotypes
The Pearson’s correlation measure between each of the cognitive
tests/questionnaire scores in Figure 1 and the brain imaging
phenotypes in Table 1 for both the NoCNV group and the 15q11.2
(BP1–BP2) deletion group was computed (Supplementary Tables 6
and 8). There are significant correlations within the cognitive tests/
questionnaire scores and also within the brain imaging pheno-
types. But no significant correlation between the brain imaging
phenotypes and the cognitive tests/questionnaire scores. The
failure to detect significant association between the cognitive
tests/questionnaire scores and the brain imaging phenotypes
could, at least in part, be explained by the loss of statistical power
due to lower sample size for the intersection of the cognitive
tests/questionnaire scores and brain phenotypes than for them
separately (Supplementary Tables 7 and 9).

DISCUSSION
It has been argued that a complex set of impairments in brain
function account for comorbidity of DLX and DC.6 Here we
demonstrate that the same variant confers risk of both DLX and
DC. It is, however, important to keep in mind that this variant
encompasses several genes. Haploinsufficiency of the genes
affected by the 15q11.2(BP1–BP2) deletion impacts both cognitive
traits and brain structure in a pattern consistent with the
cognitive, structural and functional correlates of DLX and DC.
The results show that the cognitive profile of the subjects

carrying the 15q11.2(BP1–BP2) deletion resembles the cognitive
profile of the DLX&DC subjects and, even after correcting for IQ,
associates with the ARHQ and AMHQ scores. As the neuropsycho-
logical profiles of the DLXonly and DConly groups are clearly
different and only when combined produce the impairments in
the DLX&DC phenotype, it can be inferred that impairments in
DLX and DC are additive, suggesting that the cognitive processes
involved in DLX and DC are largely independent. However, the
DLX and the DC phenotypes are clearly not independent since
that would mean (assuming 7% prevalence rate of DLX and DC)
that the prevalence of the comorbid phenotype would be 0.49%,
which is not the case. This indicates that some unknown factor
affects both the DLX and the DC cognitive processes in the
DLX&DC phenotype. The neuroimaging data show that the
15q11.2(BP1–BP2) deletion affects both gray and white matter

structures in the brain and is associated with specific changes in
function relative to controls. In particular, the deletion affects the
left fusiform gyrus and the left angular gyrus, brain structures that
have been associated with both DLX and DC.
The lower GM volume in the left fusiform gyrus of the deletion

carriers is of particular interest as it has been reported that this
region has a major role in reading and mathematical processing.26

The fusiform gyrus is a part of the ventral temporal cortex,27 and is
generally thought to be a key structure for high-level visual
processing including face perception,28 reading29 and object
recognition.30 Alterations in this region have also been associated
with DLX in both structural,31–33 and functional studies,21,34,35 as
well as with DC36 in morphometry and tractography studies. A
recent meta-analysis of brain dysfunction in both DLX children
and adults noted that the fusiform gyrus was the only brain region
affected in both the groups.24

The decreased WM volume observed in the temporal lobe and
cerebellum, and the greater WM volume in the corpus callosum
replicate previous findings.11,37 Overall, we note that the WM
findings are stronger than the GM findings.
As the left fusiform gyrus is thought to support skilled and fluid

reading, and the left angular gyrus to support retrieval of
mathematical facts such as the multiplication table, the structural
and functional alterations in those areas may be the cause of the
specific learning disorders found in the deletion carriers as some
abnormalities predate literacy38 and numeracy, but may also
reflect a lack of reorganization due to emerging literacy39,40 and/
or numeracy. Although caudate GM volume alterations in DLX
have been described previously,41 the interaction with gender is a
novel finding and may reflect differences in articulatory
compensation.42 The finding of decreased WM in the cerebellum
could lend support to the cerebellar deficit theory,43 which states
that dyslexia is characterized by a general cerebellar abnormality
resulting in impaired ability to perform tasks automatically thereby
negatively affecting language and reading. Overall, the data
support that the 15q11.2(BP1–BP2) CNV maps to a multifocal
neurobiological profile and the implicated structures fit well with
those identified in studies on reading and/or math problems.
The 15q11.2(BP1–BP2) CNV shows an allele dose-dependent

(mirrored) effect on both the structure and function of the human
brain, that is, duplication carriers show reciprocal changes in
exactly the same brain regions as the deletion. However, this was
not observed for the cognitive traits. Although the deletion
negatively impacts performance on cognitive tests, the duplica-
tion carriers performed on par with controls. A similar asymmetry
between neuroimaging and cognitive phenotypes have been
reported44,45 for the 16p11.2 CNV where the cognitive perfor-
mance is negatively impacted by both the deletion and the
reciprocal duplication.
The BP1–BP2 region, spanning approximately 500 kb, contains

four highly conserved, non-imprinted genes: TUBGCP5, NIPA1,
NIPA2 and CYFIP1. NIPA1, NIPA2 and CYFIP1 are highly expressed

Figure 4. Carrier status-dependent functional difference. (a) The word experiment. A sagittal slice (left), x=− 28, showing the location,
MNI= (−28, − 36, − 14) of significant carrier status effect on the contrast PW vs W. (b) The multiplication experiment. A sagittal slice (left),
x=− 50, showing the location, MNI= (−50, − 66, 24), of significant carrier status effect on the contrast C vs F. The right images on both a and b
show the location of the sagittal slice on a coronal view. C, correct equation; F, false equation; MNI, Montreal Neurological Institute; PW,
phonologically and orthographically unfamiliar forms; W, orthographic familiar forms of Icelandic nouns.
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widely in the central nervous system, while TUBGCP5 is highly
expressed in the subthalamic nucleus.46 Yoon et al.46 took a
multifaceted approach to investigate why the 15q11.2(BP1–BP2)
deletion confers risk of neuropsychiatric disorders. They used
human iPSC-derived neural progenitors carrying the deletion and
noticed deficits in adherens junctions and apical polarity. They
claim that these results from haploinsufficiency of CYFIP1
encoding a subunit of the WAVE complex. They also
demonstrated that in the developing mouse cortex, deficiency
in CYFIP1 and WAVE signaling similarly affects radial glial cells,
leading to their ectopic localization outside of the ventricular
zone.46 Bozdagi et al.47 furthermore reported that haploinsuffiency
of CYFIP1 produces fragile X-like phenotypes in mice. Thus,
haploinsuffiency of CYFIP1 may contribute to the neuro-
developmental origins of the disorders associated with the
15q11.2(BP1–BP2) deletion.10,46,48

This study adds to the emerging understanding of the impact
conferred by the 15q11.2(BP1–BP2) deletion on brain structure
and function. The deletion confers high risk of the DLX&DC
phenotype (odds ratio = 4.4, P= 1.4 × 10− 4), and the results
demonstrate significant volume changes in WM and GM brain
structures in addition to a decrease in brain activation in regions
important for reading and arithmetic. Overall, our findings shed
light on the role of this CNV in typical and atypical brain
development. The deletion allele impacts cognitive function and
learning and is probably the strongest factor contributing to the
DLX&DC phenotype in the affected carriers.
Brain structure is largely shaped by sequence variants that exert

lasting influences on its function and several common variants
have been associated with subcortical structures.49,50 The
confluence of common variants predicting subcortical structures
does, however, not predispose to brain diseases like
schizophrenia.51 Thus, although brain structure volumes show
high heritability, there may not be a direct correlation with
diseases. Hence, although subcortical volumes may differentiate
patients from controls, the explanation may not necessarily be
rooted in their genomes. Many brain disorders are heterogeneous
groups of disorders at the level of genetic etiology and clinical
presentation. Through high-impact variants, the relationship
between genotype and phenotype may be disentangled, which,
in turn, may help determine which brain phenotypes, associated
with a disease, are a cause or consequence of the disease. For
instance, larger putamen and pallidum volumes associate with
duration of illness in schizophrenia,51 a consequence of the
disease that can be combatted with antipsychotic drugs.
Here we have demonstrated by using convergent evidence

from neuropsychological testing and structural and functional
neuroimaging that a high-impact sequence variant provides
insight into the causes of variability in human brain structure
and function. Although the 15q11.2 CNV alleles confer mirror
effects on both brain structure and function, only the deletion
affects cognition with large effect. Sequence variants influencing
brain structures may reveal new biological mechanisms under-
lying cognition and neuropsychiatric illness.
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