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Abstract 

The main objective of the paper is to describe and develop model ori- 

ented methods and algorithms for the design of spatial experiments. Unlike 

many other publications in this area, the approach proposed here is essen- 

tially based on the ideas of convex design theory. 

1. Introduction 

Since the earliest days of the experimental design theory, a number of concepts like 

split plots, strips, blocks, Latin squares, etc. (see Fisher (1947)), were strongly 

related to experiments with spatially distributed or allocated treatments and ob- 

servations. In this survey we confine ourself to what can be considered as an 

intersection of ideas developed in the areas of response surface design of experi- 

ments and spatial statistics. 

The results which we are going to consider are also related to the results de- 

veloped by Cambanis (1985), Cambanis and Su (1993), Matern (1986), Micchelli 

and Wahba (1981), Sacks and Ylvisaker (1966, 1968, 1970) and Ylvisaker (1975, 
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1987). What differs in the approach of this paper from those cited? We intend 

to use the techniques which are based on the concept of regression models while 

the cited studies are based on the ideas developed in the theory of stochastic 

processes and the theory of integral approximation. 

If this survey were to be written for a very applied audience, the title “optimal 

allocations of sensors” or “optimal allocation of observing stations” could be 

more appropriate. Environmental monitoring, meteorology, surveillance, some 

industrial experiments and seismology are the most typical areas in which the 

considered results may be applied. What are the most common features of the 

experiments to be discussed? 

1. There are variables x E X c Rk, which can be controlled. Usually k = 2 , 

and in the observing station problem, x1 and 22 are coordinates of stations 

and X is a region where those stations may be allocated. 

2. There exists a model describing the observed response(s) or dependent vari- 

able(s) y. More specifically y and x are linked together by a model, which 

may contain some stochastic components. 

3. An experimenter or a practitioner can formulate the quantitative objective 

function. 

4. Once a station or a sensor is allocated a response y can be observed either 

continuously or according to any given time schedule without any additional 

significant expense. 

5.  Observations made at different sites may be correlated. 

Assumptions 1 - 5 are very loosely formulated and they will be justified when 

needed. In the subsequent sections the term ‘‘sensor” stands for what could be 

an observing station, meteorological station, radiosonde or well in the particular 

applied problem. 



DESIGN OF SPATIAL EXPERIMENTS V 

2. Standard design problem 

In what follows we will mostly refer to experiments which are typical in environ- 

mental monitoring setting as a background for the exposition of the main results. 

We hope that the reader will be able to apply the ideas and techniques to other 

types of experiments. 

When assumptions 4 and 5 are not considered we have what will be be 

called, the “standard design problem”. The problem was extensively discussed 

(see for instance, Atkinson and Donev (1992), Fedorov (1972), Pazman (1986), 

Pukelsheim (1994) and Silvey (1980)), and it is difficult to add anything new in 

this area of experimental design theory. Theorem 1 which follows, is a gener- 

alized version of the Kiefer-Wolfowitz equivalence theorem, (see Kiefer (1959)) 

and stated here for the reader’s convenience. It also serves as an opportunity 

to introduce the notation, which is sometimes different from that used in other 

articles of this volume. 

Let 

where 8 E R” are unknown parameters, fT( z) = (fi(z) . . . , fm(z)) are given 

functions, supporting points x; are chosen from some set X ,  and the Eij  are 

uncorrelated random errors with zero means and variances equal to one. We 

do not make distinctions in notation for random variables and their realizations 

when it is not confusing. 

For the best linear unbiased estimator of unknown parameters the accumu- 

lated “precision” is described by the information matrix: 

which is completely defined by the design [ = (.;,pi}?. In the context of the 
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standard design theory 
4 

where ( (dz)  is a probability measure with the supporting set belonging to X : 

suppt c X, and 

is the information matrix of an observation made at point x. 

Regression model (2.1) and the subsequent comments do satisfy assumptions 

1 and 2 from the previous section. To be consistent with assumption 3 let us 

introduce a function 9 ( M ) ,  which is called the “criterion of optimality” in ex- 

perimental design literature. A design 

is called (@-) optimal. 

Minimization must be over the set of all possible probability measures 2 with 

supporting sets belonging to X .  Now let us assume that: 

(a) X is compact; 

(b) f(z) are continuous functions in X ,  f E R”; 

(c) Q ( M )  is a convex function and Q ( M )  5 @(M + A), M 2 0, A 2 0, 

Le. matrices M and A are nonnegative definite. 

(d) there exists a real number q such that 

(e) for any < E Z(Q) and f Z(q): 
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where ~(a,<,f) =  CY). 

Here and in what follows we use Q(<) for Q[M([)], Q" for @(<*) and min,,miq, J, 

and so on, instead of minzrx, minteE7 Jx, respectively, if it does not lead to am- 

biguity. 

Theorem 1. . I f  (a)-(e) hold, then 

1. For any optimal design there exists a design with the same information 

matrix which contains no more than n = m(m + 1)/2 supporting points. 

2. A necessary and sufficient condition for a design <* to be optimal is fulfill- 

ment of the inequality: 

miny(x,f*) 2 0. 
1: 

3. The set of optimal designs is convex. 

4. $(x, e") achieves zero almost everywhere in suppt', 

where suppt, stands for supporting set of the design (measure) <. 

Here and 

Functions +(z, <) for the most popular criteria of optimality may be found, for 

instance, in Atkinson and Fedorov (1984). Theorem 1 provides a starting point for 

analytical exercises with various relatively simple regression problems and makes 

possible the development of a number of simple numerical procedures for the 

optimal design construction in more complicated and more realistic situations. 

Most of these procedures are based on the following iterative scheme: 

0 (a) There is a design & E Z(q). Find 

x+ = argmin+(z,<,), x- = argmax$(z,Js), 
XEX XEX, 

where X ,  = suppJs. 
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0 (b) Choose 0 < ps < 1 and construct 

[s+l = (1 - P S ) [ ,  + PS[(XS), 

where [(s,) is a measure atomized at 2,. 

The choice of a sequence ,Os defines a variety of the algorithms; specific examples 

are given by Atkinson and Donev (1992), Cook and Nachtsheim (1989), Fedorov 

(1972, 1975) and Silvey (1980). The following sequences are most popular: 

Theorem 1 together with iterative procedure (2.5), (2.6) provides quite power- 

ful tools for constructing optimal design. The existing software products, see, for 

instance, Mitchell (1974), Nguen and Miller (1992), Nachtsheim (1987), SAS/QC 

Software (1995), Wheeler (1994), confirm this statement. Unfortunately, there 

are a few hurdles, which do not allow the direct use of the results reported above. 

The first one is that optimal designs defined by (2.4) may have unequal weights. 

What does this mean in the context of observing stations allocation? If we have 

N available stations or sensors, then r;* = [p:N] stations must be allocated at 

s:, where b:lv] is some reasonable integer approximation of pzN.  It is obvious 

that in many cases (but not always) two or more stations sited in the immediate 

vicinity of each other will not give essentially more information than a single 

station. There are some arguments in favor of this statement, which can be 

expressed economically in colloquial statistical terminology: observations from 

these stations are strongly correlated. However, frequently weights pz may be 

. 

L 
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considered as the desirable precision of measurements taken at the i-th station. 

The corresponding precision can be achieved through the proper technical steps 

or through controlling the longevity of the observational process. 

Probably, Gribik et a1 (1976), were the first to use the optimal experimen- 

tal design methods for environmental monitoring. They analyzed the problem 

of allocating measuring resources to aid in accurately estimating ground level 

pollution concentrations throughout a region X .  The regression model was the 

linearized version of the diffusion model for four pollution sources and unknown 

background source. Since the diffusion model used in the study was a large scale 

model, measurements separated by distances smaller than a threshold value dis- 

tance appeared to be correlated in the corresponding parameter estimation prob- 

lem. At the same time the design method was a particular case of the method 

discussed in this section, where the independence of observational errors is essen- 

tial. To avoid a contradiction the authors imposed the additional constraint: the 

distance between any two observing sites must be greater than the characteristic 

distance: 

(Xi - "j)T("j - Zj) > d2. 

Imposing constraints of that type is one of the simplest way to handle possible 

correlation between the observed values at neighboring stations. Obviously the 

approach does not work for long-range correlation, when the widely separated 

observations are correlated. 

It was assumed that the ground level pollution is of the prime interest. The 

authors proposed to use the weighted average variance of the best linear unbiased 

estimator of the ground level pollution: 

as the criterion of optimality. The weight function W(Z) was selected proportional 

to the population density in the considered region. 

A rather detailed discussion of applicability of the standard design technique 
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for spatial experiments may be found in Fedorov et al( 1988). 

3. Optimal designs with bounded density 

Gribik et a1 (1976), used a very simple and transparent idea to avoid clustering 

of sensors at particular points. This idea can be exploited in a more general and 

formal setting. Let the number of sensors N be sufficiently large and the density 

of stations per square unit be introduced into consideration: 

Introduction of (3.1) is very reasonable when the sensor allocation is considered 

in technological experiments. In the network allocation problem it is probably 

less realistic. Nevertheless, the results considered in this section help to explain 

why some intuitive approaches, similar to what was done by Gribik et a1 (1976), 

do work well in most cases. 

If X is not uniform (as might be appropriate say, with different topography 

for different parts of X ) ,  then it is natural to assume that the sensor density has 

to be constrained: 

With obvious redefining of the design measure t ( d z )  and the upper bound @2(dz) 

the latter may be reduced to a simpler statement: 

Thus, the following optimization problem must be considered, (we skip the evi- 

dent left hand side constraint): 

(* = arg min 8 [ M ( [ ) ]  , 
E 

L 
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This optimization problem was discussed by Wynn (1982), and Fedorov (1989). 

To avoid unnecessary technical complications let us assume additionally to (a)- 

(e) from section 2 that 

(f) <P(dz) is atomless, Le. 

The following theorem summarizes the most important properties of designs 

with bounded density. 

Theorem 2. . Let ZO be a set of design 

((dx) > 0, and ((dx) = 0 otherwise, and let assumptions (a) - (f) hold. Then: 

such that t ( d z )  = @(dx), when 

- 
0 There exists an optimal designs t* E LO. 

0 A necessary and sufficient condition for this design to be optimal is that 

$(x, [*) separates the two sets X *  = supp[* and its complement. 

In the above formulation "separate" means that there is a constant C such 

that $ ( x , t * )  5 C on X *  and $(z,[+) > C on its complement. 

Theorem 1 tells us that supporting sets of optimal designs must coincide with 

the points where $(x,[*) achieves its minimum. Therefore, in most cases the 

supporting set for the standard optimal design consists of a finite number of 

supporting points. 

Theorem 2 forces suppc to occupy the subsets of X .  How is [*(dx) to be 

realized by a practitioner? One of the possibilities is to replace t*(AX) for 

relatively small areas AX by N * ( A X )  = [ [* (AX)N]  . When N * ( A X )  is defined 

then the corresponding number of sensors have to be allocated in A X .  For 

instance, they can be sited at the nodes of some uniform grid. Generally, that 

allocation has to guarantee a reasonable approximation of the integral 
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by the sum 

The properties described by Theorem 2 allow us to formulate a simple numer- 

ical algorithm to construct optimal designs (see Fedorov (1989)). Let a(&) = 

$(z)dz and 

lim a, = 0, lim a,! = 00 and lim < CQ. 
S+oO S+CO S+oO 

s’=l s’=l 

(a) There is a design [, E Eo. Let XI, = suppf, and X,, = X \ XIS. Two sets 

D, C XI ,  and E, c X2, with equal measure, 

and, correspondingly, including the points 

(b) The design ts+l with the supporting set 

is constructed. 

Usually $(z) is assumed to be constant. All other cases may be converted to 

this one with the proper coordinate transformation. In the computerized version 

of the algorithm integrals in (a) are replaced with sums over some grid elements. 

If these elements and subsequently Q, are fixed and elements of both D, and E, 

coincide with the grid elements, then (a), (b) becomes an exchange type algorithm 

(see, for instance, Mitchell (1974)) with the simple constraint: every grid element 

cannot contain more than one supporting point and the weights of all supporting 

points are the same, Le. N-l. In practice it is sometimes convenient to consider 
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grids of varying density, which has to be proportional to #(z). While it can be 

shown that the exchange algorithm (a), (b) converges to an optimal design for 

properly diminishing a, , it is not generally true for finite a, and, in particular, 

when as N - l .  The accuracy of the limit designs is defined by the accuracy of 

the approximation (see assumption (e) from Section 2): 

r 

When these approximations are reliable enough then we can hope that the 

limit designs do not deviate too much from the optimal ones. The term “limit 

design” must be used with some reservation when a, E N-’: instead of conver- 

gence some minor oscillations of @ [M(t , )]  may be observed. Practical aspects of 

the iterative procedure (a),(b) were discussed by Fedorov and Muller( 198913) in 

the air pollution network design setting. 

4. Correlated observational errors 

Let us assume now that the random errors in model (2.1) are correlated and 

that the covariance structure is known, i.e. either the covariance matrix V or the 

covariance function V (  z, z’) is given. There is no need to use the second subscript 

indicating the repeated observations and we consider 

where i = 1 , .  . . , N ,  E(&;) 0 and 

For the obvious reason, in this section we will use the simplified notation: 
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In the case of correlated observations the best linear unbiased estimator is defined 

as ( see, for instance, Rao (1973)): 

where 

where 

Unlike (2.2), the information matrix (4.4) is not a sum of information matrices 

of single observations. Therefore we cannot use directly the results of the convex 

design theory, which is essentially based on the additivity of information matrices. 
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Actually, we have to consider the optimization problem 

[G = arg min @ [M(e)J , (4.7) 
€N 

which does not have too much in common with (5) besides notation. For instance, 

the convexity of @ is not very helpful anymore. 

In most studies authors try to imitate the iterative methods of optimal design 

construction considered in two previous sections. For instance, computations 

become similar to the standard (uncorrelated) case, if the following recursion 

formula is used (Brimkulov et a1 (1986)): 

We can easily derive, for instance, that 

Subsequently, for the D-criterion the point 

must be added to the design &,T. That is an imitation of step (a) from the iterative 

procedures considered in the two previous sections. 

There exists a simple intuitive explanation why iterative procedures based on 

(4.10) provide "good" supporting points in the sense of the D-criterion. First, 

let us recollect that in the no-correlation case accordingly to stage (a) of the 

iterative procedure from Section 2 the additional observation( s) must be allocated 
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at point(s), where the ratio 

variance of prediction with the estimated 8 

variance of prediction with the given 8 

- - a2(x>  + fT(z>N-- l (5) f (4  
a2(4 

is maximal. This follows, for instance, from (2.5) when 

(4.11) 

in the more general case (see Fedorov (1972)) for details. In the case of correlated 

observations we are looking for a maximum of the same ratio 

variance of prediction with the estimated 8 

variance of prediction with the given 8 

When z + xi E s u p p f ~ ,  then 

for f(z) and V ( x ,  JN) continuous in the vicinity of 2. In other words the iterative 

procedure defined by (4.10) does not admit coinciding supporting points. The 

result follows from the definitions of +(z,[~) and S2(z,[~), and the fact that 

where S;j is the Kronecker symbol. Formula (4.10) can be easily rewritten for 

the deleting procedure. LFrom (4.9) it follows that in the case of the D-criterion 

(4.12) 
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candidates for deleting are defined by the equation: 

We are not aware of any results on the properties of the iterative procedures 

based on (4.10) and (4.14) for the D-criterion or similar procedures for other cri- 

teria. There are empirical confirmations that the exchange-type algorithms lead 

to a significant improvement of the starting design. For instance? Rabinowitz and 

Steinberg (1990) applied that type of algorithm to the problem of selecting sites 

for a seismographic network. They have shown that the computed designs are rel- 

atively efficient and are better than the standard D-optimal designs constructed 

for models with uncorrelated observations. It is reasonable to note that compu- 

tationally (4.9) and (4.14) are much more demanding than their counterparts in 

the standard design theory. There exist a number of studies where the optimiza- 

tion problem (4.1) is considered for some special and relatively simple covariance 

functions? for instance, generated by autoregressive models. Various details and 

further references may be found in Bickel and Herzberg (1979), Bishoff (1992), 

Kunert (1988), Martin (1986), Miller and PBzman (1995) and Niither (1985). 

In conclusion of this section let us emphasize again the significant difference 

between the case with correlated observations and the standard case. For un- 

correlated observations the additiveness of the normalized information matrix 

(a(x) = 1): 
IV 

A!!([) = N-l  f ( x ; ) f T ( x ; )  = N-lM(<N) 
i=l 

leads to many simple and elegant theoretical results initiated by Kiefer’s pioneer- 

ing findings. Very frequently normalized information matrices may be treated as 

a limit, i.e.: 

(4.15) 

In many cases for correlated observations the corresponding limit does not exist 

and the matrix M ( [ )  cannot be introduced. One of the most successful attempts 



xviii 

to replace (4.15) was due to by Sacks and Ylvisaker (1966, 1968); see more in 

Section 7. 

5. Random coefficients regression models: Trend estima- 

t ion 

In what follows we intend to consider some simple models for the random com- 

ponent in (2,l). It is convenient to partition “intrinsic” or “proce~s’~, and “ob- 

servational” sources of randomness: 

Values u;j describes deviations of the observed response from q(x;, 0) due to 

some causes which are independent of an observer. For instance, an average wind 

velocity may be disturbed by various local micro-eddies. The term e;j describes 

L‘observationa17’ errors. Sometimes these errors are defined by the selected obser- 

vational technique and, at least partly, they are controlled by an observer. The 

proposed partitioning is very conditional, and the reader may use a different one, 

which is more compatible with the corresponding experimental situation. 

Let us assume that 

or 

where 

. 
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Vector 0 2  is random with 

E(&)  = 0, E(620:) = Var(02) = A, 

vector e describes the observational errors, which are random and 

E ( €)  = 0 E(&) = 021. 

We assume that 82 and E are uncorrelated. In terms of (5.1) we have 

E ( u )  = 0, E ( U U T )  = F , T ( t N ) A F 2 ( t N ) .  

xix 

(5.4) 

If e = u + E ,  then 

Thus we are going to consider a very special case of (4.1) with V(&v) defined by 

(5 .5) .  It may be illuminating to associate index “j” with time (hour, day, . . .) 

and “i” with location (z; is a vector of coordinates of a particular site). 

Model (5 .5 )  gives an opportunity to introduce criteria of optimality which 

provide a very reasonable description of various experimental situations. Those 

criteria may be divided in two main groups. The first group is related to the 

“average over time” behavior of the observed response. The corresponding criteria 

depend upon the precision of estimators of 01. This means that we consider some 

functions of Var(&l), where 81 is an estimator of 61. 

The second group deals with “instant” responses and the corresponding cri- 

teria are based on V a ~ ( e ) ,  eT = (e:, 6;). 

Let us start with the first group, i.e. with estimating the subvector 61. The 

best linear unbiased estimator is (compare with (4.3): 
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The dispersion matrix of 4 is 

where 

An optimal design (or optimal observational network) is defined as 

(5.7) 

which differs from (4.7) only by the more detailed information about V ( ~ N ) .  

It may be expedient to note that unlike the situation described in comments 

accompanying (4.13) the covariance is not anymore a continuous function at the 

diagonal: 

x+x/ lim E(e(z)e(z ' ) )  # o2 + f . ( ~ ) A f i ( z ' ) .  (5.10) 

Therefore (5.9) may admit designs with repeated observations, i.e. it could 

be that x E supp&v and M ( &  + 2) is better than M(JN) .  

Using the identity 

(5.11) 

(5.12) 
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LFrorn the Frobenius formula it follows that 

The matrix D ( ( N )  can be also considered as the dispersion matrix of the best 

linear unbiased estimator of parameter OT = (e:, O r )  for the regression model. 

where F T ( h )  = ( F : ( I ~ N ) , F . ( ( N ) )  , E ( €)  = O,E(ceT) = o21, with the prior 

information about parameters 02 described by a prior distribution P(82) such 

that 

and 

See, for instance, Fedorov (1972)? Pilz (1991), and Seber (1977). Thus, the 

optimization problem (4.1) may be embedded in the framework of convex design 

theory. For instance, for the D-criterion, when (Ml1(&v)I-l = IDl1(&)( must be 

minimized, one can use any algorithm developed for the construction of “exact” 

or “discrete” optimal designs; see, for instance, Cook and Nachtsheim (1980), 

Fedorov (1972), Ermakov (1983), and Pukelsheim (1993) when only the subvector 

81 has to be estimated. More generally we can now describe experimental design 

as the following optimization problem 

(5.13) 

where 

N is now the total number of possible observations, and 
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Let us note that occasionally the total number of observations and the number 

of supporting points may coincide (like in (5.2). Then N stands for both. The 

results of Sections 2 and 3 may routinely be applied to (5.13) when 8 is properly 

defined and o2 and A are known. 

Subset D-optimality. According to (4.10) we have to minimize some function 

of the matrix a;:, when the parameters 01, are of prime interest. In terms of 

(5.13) it means that the objective function 8 must depend upon elements of the 

matrix All([), which may be defined as follows: 

where 

iwOz2 = a2 N - ~  A - ~ .  

One of the possibilities is to select 

(5.14) 

LFrorn Theorem 1 it immediately follows that a necessary and sufficient con- 

dition for [* to  be optimal is that (compare with Fedorov, 1972): 

(5.15) 

Notice that 
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is the normalized variance of JTf(s), where 8 is the best linear unbiased estimator 

of 8 from model (5.2), and 

may be considered as a normalized variance of the best linear estimator for 

the regression model with the same observational errors but with the response 

0; f2(x). To get non-normalized values we have to multiply the normalized values 

by a2N- l .  Simple, but rather long matrix calculations show that 

(5.16) 

(5.17) 

This collection of formulae looks much more complicated than the similar terms 

in (5.15). However, that presentation has one remarkable feature: it does not 

depend upon functions f2(z) and matrix A explicitly. All elements in (5.16) are 
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completely defined by the covariance function 

o - ~ N R ( z ,  5') = E (f2(~)6:62f, T I  (Z )) = V(Z,Z'), # 5'- 

(5.18) 

Thus, when the covariance function is known directly, i.e. we do not use (5.5) 

to get it, one can use (5.16) and (5.18) to construct optimal design. Moreover, 

the cases, in which E = dim62 --+ co may be considered. The first attempt in this 

direction was done by Miiller-Gronbach (1993). 

r 

6. Random coefficient regression models: Prediction 

The presentation of the design problem for model (5.2)-(5.4) in the form (5.13) 

allows us to develop a rather simple technique for experimental design when the 

objective is the prediction of observed values. For the sake of simplicity, let 

~ ( z , O )  F 0 in (5.2) and 

~ j ( ~ i )  = uij = 6 r f ( ~ i ) .  

Then the corresponding optimal designs are defined as 

[* = argminQ ( M ( [ )  + Mo) , 
5 

where 

M ( [ )  = / f(z)fT(z)[(dz) and Mo = a2N-lA- l .  

It is expedient to note that 
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where the expectation operator E takes into account randomness of both obser- 

vational errors and regression parameters. Minimization is taken with respect 

to all linear estimators, see Gladitz and Pilz (1982), Fedorov and Miiller (1989), 

Pilz (1991) . The best linear estimator is 

Similar to arguments in Section 5 we can apply the equivalence theorem to 

(6.2) to find, for instance, necessary and sufficient conditions for a design [* to be 

optimal. Leaving to the reader the possibility to formulate them for the general 

case we focus only on three simple and very popular criteria. 

Minimax and D-criterion. For the D-criterion, when 

one can easily derive from Theorem 1 that a necessary and sufficient condition 

for to be optimal is that 

for all x E X .  

This inequality appears, especially when the dimension of f is large, more at- 

tractive and meaningful in notation described in comments accompanying (5.11): 

The variance of the best linear unbiased predictor for u(x) equals 
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= c2 + Cr2N-l [R(z,z) - RT(z7E) (w-1 + R([))-l R(z7E)] , 

where 

G(X) = OTf(z) = Rt(2,J) (w-1 + R([))-lP- 

= VT(", [) (a2W-1N4 + v(())-I F, 

and the components of the vector P are averages of observations at the corre- 

sponding points. For the continuously changing weights pi the i-th component of 

Y may be considered as the observation made with a precision a/p;N = ai2. If 

one introduce the covariance function 

- 

then (compare with (4.6) or coming later (7.1)) predictor &(z) coincides with 

the best linear unbiased predictor for y(z) = u(z) + E(X) everywhere except 

x E suppt. At the design points xi the realization(s) of y(z) are measured 

directly and are not needed to be predicted, i.e. one may select y(z) = ij(x) and 

Var (y(x) - i j(z)I() = 0. Obviously 

(6.10) 

otherwise. 

Using Theorem 1 together with (6.5) and (6.10) we can formulate the analogue 

of the Kiefer-Wolfowitz equivalence theorem: 

Theorem 3. The following two design problems are equivalent: 

There is one significant difference between this result and the original equivalence 
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theorem: an optimal design generally depends upon the number of observations 

N to be used. 

Theorem 3 and formula (6.5) give another insight into numerical procedures 

from Sections 2 and 3: at every stage one has to relocate the design measure from 

the point(s) where y(z) may be predicted easily (small Var(y ( z )  - $(z)[t,)) to 

the point(s), where the prediction is poor ( large Var(y(z) - $(x)[&)) . 

Two linear criteria. Two objective functions which are very popular in spatial 

statistics are the weighted average variance of prediction: 

and the variance of the weighted average of prediction: 

where 2 is the “prediction” set or the area of interest. Using (6.6) one can find 

that minimization of Q1(t) and Q2(() is equivalent to minimization of 

where in the first case 

and in the second one 

A = J, w2(z)f(z)fT(z)dz, 

A = aaT, a = w(z)fT(x)dz. 

LFrom part 2 of Theorem 1 it is easy to conclude that 

Theorem 4. . The design e* is linear optimal if and only if 

(6.11) 

(6.12) 



Similar to the D-criterion we can show that for the average variance of pre- 

diction 

4(z7 5) = 41(3>[) = 1 c0v2(z, Z ' l < ) W 2 ( z 1 ) d Z r ,  (6.13) 
z 

while for the variance of the weighted average 

where 

C0v(z7d1t) = R ( z , d )  - RT(.,t) (w-1+ R(J))-I R ( d 7 t ) .  

The counterparts of Theorem 3 and 4 may be formulated for optimal designs 

with bounded density. To do this function $(z,[*) in Theorem 2 should be 

replaced either with Var  (y(z) - $(z)It), or with ~I(z, t) ,  or with +2(z7 5). 

Remarks on applicability of the results. Let us note that the introduction of 

model (5.2) -(5.4) to generate correlated observations allows us to use the convex 

design theory for regression problems with correlated observations. Moreover, all 

results may be presented in a form which does not demand any direct knowledge 

of the functions f(z). We can formulate results for a particular criterion using 

only information about the covariance function. 

In this and in the previous section we have discussed only the properties of 

optimal designs. We hope, that having the sensitivity function $(x, [) represented 

for various criteria in terms of the normalized covariance function Cov(z, z ' I ~ ) ,  
the reader can easily construct numerical procedures similar to those discussed 

in sections 2 and 3. 

7. Comparison with the methods based on the variance - 
covariance structure of observed random fields 

Sacks-Y"visarEer approach. Let us suppose that in model (4.1) there is no trend, 
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i.e. v ( x 7 8 )  E 0, and the covariance function V(x ,x ’ )  is defined and known for 

all x,x’ E X .  The objective of an experiment is to predict y(x)  at a given set of 

points 2, which can be either discrete or continuous., 

The best linear unbiased predictor for y(x) may be presented as follows (com- 

pare with (4.5 and (4.6)): 

We again use notation JN = (x l , .  . . ZN) to emphasize that there is only one 

observation at every point 2;. Criteria Q 1 ( ( ~ )  and Q2(&)  introduced in the 

previous section have been most intensively analyzed in the studies related to the 

design problem with correlated errors. Usually it has been assumed that 2 = X .  

A very good summary of the main results for the criterion Q1((~) may be 

found in Micchelli and Wahba (1981). The criterion Q 2 ( & )  was analyzed by 

Sacks and Ylvisaker (1970) and Ylvisaker (1987). Further references and com- 

ments may be found in Cambanis and Benhenni (1992), Cambanis (1985), Cam- 

banis and Su (1993). 

Noting (see (7.l)that 

where 

we can consider minimization of either Q1(&) or & 2 ( [ ~ )  as a problem of finding 

an optimal basis for a quadrature formula in approximation theory, with a rather 

specific objective function; see Karlin and Studden (1966), Sacks and Ylvisaker 

(1970), Stroud (1975). 

When N ---f 00, both &I(&) and Q 2 ( [ ~ )  converge to zero for “smooth” 
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covariance functions V(z,x')  and for any atomless sequence JN. As in Section 

3 we may introduce the limit design measure that defines JN. How a sequence 

(N may be generated with a particular [ (dz )  is discussed in details by Cambanis 

(1985) for X C R1. For instance, the so called regular median sequence or design 

.& is defined as 

[(dx) = 2N , 2 = l , 2 , .  . . , n ,X  = [a, b].  (7.3) 
. 

X N ;  = arg 

When X is hypercube and V(z ,x ' )  is separable with respect to all components 

of 2, then design [ N  may be defined as a direct product of univariate designs (see 

Ylvisaker (1975) for details). Thus the design problem is reduced to the search 

of the limiting measures providing the best convergence rate for the selected op- 

timality criterion. The rather elaborate technique, a close sibling of the classical 

approximation theory, leads to a very special minimization problem. Introducing 

the design density t ( dz )  = h(s)dx we may state this problem as follows 

h* = arg min Q [B(h)] , 
h 

(7.4) 

where 

m is the number of estimated integrals (for instance, integrals of Q2((~)-type 

with various weight functions), functions ~,(z)  and integer k are defined by a 

covariance function and by an optimality criterion. 

Similar problems were considered in studies concerned with simultaneous cal- 

culation of m integrals by Monte-Carlo method; see Mikhailov and Zhigljavsky 

(1989), Zhigljavsky (1988), for details and further references. Actually, (7.4) be- 

ing an optimization problem in a space of probability measures has many features 

in common with the standard design problem. Some interesting results including 

the analogue of the iterative numerical procedure from Section 2 are summarized 
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and discussed by Zhigljavsky (1988). 

. Analytical solutions of (7.4) for the one-dimension case were proposed in the 

pioneering papers by Sacks and Ylvisaker (1966, 1968, 1970). Various general- 

izations may be found in Hajek and Kimeldorf (1976) and Wahba (1971, 1974). 

Following Cambanis (1985), the essence of those findings can be formulated as 

follows: 

If there exist exactly k quadratic mean derivatives of the random process y(z), 

then under certain regularity conditions (see details in the cited publications) 

where 

and superscripts indicate the order of partial derivatives. For any design with 

density separated from zero the integral Q(&,T) diminishes as O(N-2k-2)  and 

h* (z) minimizes 

lim N2k+2 Q ~ ( < N )  ( 7 4  
N-bcr, 

In fact, the immediateobjective of Sacks and Ylvisaker (1966,1968,1970) was min- 

imization of some function of the dispersion matrix of estimators of parameters 6 

describing a linear trend 8’f(z) in model (4.1). They reduced the corresponding 

minimization problem to minimization of objective functions similar to Q2( &v). 

For instance, when 8 f R1, then one has to minimize Q ~ ( [ N )  with a weight 

function which is a solution of the following integral equation: 

f(z) = J ,  V(z, z’)w(z’)dz’. 

Evidently, for stationary covariance functions ak(z) constant. Subsequently 

the optimal limiting density h*(x) is completely defined by the weight function 

w(z). In other words, only the behavior of V(z,z’) at its diagonal influences the 

solution! The Sacks-Ylvisaker approach (at least in its current form) cannot be 
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used in two cases of practical importance. First, it does not work for “infinitely” 

smooth covariance functions, when ak(z)  0 for any IC.  The covariance function 

is a popular example (see Sacks and Ylvisaker (1966). The presence of the “white” 

noise (see model (5.1)) in observed variables gives another example, when the 

approach does not work. The latter case is of interest for many applications 

being a very reasonable model when a random process is observed with some 

instrumental error. In conclusion of this subsection let us note that the concept 

asymptotically optimal design [$ based on the existence of a continuous limit 

density h*(x) and assumption that 

lim max(z;N - = 0; 

see Sacks and Ylvisaker (1966). The definition (7.3) of design ,& is one-dimension 

by its nature and that makes the approach difficult for spatial applications; see 

Ylvisaker (1975) for further details. 

N-CQ a 

Random parameters approach, To understand the advantages and disadvan- 

tages of approach proposed in Sections 5 and 6 relative to to the Sacks-Ylvisaker 

approach let us introduce the following model: 

where fa(z) are eigenfunctions of the covariance kernel 

6, are random with zero means and diagonal covariance matrix, such that Var(6,) = 

A,, A1 2 A2 L . . . 2 A, 2 . . . , e(z) is white noise with the variance 1, and o2 

is a normalizing constant. 

It is well known (Mercer’s theorem; see for instance, Kanwal (1971)) that 
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under very mild conditions the series 

is uniformly and absolutely convergent and subsequently under very mild as- 

sumptions {A,} must diminish not slower then O(l/cr) . For many widely used 

stochastic processes or fields the rate is significantly faster; see Micchelli and 

Wahba (1989, Theorem 3. 

Therefore, for sufficiently large n the kernel Vn(x, 2’) may be a very reasonable 

approximation of V ( x ,  x‘). Allowing 0 +. 0 we may hope that the process yn,@(x) 

is “close” to y(x) in the sense of their second moments. Subsequently, we might 

expect the closeness of the corresponding optimal designs. This probably holds for 

designs 5~ with relatively small N .  However, for N + 03 the diminishing Q does 

not guarantee closeness of optimal designs with 0 = 0 and 0 > 0. First, formally 

the Sacks-Ylvisaker approach does not work for any model with additive “white” 

noise, because it causes discontinuity of a covariance kernel at its diagonal: 

Secondly, for any cr > 0 and any [ N  the rate of convergence for either Q ~ ( [ N )  or 

for & ( [ N )  will not be generally better than O(N-’) .  This is slower than for any 

continuous covariance kernel. 

Thus, for large N the Sacks-Ylvisaker approach and results from Sections 

5 and 6 may lead to the different asymptotically optimal designs. If one be- 

lieves that there is no instrument or any other observation error, then the Sacks- 

Ylvisaker approach leads to the better limit designs. 

When the contribution of observation errors is significant then approximation 

(7.8) becomes very realistic and allows the use of methods from Sections 5 and 6,  

which usually produce optimal designs with very moderate numbers of support- 

ing points. Usually these designs have about n supporting points.The existence 
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of well developed numerical procedures and software allows the construction of 

optimal designs for any reasonable covariance function V(z7 5’) and various de- 

sign regions X, including two and three dimension cases. Let us notice that the 

function COV(Z, 2’15) used in Theorem 4 may be presented in the following form: 

(7.10) 

P = 6;jri7 r; = p;N. 

This formula is convenient for some theoretical exercises. For more applied ob- 

jectives and for development of numerical algorithms based on the iterative pro- 

cedures from Sections 2 and 3, the direct use of eigenfunctions f & ( ~ )  is more 

convenient. 

Popular IcernekThere are several show-case processes and design regions for 

which analytic expressions for the covariance kernel exist, and the corresponding 

eigenvalues and eigenfunctions are known: 

For the Brownian motion the kernel is 

V(Z, z’) = min(z, z’), O 5 x,x‘ 5 1, 

and its eigenvalues and eigenfunctions are 

A, = (a - 1/2)-’~-’, f,(z) = &sin(a - 1/2)ns, Q = 1,2,. . . . 

For the Brownian bridge, 

and 

-2 -2 A, = a  R , f,(s) = d i s i n a n z ,  a = 1,2 ,.... 

Both kernels are not differentiable on the diagonal (see comments to (7.5)) and 

their “jump” functions Q(Z) are easy to calculate. These two kernels or some 
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simple functionals of them (compare with Wahba (1971)) are convenient candi- 

dates for the Sacks-Ylvisaker approach. For the Poisson kernel 

1 - p 2  

1 - 2pcos27r(J: - xc’) + p 2 ’  
V ( X , d )  = 0 2 x,xI  5 1, 0 < p < 1, 

and 

A* = 1, x 2 , 4  = A2, = pa, 

The shape of the Poisson kernel may be controlled by the parameter p. It is 

%mooth” at the diagonal and the Sacks-Ylvisaker approach cannot be used. 

For most real-world problems it is impossible to represent covariance kernels 

in a simple closed form. However, a representation in the form of an infinite series 

is standard. For instance, in many experiments related to either diffusion or heat 

conduction the covariance kernel may be expressed in the the two dimensional 

finite domain case (see Butkovskiy (1982)) as 

where X = (0 5 q , x 2  5 l}. Evidently, 

fap(s)  = 2 sin azrI sin p7rx2, ~ , p  = exp [-a2r2(a2 + p 2 ) ] ,  a, p = I, 2, .  . . , 

and a is some constant. Representation (7.11) is very natural and convenient for 

the techniques considered in Sections 5 and 6. Note that the physical problems 

mentioned above lead to the Gaussian type kernels (compare with (7.7)) when 

X becomes infinite with respect to any or both coordinates. 

The curious reader will find more covariance kernels in any serious book on 

integral equations containing a chapter on definite kernels or describing Green’s 

functions (see, for instance, Kanwal (1971) and Butkovskiy (1982)). 

Selecting the number of terms in (7.8) sufficiently large assures the closeness 
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of Vn(z, d) and V ( x ,  z') may be assured. In many cases it is convenient to assume 

that coefficients {e,}? are normally distributed. This assumption does not help 

in the present problem and in fact can cause some theoretical difficulties. To 

avoid that we suppose that for any Q: distribution P(8,) has a finite support set 

[a,, b,] in R1. For instance, we may select some simple symmetric distribution 

P ( 0 )  defined on f-a,a] with E(02)  = 1 and use P(B,d,)  as a distribution for 

6,. Selection of distributions with finite supporting sets assures not only close- 

ness of an exact kernel and its approximation but proximity of C,"=18afa(z) 

and c'& 6,f,(z) if the sequence {f,(s)}? satisfies some routine assumptions 

from the approximation theory. The basic idea of using model (7.8) is in deriv- 

ing optimal designs for the approximate model 8,f,(z) and verifying the 

fact that these designs are optimal or close to optimal for Vn(z,d)  or V ( z , d ) .  

Furthermore, if the objective function is uniquely defined by a dispersion matrix 

of estimated parameters, then the constructed design is optimal for any model 

identical to the used one in terms of the first and second moments. 

Using (7.8) with o = 0 we may immediately conclude that minimization of 

&((AT) is a rather standard problem from the approximate integration theory, 

see Davis and Rabinowitz (1985), Stroud (1975). 

For instance, it is known (the Gauss-Jacobi Theorem) that for any polynomial 

p(x) of degree k 5 2N - 1 the exact equality 

.-h N 

(7.12) 

can be achieved the properly selected weights and supporting points. If { p , ( z ) } f  

are orthogonal polynomials with the weight function w(z) > 0,then [AT = {zi)? 

are zeros of p j ~ (  z), and 

N-1 . -  

!IT1 = 4;l(h) = E pi ( . ; ) ,  (7.13) 
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For example, let us consider the Brownian bridge kernel. Note that 

~~ 
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(7.14) 

where t = COSTX and Ua-l(t)  is the second kind Tschebysheff polynomial. Now, 

with z ( t )  = T-’ arccos t ,  we have for a proper <N = {xi)? 

where y,(x) = E:=, OcYfa(x),  and it follows from (7.14) that y, ( ~ ( t ) )  / d n  
is a polynomial of degree not higher than n - 1. If w ( ~ ( t ) )  = d m ,  then s;V 

must coincide with zeros of U N ( ~ ) ,  which are 

i 

N + 1 ’  
2; = .(ti) = - i = 1, ..., Nl 2N 2 n; 

compare with Muller-Gronbach (1993). Accordingly to (7.13) weights are q ; ( < ~ )  = 

T sin2 ~ s i / ( N + l ) ,  and finally 

The solution is extremely simple, but it could be more complicated for other 

weight functions, see Davis and Rabinowitz (1986). The value of Q2(&)  is of or- 

der 0( X2N). Various results about remainders in approximate integration theory 

may lead to the better estimates, but the corresponding technique is beyond the 

scope of this paper. Further details and related results may be found for instance, 

for the one dimension case in Davis and Rabinowitz (1986), Szego (1959) and for 

the multi-dimension case in Stroud (1975). Similar exercises may be done for 

the criterion & 1 ( e ~ )  with Q = 0. The minimization of Q 1 ( t ~ )  now becomes a 

problem from the function approximation theory. When 2 = X and w(z) z 1, 
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then it follows from (7.1) that 

n r  \ 2  

where vT(x)  = V(Z,[N)V-~(&). 

It is known (see e.g. Micchelli and Wahba (1981)), that 

= 2 A,. 
a=N+1 

(7.16) 

This lower bound may be used to evaluate the efficiency of JN and can be achieved 

for any singular kernel, i.e. when 

To verify the latter conjecture one has to select the design [N coinciding with 

all zeros of fX(z ) ;  see some additional details in Fedorov and Hack1 (1994). In 

cases when eigenfunctions cannot be found analytically the use of the remainder 

theory is probably one of the most reliable ways to construct satisfactory designs; 

see e.g. Davis and Rabinowitz (1984) or Achieser (1956). The ideas discussed 

in this subsection help to generate effective designs with very moderate number 

of observations N ,  obviously much less than we need using the Sacks-Ylvisaker 

approach based on the local approximation of y(z). The author is not familiar 

with any studies where the connection between the classical approximation theory 

and the Sacks-Ylvisaker approach were analyzed systematically for models of type 

(7.8) with n + 00. Perhaps Micchelli and Wahba (1981) and Miiller-Gronbach 

(1993) considered the closest ideas and models. 

Again, we would like to note that in most cases measurement errors may 

contribute substantially to the randomness of observations. The rule of thumb in 

selection of the number of terms in (7.8) is that the least eigenvalue AN should 

be significantly less than 0. 
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8. Discrete case. Optimality criteria and the lower bounds 

When the design region X and the set of interest 2 are discrete and contain 

Nx and Nz points correspondingly, then the covariance matrix of the vector 

{y(x;) - fj(xi)}p, z E 2, completely describes any objective function based 

on the second moments. We use the notation D z ( t ~ ) ,  when the latter matrix 

consists of elements 

The discrete versions of &I(&v) and & 2 ( t ~ )  are correspondingly 

where LT = (1,. . . , 1). We will introduce any weights as we did in the continuous 

case, to keep notations simple. In the discrete case we may introduce a very 

special version of D-op t imality 

It is assumed that there are no points in common for 2 and s u p p t ~ .  Otherwise 

the determinant equals zero, because 

when x; E s u p p t ~ .  

Criterion (8.2) is very popular in the statistical literature related to the opti- 

mization of monitoring networks; see, for instance, Guttorp et a1 (1993), Carelton 

et a1 (1992), Schumacher and Zidek (1993), Shewry and Wynn (1987). In the 

cited papers the authors talk about either entropy or information. After the as- 

sumption of multivariate normality of the corresponding distributions is made, all 

approaches lead to various modifications of D-optimality; compare with Lindley 
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(1956). 

In addition to (8.1) and (8.2) a number of other criteria were introduced for 

application in monitoring network improvement. A good collection of them can 

be found in Megreditchan (1979, 1989); see also Fedorov and Hackl (1994). 

As soon as the criterion of optimality &(<N) (we use this notation to emphasize 

that only the criteria of optimality related to the problem of interpolation or 

extrapolation are considered in this section) and the kernel V ( z ,  z’) are defined, 

we have to find 

E; = arg min &( h). (8.3) 
t N  

It is interestingly to note that optimization problem (8.3) was considered 

in a very different setting by Currin et a1 (1991) and by Morris et a1 (1993); 

see also Sacks et a1 (1989) for older references. They considered the Bayesian 

approach to design of computer experiments and introduced Q(<N) as a measure 

of discrepancy between a computer model and its approximation based on some 

prior knowledge expressed through the smoothness of the exact response. The 

latter was defined by a covariance function. 

When N z  is relatively “small” and Nx is not very “large” then exhaustive 

search may be a proper numerical procedure for a modern computer. With 

increase of NZ and NX one can use the exchange type algorithms discussed in 

Shewry and Wynn (1987) and in Fedorov and Hackl (1994), which are similar to 

those discussed in sections 2-4. 

An alternative approach may be based on the introduction of a model similar 

to (7.8). For the sake of simplicity of notations, let 2 c X ,  and let 

where XI 2 A2 2 . . . 2 X N ~ ,  Kj = V(zi,zj) and q , x j  E X. Then one may 

consider the following approximate model 

N 

Y 22 YN = e,f, (8-5) 
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where all vectors Y, YN and fff have Nx components and 

Similar to (7.16) 

NX 

cu=N+l 
= [(Y-yN)T(Y-yN)] = &Y, (8.6) 

where F = (f1,. . . f N ) .  There exists another result that can help to evaluate 

the closeness of I'v and Y. Let 

N 

Then (compare with Rao (1973), Ch. 8g) 

VN = argmin /IV - All, 
A 

where rank A = N and symbol llBl/ denotes the Frobenius norm of B defined by 

(trB2)'i2 = (Eij B;)li2 . Moreover 

Thus, the vector YN is the best (maybe not unique) approximation of Y in 

the sense of two criteria (8.6) and (8.7). In fact, it is the best one for any strictly 

increasing function of D = E [(Y - ?N)(Y - YN)'] which is invariant under 

orthogonal transformations, where $$ = BY, rank B 5 N ;  see Seber (1984), 

Ch. 5.2. The vector 

FN = V ( X , [ N ) V - ' ( [ N ) Y 7  

where V T ( X , t ~ )  = ( V ( q  , 5 N ) ,... ,V(ZN,[N)) ,  is one of the above linear es- 
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timates. Therefore (8.6) and (8.7) help to find the lower bounds for criteria 

depending upon 

Model (8.5) helps to understand some features of optimal designs and lead to 

some interesting numerical procedures (see next section). Adding the “white” 

noise, i.e. introducing the following model 

N 

where E(&)  = 0 and E(&‘) = I ,  allows us to use all the tools discussed in 

Sections 2, 3, 5 to generate optimal designs. 

9. Unknown covariance function 

All the results discussed in the previous sections have essentially used the fact that 

either a covariance function V ( z ,  z’) or a matrix A is known. That is possible but 

unfortunately uncommon in practice. In this section we explore two approaches 

to estimate the covariance structure. 

Direct estimation of a covariance matrix. Let us start with a discrete design 

region X and assume there exist repeated observations at every point of X .  

Meteorological and environmental networks provide the most typical examples; 

see e.g. Megreditchan (1979, 1989) and Oehlert( 1995a,b). 

residuals Y - p as 

Let us define (compare with the previous section) the dispersion matrix of 

Where J N  = (21,. -. ,zN), y T ( h )  = (~(zI), . . . , y ( z ~ ) ) ,  and B is an Nx x N 

matrix. For the sake of simplicity we assume that E ( Y )  = 0 and that this fact 
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is a priori known. Minimization is understood in the matrix ordering sense. A 

solution of (9.1) is 

B* = v(x,tN)v-l(tN) 

When sufficiently many observations are accumulated at every point of X the 

strong law of large numbers assures us that 

(9-2) 

and subsequently B* and B*, which minimize correspondingly the left and right 

hand-sides, are close to each other. Straightforward minimization gives 

where both matrices with caps are evident partitions of 

k 

Q ( X )  = q y .  
j=1 

(9-4) 

When there are missing observations, then it is better to use instead of (9.4) 

pairwise estimates 

where 

and 

kil 

j=1 

& ( X )  = ICif'Cy,iT(,l, 

IC;! is the number of cases when the response variable was measured at xi 

simultaneously. 

Thus, (9.2) - (9.4) lead us to a very simple and widely used recipe: replace 

unknown parameters by their estimates and use methods developed for cases in 

which all parameters are known. Together with this simple recommendation (9.2) 

helps to  generate other versions of numerical algorithms considered earlier. Let 
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us introduce matrix I ( J N )  with the following elements: 

Sii, when x; f supp J N ,  

0, otherwise. 
IiZ(<N) = 

The left-hand side of (9.2) may be represented now as 

and the design problem may be viewed now as 

iFrom the numerical point of view (9.5) may be considered as a multi-dimension 

version of the best regression selection problem. Stepwise regression and best 

subset selection are the popular algorithms and can be easily adopted to  solve 

(9.5). In fact the same methods may be used when the matrix f i(Sp~,B) is 

replaced by its true value; see comment in the conclusion of Section 8. Let 

i.e. we want to minimize the variance of prediction at point z1. In this case 

and it is a very standard problem of selection of N predictors from Nx - 1 

candidates and there exist a numerous number of the statistical packages which 

can be used to do that. The author is not familiar with multi-dimension versions 

of the corresponding software products, which are needed for more complicated 

criteria. The idea to use the least squares technique for selection of the most 

informative subset of sensors was probably initiated by Megreditchan (1979). 

. 
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The search for an optimal design &,J may be viewed in this setting as a parti- 

tioning of X into two sets of given size NX - N and N .  The latter must contain 

the most information about the whole set X; see, for instance, Shewry and Wynn 

(1987), who proposed using 

where the subscript “p” indicates that the matrix contains only elements corre- 

sponding to the points (sites) with no observations. When (9.7) is replaced by 

its empirical version 

then the following simple and intuitively attractive exchange-type procedure may 

be used to construct &; see Fedorov and Hack1 (1994): 

(a) Given ( N ~  = { x i s } ;  find 

k N 

i+ = arg maxmin 

Add the point x;+ to the design: [ ( N + I ) ~  = [ N s  + xi+. 
(b) Find 

where xz E J ( N + ~ ) ~  and delete the point 2;- from the design, i.e. construct 

t N ( s + l )  = <(N+l)s  - 3 i - e  Retun  to (a). 

Briefly, the exchange procedure (a), (b) may be spelled out in the following 

way: add to the design the worst explained sites and delete from it the best 

explained sites. Apparently, the approach may be called “model free”: only 

existence of first two moments of observed Y is assumed. That may attract many 

practitioners. However in the search for an optimal network we are confined to 

sites where the measurements have been previously made. In other words, the 
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selection of the most informative subsets of sites (sensors, observing stations) 

may be discussed, but we cannot consider the problem of optimal extension. 

Estimation of a parameterized covariance. In many practical cases the design 

region X is a continuous set and the covariance function has to be known every- 

where at X .  The most popular approach is based on the assumption that this 

function is homogeneous and isotropic, i.e. 

V ( z ,  d) = V ( r ) ,  T 2  = (3 - .E')T (z - z') 

with the subsequent parsimonious approximation of function V ( r ) ;  see e.g. Cressie 

(1991), Marshall and Mardia (1985), M a t h  (1986), Ying (1995). The approach 

is frequently used in geostatistics, where a single realization of a random field is 

available, and in particular in the "kriging method" paradigm. 

Methods from in Sections 5-8 are essentially based on approximation of the 

observed random fields by regression models with random coefficients. When 

prior to design of a network there exist some historical observations, then one 

may use the technique, which was developed for these models.It is expedient to 

note that accurate knowledge of A or A, is useful but it is not as crucial as the 

knowledge of a covariance function in the Sacks-Ylvisaker approach. In fact, in 

basic optimization problems (5.13) and (6.2) the objective functions depend upon 

the sum M(<)  + Mo, where Mo is defined by A. For instance, in the case of (6.2) 

and therefore the role of A diminishes when either a2 --+ 0 or N + 00. Moreover, 

the simple dependence upon A allows to construct numerically optimal designs 

for different matrices A to learn about their sensitivity with respect to A. 

In the simplest case, when the observational errors are negligible, the following 

estimators may be used: 

j=1 
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where 8 f E", X j  is the set of points with observations yj(z;) , and 

for all j = 1,. . . , IC.  It is assumed that functions f(z) are known and 

Subsequently, 

Actually, it is more convenient to use the matrix An directly than the function 

p ( x ,  2') in all numerical procedures discussed in Sections 5 ,  6. 

When the observational errors are comparable with the variations of 6, then 

(9.9) must be replaced with more sophisticated estimators, which are computa- 

tionally much more demanding and complicate. Details and references may be 

found in Spjotvill (1977) and Fedorov et al. (1993). 

10. Space and time 

In most spatial experiments, after the sites are selected measurements are usually 

taken on some regular schedule, for instance, several times a day, or they are 

continuously recorded. Generally, the response function may depend upon time. 

Random errors can be correlated both in time and space. We consider only 

the simplest case, where there is no spatial correlation, following the ideas from 

Section 2. The generalization for more general models considered in Sections 3-6 

is straightforward. 

To adopt (2.1) for the time dependent response we assume that 
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and 

When p j j t  = 6 j j t ,  then the information matrix of observations made accord- 

ingly to the time schedule ( (d t l z )  may be presented in the following form 

For measurements which are correlated in time, 

where, for the sake of simplicity, we assume that supp((dt/z) is a discrete set 

tl, t 2  ... 7 t77 and R(z )  = p j j l ( z ) i -  

When the measure ( ( d t l z )  is fixed for each given z, then all the results from 

Section 2 may be used, with obvious replacement the function $(z, t), which in 

the standard case has the form 

for all criteria satisfying assumptions (a) - (e), by the function 

G(2 , t )  = @(e> - trm(z)A(S)* 

For instance, for the D-criterion the sensitivity function m - f T ( z ) M - ' ( [ ) f ( z )  

must be replaced by m - trm(z)M-'([). More details may be found in Atkinson 

and Fedorov (1988), Fedorov and Nachtsheim (1995), and Spruil and Studden 

(1979). Formally the time dependent observation may be treated as a vector- 

observation case (see, for instance, Fedorov (1972), Ch. 5). 

Evidently, introducing the time variable does not change the basic theory, 

but makes all techniques, including computing of optimal designs, more time and 

effort consuming. However there exist models and optimality criteria for which 
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optimal designs are the same both for the static and for the time dependent 

cases. For instance, the latter is true for models with uncorrelated observations 

and with separable variables, when 

or where 

and the selected criterion satisfies assumptions ( a )  - ( e )  from Section 2; see Cook 

and Thibodeau (1980), Hoe1 (1965), Huang and Hsu (1993), Schwabe (1994, 

1995). 

When time is included explicitly in model, then the concept of sensor alloca- 

tion can be extended and "mobile" sensors may be introduced. In this case design 

consists of trajectories x;(t) f X,O 5 t 5 2'. The topic is beyond the scope of 

this survey. A reader can find the results and references in Chang (1979), Fedorov 

and Nachtsheim (1995), Titterington (1980) and Zarrop (1979). 

Acknowledgement 

I am most grateful to my immediate colleagues D. Downing and M. Morris for 

their very constructive and effective help in preparing this paper. I thank B. 

Wheeler for his numerous and very useful comments and suggestions. 

11. References 

[l] Achieser, N. I. (1956). Theory of Approzimation, Frederick Ungar, New York. 

[2] Atkinson, A. C. and V. V. Fedorov (1988). Optimum Design of Experiments. 

In Kotz, S. and Johnson, N.I. Encyclopedia of Statistics, Supplemental Vol- 

ume. Wiley, New York pp. 107-114. 



1 

[3] Atkinson, A.C. and A. N. Donev (1992). Optimum Experimental Resign. 

Clarendon Press, Oxford. 

[4] Benhenni, K. and S. Cambanis (1992). Sampling Designs for estimating In- 

tegrals of Stochastic Process. Ann. Statist., 20, pp. 161.196. 

[5] Bickel, P. J. and A. M. Herzberg (1979). Robustness of Design Against Au- 

tocorrelation in Time, I, Ann. Statist. 2, 77-95. 

[6] Bishoff, W. (1992). On Exact D-optimal Designs for Models with Correlated 

Observations, Ann. Inst. Statist. Math. 44, 229-238. 

[7] Bishoff, W. (1993). On D-optimal designs for linear models under correlated 

observations with applications to a linear model with multiple response. 

JSPI. 37, 69-80. 

[SI Brimkulov, U., Krug G. and V. Savanov (1986). Design of Experiments for 

Random Fields and Processes. Nauka, Moscow. 

[9] Butkovskiy, A. G. (1982). Green's Functions and Transfer Functions Hand- 

book, Wiley, New York. 

[lo] Cambanis, S. (1985). Sampling Designs for Time Series. In Handbook of 

Statistics. Vol. 5, North-Holland, New York, pp. 337-362. 

[ll] Cambanis, S. and Y .  Su (1993). Sampling Design for Estimation of a Random 

Process. Stochastic Process Appl. 46, 47-89. 

[12] Chang D. (1979). Design of Optimal Control for a Regression Problem. Ann. 

Statist. '7, 1078-1085. 

[13] Cook, R. D. and L. A. Thibodau (1980). Marginally Restricted D-optimal 

Designs. JASA. 75, 366-371. 

E141 Cook, R.D. and C. J. Nachtsheim (1980). A Comparison of Algorithms for 

Constructing Exact D-optimal Designs. Technometrics, 24, 315-324. 



DESIGN OF SPATIAL EXPERIMENTS li 

[15] Cook, R.D. and V. V. Fedorov (1995). Constrained Optimization of Exper- 

imental Design. Statistics. 26, 129-178. 

[16] Cressie, N.A. (1991). Statistics for Spatial Data. Wiley, New York. 

[17] Currin? C., Mitchell, T., Morris, M., and D. Ylvisaker (1991). Bayesian 

Prediction of Deterministic Functions, With Applications to the Design and 

Analysis of Computer Experiments. JASA. 31, 953-963. 

[18] Davis, P. J. and Rabinowitz, Ph. (1984). Methods of Numerical Integration, 

2nd Edition. Academic Press, New York. 

[19] Eaton, J.L., Giovagnoli A., and P. Sebastiani (1994). TR 598. School of 

Statistics, University of Minnesota. 

[20] Ermakov, S.M. (Ed.) (1983). iVathematical Theory of Experimental Design, 

Nauka, Moscow. 

[21] Ermakov, S.M. (1989). Random Interpolation in the Theory of Experimental 

Design, Computational Statistics and Data Analysis, 8, 75-80. 

[22] Fedorov, V.V. (1972). Theory of Optimal Experiments. Academic Press, New 

York. 

[23] Fedorov, V.V. (1989). Optimum Design of Experiments with Bounded Den- 

sity: Optimization Algorithms of the Exchange Type. JSPI. 24, 1-13. 

1241 Fedorov, V.V. and A.B. Uspensky (1975). Numerical Aspects of Design and 

Analysis of Experiments. Moscow State University Press, Moscow. 

[25] Fedorov, V.V., Leonov, S.L. and S. A. Pitovranov (1988). Experimental 

Design Technique in the Optimization of a Monitoring Network. In Fedorov 

V.V. and Lauter M. (Eds). Model-Oriented Data AnaZysis. Springer-Verlag, 

New York, pp. 165-175 

[26] Fedorov, V.V. and W. Muller (1989). Comparison of Two Approaches. In 

the Optimal Design of an Observation Network. Statistics. 19, 339-351. 



lii 

[27] Fedorov, V.V. and W. Muller (1989). Design of an Air-Pollution Monitoring 

Network. An Application of Experimental Design Theory. Osterreichische 

Zeitschrift fur Statistik und Informatik. l9, 5-17. 

[28] Fedorov, V.V., Hackl, P. and W. Muller (1993), Estimation and Experimen- 

tal Design for Second Kind Regression Models. Informatik, Biometrie und 

Epidemiologie. 24, 134- 151. 

[29] Fedorov, V.V. and P. Hackl (1994). Optimal Experimental Design: Spatial 

Sampling. Calcutta Statistical Association Bulletin. 

[30] Fedorov, V.V. and C. J. Nachtsheim (1995). Optimal Designs for Time - 

Dependent Responses. In Kitsos L. P. and W. G. Mueller (Eds). Advanced 

in Model-Oriented Data Analysis. Springer-Verlag, New York. pp. 3-12. 44, 

57-81. 

[31] Fisher, R.A. (1947). The Design of Experiments, 4th Edition, Hafner- 

Publishing Co. Inc. New York. 

[32] Gribik, P.R., Kortanek, K.O. and J. R. Sweigart (1976). Design a Regional 

Air Pollution Monitor Network: An Appraisal of a Regression Experimental 

Approach. In “Proceedings of the Conference on Environmental ModeZing 

and Simulation”. EPA 600/9-76-016. Research Triangle Park, North Car- 

olina, pp.86-91. 

[33] Guttorp, P., Le, N.D. Sampson, P.D. and J. V. Zidek (1993). Using En- 

tropy in the Redesign of Environmental Monitoring Network. In Patil, G.P. 

and Rao, C.R. (Eds). Multivariate Environmental Statistics. Elsevier Science 

Publisher, New York, pp. 175-202. 

[34] Hoel, P.G. (1965). Minimax designs in two dimensional regression. Ann. 

Math. Stat., 29, 1134-1145. 

I351 Huang, M.L. and M. C. Hsu, (1993). Marginally Restricted Linear-Optimal 

Designs. JASA, 35, 251-266. 



RESIGN OF SPATIAL EXPERIMENTS liii 

[36] Kanwal R. P.(1971). Linear Integral Equations, Theory and Technique. Aca- 

demic Press, New York. 

[37] Karlin, S. and W. Studden (1966). Tchebyshefl Systems: with Applications 

in AnaZysis and Statistics. Wiley, New York. 

[38] Kiefer, J. (1959). Optimal Experimental Design. JRSS (B) , 21. 272-319. 

[39] Kiefer, J. (1974). General Equivalence Theory for Optimum Designs (Ap- 

proximate Theory). Ann. Statist.. 2, 849-879. 

1401 Kunert, J. (1988). Optimal Designs for Correlation in the Plane. In Dodge, 

Fedorov and Wynn (Eds). Optimal Design and Analysis of Experiments. 

North-Holland, New York. pp. 123-131. 

[41] Lindley, D. (1956). On a Measure of Information provided by an experiment. 

Ann. Math. Stat. 27, 986-996. 

[42] Marshall, R.J. and K. V. Mardia (1985). Minimum Norm Quadratic Es- 

timation of Components of Spatial Covariance. Mathematical Geology. l7, 

517-525. 

[43] Martin, R.J. (1986). On the Design of Experiments under Spatial Correla- 

tion. Biometrika. 73, 247-277. 

[44] Matkrn, B. (1986). Spatial Variation, Lecture Notes in Statistics. Springer- 

Verlag, Berlin. 

[45] Megreditchan, G. (1979). L'optimization des reseaux d'observation des 

champs meterologiques. La Meterologie. 6, 51-66. 

[46] Megreditchan, G. (1989). Statistical Redundancy as a Criterion for Metero- 

logical Network Optimization. 0 sterreichische Zeitschrift fGr Statistik und 

Informatik. l.9, 18-29. 



liv 

[47] Micchelli, C.A. and G. Wahba (1981). Design problems for optimal surface 

interpolation. In Ziegler Z. (Ed.). Approsimation Theory and Applications. 

Academic Press New York. pp. 329-248. 

[48] Mikhailov, G.A. and A. A. Zhigljavskii (1989). Uniform Optimization of 

Weighted Estimates of the Monte Carlo Method. Soviet Math. DokZ. 38, 

523-526. 

1491 Mitchell, T.J. (1974). (a) An -4lgorithm for Construction of D-optimal Ex- 

perimental Design. (b) Computer construction of D-optimal “First-Order” 

Designs. Technometrics. 16, (a)203-210, (b)211-220. 

[50] Morris M.D., Mitchell T.B. and D. Ylvisaker (1993). Bayesian Design and 

Analysis of Computer Experiments: Use of Derivatives in Surface Prediction. 

Technometrics. 35, 243-255. 

[51] Miiller W. and A. Pizman (1995). Design Measures and Extended Informa- 

tion Matrices for Optimal Designs when the Observations are Correlated, 

TR No.47, Dept. of Statistics, Univ. of Economics Vienna. 

[52] Muller - Gronbach Th. (1993). Optimal Designs for Approximating the Path 

of Stochastic Process. Preprint Nr.. A-93-14. Freie Universitiit , Berlin. 

1531 Nachtsheim, C.J. (1987). Tools for Computer-Aided Design of Experiments. 

Journal of Quality Control. 19, 132-160. 

[54] E t h e r ,  W. (1985). Egective Observation of Random Fields. Teubner Texte 

Zur Mathematik-Band 72. Teubner Verlag, Leipzig. 

[55] Nguen. N.K. and A. J. Miller (1992). A review of some exchange algorithms 

for constructing discrete D-optimal designs. Comp. Statist. and Data Anal- 

ysis. 14, 489-498. 

1561 Oehlert, G.W. (1995). The Ability of Wet Deposition Network to Detect 

Temporal Trends. Environmetrics. fi? 327-339. 



DESIGN OF SPATIAL EXPERIMENTS Iv 

[57] Oehlert, G.W. (1995). Shrinking a Wet Deposition Network. To appear: 

Atmospheric Environment. 

[58] A. P&zman (1986). Foundations of Optimum Experimental Design. Reidel, 

Dordrecht. 

[59] Pilz, T. (1991). Bayesian Estimation and Experimentd Design in Linear 

Regression Models. Wiley, New York. 

[60] Pukelsheim F. (1993). Optimal Design of Experiments. Wiley, New York. 

[61] Rabinowitz, N. and D. M. Steinberg (1990). Optimal Configuration of a Seis- 

mographic Network: A St atistical Approach. Bulletin of the Seismological 

Society of America. 80, 187-196. 

[62] Fho, C.R. (1973). Linear statistical Inference and its Applications, 2nd Edi- 

tion. Wiley, New York. 

[63] Ripley, B.D. (1981). Spatial Statistics, Wiley, New York. 

[64] Sacks, J., Welch, W.J., Mitchell, T.J., and H.P. Wynn (1989). Design and 

Analysis for Computer Experiments. Statistical Science. &, 409-423. 

[65] Sacks, J. and D. Ylvisaker D. (1966). Designs for regression problems with 

correlated errors. Ann. Math. Statist. 2, 66-89. 

[66] Sacks, J. and D. Ylvisaker (1968). Designs for regression problems with cor- 

related errors, many parameters. Ann. Math. Statist. 39, 49-69. 

[67] Sacks, J. and D. Ylvisaker (1970). Designs for regression problems with cor- 

related errors, 111. Ann. Math. Statist. 4l,  2057-2074. 

[68] Sacks, J. and D. Ylvisaker (1970). Statistical designs and integral approx- 

imation. Proc. 12tgh Bieu. Sem. Canad. Math. Cong. pp.115-136. Canad. 

Math Cong., Montreal. 

[69] SAS/QC Software: Design of Experiments Tools. (1995). SAS Institute, Inc. 



lvi 

[70] Seber G.A.F. (1977) Linear Regression Analysis, Wiley, New York. 

[71] Seber G.A.F. (1984) MuZtivariate Observations, Wiley, New York. 

[72] Shewry, M.C. and H. P. Wynn (1987). Maximum entropy sampling. JournaZ 

of Applied Statistics. l4, pp.165-170. 

[73] Schumacher, P. and J. V. Zidek (1993). Using Prior Information in Designing 

Intervention Detection Experience. Ann. Statist. 2 l ,  447-463. 

1741 Schwabe, R. (1994). Optimal Designs for Additive Linear Models, Preprint 

No. 1-5-94, Freie Universitat Berlin, Fachbereich Mathematik. 

[75] Schwabe, R. (1995). Designing Experiments for Additive Nonlinear Mod- 

els. In Kitsos, C.P. and W.G. Mueller, Advances in Model-Oriented Data 

Analysis. Springer-Verlag, New York. pp. 77-85. 

[76] Silvey, S.D. (1980). Optimal Design. Chapman and Hall, London, New York. 

E771 Spjotvill, E. (1977). Random Coefficient Regression Models - A Review. 

Statistics. 8, 69-93. 

[78] Spruill, M.C. and W. J. Studden (1979). A Kiefer-Wolfowitz Theorem in 

Stochastic Process Setting. Ann. Statist. 1. 1329-1332. 

[79] Stroud, A.H. (1975). Approximate CalcuZation of MuZtipZe Integrals. 

Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 

[80] Szego, G. (1959). OrtogonaZ PoEynomiaZs. Amer. Math. SOC., New York. 

[81] Titterington, D.M. (1980). Aspects of Optimal Design in Dynamic Systems. 

Technometrics. 22, 287-300. 

[82] Wahba, G. (1971). On the Regression Design Problem of Sacks and 

Ylvisaker, Ann. Mtah. Statist. 42, 1035-1053. 

[83] Wahba, G .  (1974). Regression Design for Some Equivalence Classes of Ker- 

nels. Ann. Statist. 2, 925-934. 



DESIGN OF SPATIAL EXPERIMENTS lvii 

[84] Wheeler, B. (1994). ECRIP: Version 6.0 for Windows. ECHIP, Inc., 

Hockessin. 

1851 Wynn, H. (1982). Optimum Submeasures with Applications to Finite Popu- 

lation Sampling. In Statistical Decision Theory and Related Topics 111, Vol. 

2. Academic Press, New York. pp. 485-495. 

[86] Ying, 2. (1993). Maximum Likelihood Estimation of Parameters under a 

Spatial Sampling Scheme. Ann. Statist. 21. 1567-1590. 

[87] Ylvisaker, D. (1975). Design on Random Fields. In A Survey ofStatistica1 

Design and Linear Models. North-Holland, Yew York. 

[88] Ylvisaker, D. (1987). Prediction and Design. Ann. Statist 15, 1-18. 

[89] Ylvisaker, D. (1988). Bayesian Interpolation Schemes. In Optimal Design and 

Analysis of Experiments. Dodge V., Fedorov V. V., and Wynn, M. (Eds). 

North-Holland, New York. pp. 169-278. 

[go] Zarrop, M.B. (1979). Optimal Experimental Design for Dynamic System 

Identification. Springer-Verlag, New York. 

1911 Zhigljavsky, A.A. (1988). Optimal Designs for Estimating Several Integrals, 

in Dodge, Y., Fedorov, V. V. and Wynn, H.P. (Eds). Optimal Design and 

Analysis of Experiments. Nort h-Holland, New York. 

11921 Zimmerman, D.L. and M.B. Zimmerman (1991). A comparison of Spatial 

Semivariagram Estimators and Corresponding Ordinary Kriging Predictors. 

Technometrics, 33, 77-91. 





DESIGN OF SPATIAL EXPERIMENTS lix 

INTERNAL DISTRIBUTION 

1. D. J .  Alexander 
2. C. K. Bayne 
3. W. R. Corwin 
4. D. F. Craig 
5. T. S. Darland 
6. C. S. Daw 
7. D. J. Downing 

8-12. V. V. Fedorov 
13. L. J. Gray 
14. H. W. Hayden, Jr. 

15. S. K. Iskander 
16. P. Kanciruk 

17-21. M. R. Leuze 
22. D. E. McCabe 
23. R. C. Mann 
24. J. G. Merkle 

25. G. R. Moline 
26. M. D. Morris 
27. R. K. Nanstad 
28. C. E. Oliver 
29. G. Ostrouchov 
30. R. L. Schmoyer 
31. R. F. Sincovec 
32. P. T. Singley 
33. D. A. Wolf 
34. K-25 Applied Tech. Library 
35. Y-12 Technical Library 
36. Laboratory Records - RC 

37-38. Laboratory Records Dept. 
39. Central Research Library 
40. M & C Records Office 
41. ORNL Patent Office 

EXTERNAL DISTRIBUTION 

42. Prof. A. C. Atkinson, London School of Economics, London WC2A 2AE, United 
Kingdom 

43. Dr. Richard Beckman, Statistics Group Al, Los Alamos National Laboratory, MS 
F600, Los Alamos, NM 87545 

44. C. Bolton, Nuclear Electric, Berkeley Nuclear Laboratories, Berkeley, Gloucester- 
shire, GL139PB, United Kingdom 

45. Prof. R. D. Cook, School of Statistics, University of Minnesota, 1994 Bufford 
Avenue, St. Paul, MN 55108-6042 

46. Prof. D. F. Cox, Nuffield College, Oxford OX1 lNF ,  United Kingdom 

47. Prof. Dennis Cox, Department of Statistics, Rice University, Houston, TX 77251- 
1892 

48. E. Eason, Modeling and Computing Services, Suite 105,6400 Lookout Road, Boul- 
der, CO 80301 

49. Prof. Sherwood Ebey, Department of Mathematics, University of the South, Se- 
wanee, T N  37375 

50. Prof. P. H a d ,  Department of Statistics, Vienna University of Economics, Augasse 
2-6, A-1090 WIEN, Austria 

51. Dr. David Hall, Statistics, Systems Department, Pacific Northwest Laboratory, 
P.O. Box 999, Richland, WA 99352 



lx 

52. Prof. J .  A. Hartigan, Department of Statistics, Yale University, Box 2179 - Yale 

Station, New Haven, CT 06520 

53. Dr. Dan Hitchcock, Office of Scientific Computing, ER-7, Applied Mathematical 
Sciences, Office of Energy Research, U. S. Department of Energy, Washington, 
DC 20585 

54. Dr. Fred Howes, Office of Scientific Computing, ER-7, Applied Mathematical 
Sciences, Office of Energy Research, U. S. Department of. Energy, Washington, 
DC 20585 

55. Prof. J. Stuart Hunter, 503 Lake Drive, Princeton, N.J. 08540 

56. Prof. Mark Johnson, Department of Statistics, University of Central Flordia, 
Orlando, FL 32816-0370 

57. Dr. A. M. Liebetrau, Computational Sciences Department, Battelle-Northwest, 
P. 0. Box 999, Richland, WA 99352 

58. Dr. J. Lijengren, Pacific Northwest Laboratories, P. 0. Box 999, Richland, WA 

99352 

59. Dr. Michael McKay, Statistics Group Al, Los Alamos National Laboratory, MS 
F600, Los Alamos, NM 87545 

60. Prof. Lisa Moore, Institute of Statistics and Decision Sciences, Duke University, 
Durham, NC 27706 

61. Dr. David Nelson, Director of Scientific Computing, ER-7, Applied Mathematical 
Sciences, Office of Energy Research, U. S. Department of Energy, Washington, 
DC 20585 

62. G. R. Odette, Department of Chemical and Nuclear Engineering, Ward Memorial 
Drive, University of California, Santa Barbara, A 93106 

63. Dr. David J.  Pack, CSR Institute, 8889 Bourgade AV, Lenaxa, KS 66219 

64. Mr. Brent Pulsipher, Computational Sciences Department, Battelle Northwest, 

65. Dr. Jerome Sacks, NISS, P. 0. Box 14162, Research Triangle Park, NC 27709- 
4162 

66. Prof. A. F. Smith, Department of Mathematics, University of Nottingham, Uni- 
versity Park, Nottingham NGi' 2RD, England 

67. Dr. Alan Solomon, P. 0. Box 227, Omer 84965, Israel 

68. Dr. Daniel L. Solomon, Department of Statistics, North Carolina State University, 
P. 0. Box 5457, Raleigh, NC 27650 

69. Prof. S. M. Stigler, Department of Statistics, University of Chicaago, 5734 Uni- 
versity Avenue, Chicago, IL 60637-1546 

70. A. Taboada, Mail Stop TO-E10, Division of Engineering, U.S. Nuclear Regulatory 
Commission, Washington, DC 20555 

71. M. G. Vassilaros, MS T10-E10, Division of Engineering, U. S. Nuclear Regulatory 
Commission, Washington, DC 20555 

72. Prof. William Welch, Department of Statistics and Acturial Science, University 
of Waterloo, Waterloo, Ontario N2L 3G1, Canada 

P. 0. BOX 999, K1-86, Richland, WA 99352 



DESIGN OF SPATIAL EXPERIMENTS lxi 

73. Prof. Kee Wong Weng, Biostatistics, UCLA School of Public Health, 10833 Le 

74. Jeff Wu, Department of Statistics, Mason Hall, University of Michigan, Ann Arbor, 

75. Prof. Y. C. Yao, Department of Statistics, Colorado State University, Fort Collins, 
CO 80523 

76. Prof. Don Ylvisaker, Department of Mathematics, University of California, Los 
Angeles, CA 90024 

77. Prof. J. V. Zidek, Department of Statistics, University of British Columbia, 2021, 
West Mall, Vancouver, BC V6T 122 Canada 

Conte Ave., Los Angeles, CA 900241722 

MI 48109 

78. Offjce of Assistant Manager for Energy b e a r c h  and Development, Department of 
Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N  37831-8600 

79-80. Office of Scientific and Technical Information, P. 0. Box 62, Oak Ridge, T N  37830 




