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Abstract 

Our understanding of thermophile diversity is based predominantly on PCR studies of community 

DNA. 'Universal' and domain-specific rRNA gene PCR primers have historically been used for the 

assessment of microbial diversity without adequate regard to the degree of specificity of primer pairs 

to different prokaryotic groups. In a reassessment of the published primers commonly used for 

'universal' and archaeal 16 S rDNA sequence amplification we note that substantial variations in 

specificity exist. An unconsidered choice of primers may therefore lead to significant bias in 

determination of microbial community composition. In particular, Archaea-specific primer sequences 

typically lack specificity for the Korarchaeota and Nanoarchaea and are often biased towards certain 

clades. New primer pairs specifically designed for 'universal' archaeal 16 S rDNA sequence 

amplification, with homology to all four archaeal groups, have been designed. Here we present the 

application of these new primers for preparation of 16 S libraries from thermophile communities. 
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Introduction 

Before the advent of PCR-based technologies our knowledge of microbial community diversity was 

restricted to those taxa that were culturable in vitro. PCR of 16 S rDNA from environmental samples 

and subsequent sequence analysis has facilitated a greater understanding of microbial diversity [1], but 

many important taxa will continue to be missed in our inventories if care is not taken to amplify 

DNA with adequately universal primers. In the 1980s, sets of primers were designed on the basis of 

nucleotides conserved in the organisms that had been sequenced at that time (e.g. [2]). Since the 

1980s, thousands of additional sequences have been added to the databases, and with this increase in 

sequence information, new taxonomic groups have been discovered [36]. In the domain Archaea, two 

new sub-divisions have been proposed: the Korarchaeota [3] and the Nanoarchaeota [4]. Both of 

these taxa comprise hyperthermophilic organisms, which through their study may provide new 

information on the nature of thermophily and a greater understanding of early evolution [7]. The 

rDNA sequences of these taxa differ from Crenarchaeota and Euryarchaeota, and in the case of 

Nanoarchaeota there is mismatch at important priming sites. Specific primers have been designed for 

Nanoarchaeota [4] and Korarchaeota [8] that can be used when expressly searching for new members 

of these taxa. However, when conducting routine phylogenetic analysis of samples from thermal 

environments, use of a broad-based primer pair that shows equal complementarity to all archaeal taxa 

would be advantageous. In the course of selecting a set of primers that would amplify all archaeal 

groups, without bias towards particular taxa, we reviewed a range of published primers and examined 
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their specificities [9]. Here we present a summary of our analysis of archaeal 16 S rDNA primers and 

provide a graphic representation of nucleotide conservation in archaeal 16 SrDNAs. 

Experimental 

In silico 

A 1300 bp ClustalW alignment was made of 16 S rRNA gene sequences that were representive of the 

major subdivisions within the archaeal domain. These included four Euryarchaeote (X05567, 

D50849, M59126, U20163), four Crenarchaeote (X03235, M35966, M36474, U51469), one 

Nanoarchaeote (AJ318041) and two Korarchaeote (AF176347, L25852) sequences from the NCBI 

database. The alignment was tabulated and annotated with published primer sequences reported to be 

complementary to 16 S rRNA genes [9]. Bases that were conserved in all 11 sequences were 

highlighted on a secondary structure model of the Euryarchaeote Methanococcus jannaschii, downloaded 

from the European Ribosomal RNA database 

(http://oberon.fvms.ugent.be:8080/rRNA/index.html). The model was annotated with archaeal 

priming sites (primer sequences are shown in Table 1). Four new Archaea-specific primers were 

designed from the alignment, with 100% complementarity to all archaeal sub-divisions, but with 

mismatch to bacterial and eukaryote sequences. A selection of 47 published archaeal primers and the 

four new primers were submitted to the Probe Match facility of the Ribosomal RNA Database 

Project (http://rdp.cme.msu.edu). DNA sequences in the RDP database with 100% complementarity 

to the primers were noted and tabulated taxonomically. For each primer a score was given for the 

number of 100% matches in each of the eight categories of Archaea, in the Bacteria, and the 

eukaryotes [9]. 

 
 
Table 1 16 S rRNA primer sequences 
All primers have been re-named using the following convention. First letters, specificity as judged by RDP Probe Match Analysis 
and manual analysis of the archaeal alignment (A, Archaea; UA, universal Archaea; E, Eubacteria; EK, Euryarchaeote; TC, 
thermophilic Crenarchaeote; M, Methanogen; Mb, Methanogen-biased; N, Nanoarchaeote; b, biased); number, position (E. coli 
numbering) of 5_ end of primer in gene; F/R, forward or reverse. 

 

 

Code       Sequence (5’–3’)       Reference       Code        Sequence (5’–3’)        Reference 

 
 
A1F 

 
ATTCCGGTTGATCCTGC 

 
[12] 

 
Ab127R 

 
CCACGTGTTACTSAGC 

 
[21] 

A2F TTCCGGTTGATCCYGCCGGA [10,13,14] A348R CCCCGTAGGGCCYGG [22] 

EK4F CTGGTTGATCCTGCCAG [15] EK510R CTTGCCCRGCCCTT [21] 

A109F ACKGCTCAGTAACACGT [16] TC518R ACACCAGRCTTGCCCCCCGCTT [22] 

A333F TCCAGGCCCTACGGG [10] U529R ACCGCGGCKGCTGGC [21] 

U341F CCTACGGGRSGCAGCAG [17] U534R GWATTACCGCGGCKGCTG [21] 

A344F ACGGGGTGCAGCAGGCGCGA [18] M704R TTACAGGATTTCACT [21] 

U515F GTGCCAGCMGCCGCGGTAA [10,19] Ab909R TTTCAGYCTTGCGRCCGTAC [8] 

U519F CAGCMGCCGCGGTAATWC [20] Ab927R CCCGCCAATTCCTTTAAGTTTC [14] 

UA571F GCYTAAAGSRICCGTAGC [9] A976R YCCGGCGTTGAMTCCAATT [10] 

UA751F CCGACGGTGAGRGRYGAA [9] A1115R GGGTCTCGCTCGTTG [10] 

Ab779F GCRAASSGGATTAGATACCC [8] EKb1242R CCATTGTAGCSCGCGTG [21] 

Eb787F ATTAGATACCCTGGTA [21] UA1204R TTMGGGGCATRCIKACCT [9] 

Ab787F ATTAGATACCCGGGTA [21] UA1406R ACGGGCGGTGWGTRCAA [9] 

A1040F GAGAGGWGGTGCATGGCC [10] N1406R ACGGGCGGTGAGTGCAA [4] 

A1098F GGCAACGAGCGMGACCC [10] U1406R GACGGGCGGTGTGTRCA [10,17] 

Mb1225F ACACGCGTGCTACAAT [21]    

 

http://oberon.fvms.ugent.be:8080/rRNA/index.html
http://rdp.cme.msu.edu/
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In vitro 

New primers (UA571F/UA1204R and UA751F/UA1406R) were tested in the laboratory in 

comparison with a published primer pair (A2F/U1510R), which is frequently used for amplification 

of archaeal small-subunit rDNA from environmental samples (e.g. [5,10,11]). The primers were used 

to amplify DNA from type strain Archaea and environmental samples and were tested on Escherichia 

coli to check that they did not amplify non-archaeal prokaryote DNA [9]. 

 

Results 

A model of the 16 S rRNA of M. jannaschii has been generated (Figure 1) that indicates conserved 

bases between the 11 archaeal 16 S rDNA sequences that were aligned. Although almost 50% of the 

nucleotides are conserved between all taxa, there are few regions where the conserved bases are 

adjacent over sufficiently long stretches for accurate primer design. In all priming regions there is 

some mismatch if base degeneracies are not incorporated into the primers. This model may thus be 

employed as a simple tool to establish where degeneracies are needed in order to have 100% primer-

template complementarity for all archaeal taxa. Figure 2 demonstrates the specificities of a range of 

16 S primers to sequences from 10 different taxa. Specificity is defined as 100% complementarity 

between the primers and at least one sequence in the RDP database of that taxon. None of the 

primers examined are truly universal and there are significant differences in specificity between 

similar primers. For example, primers A1F, A2F and EK4F all anneal at the 5 ' of the 16 S rRNA 

gene. They differ in sequence by less than 10% (see Table 1) and in the 3' position by between 2 and 

4 bases (see Figure 1). The specificities of these three primers are, however, quite different. Primer 

A2Fa has the broadest specificity, with 100% identity to DNA sequences from six archaeal taxa, 

whereas EK4F only has 100% identity to Methanomic-robacteria and Eukaryote sequences. All of 

the published Archaea-specific primers examined either complement non-archaeal sequences or have 

mismatch to particular archaeal taxa. The newly designed primers (UA571F/UA1204R and 

UA751F/UA1406R) utilize regions of conservation common to all four Archaea and do not have 

100% identity to any bacterial or eukaryotic sequences. At positions where there is mismatch, 

degenerate bases and inosine residues are incorporated. 

 
 

Laboratory assessment of primers 

The new primer pairs effectively amplify DNA from Sulfolobus, Thermococcus and Pyrococcus type strains 

[9] and have been used to amplify DNA from environmental DNA samples from hotsprings in New 

Zealand [9] and China (results not shown). However, a library constructed from primer pair 

UA751F/UA1406R contained a large number of chimaeric artifacts (results not shown). 

 

Discussion 

Analysis of the model shown in Figure 1 clearly demonstrates variability of nucleotides between 

archaeal taxa at published priming sites. Primer design is a compromise between primer-template 

complementarity and other primer attributes, such as melting temperature, G:C ratio and secondary 

structure.
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Figure 1   Secondary structure map of M.jannaschii (http://oberon.fvms.ugent.be:8080/rRNA/index.html) annotated with Archaea-specific 

priming sites 

Nucleotides (105-1406; E. coli numbering) conserved between representatives of the Euryarchaeota, Crenarchaeota, Korarchaeota and Nanoarchaeota are 

highlighted. 

http://oberon.fvms.ugent.be:8080/rRNA/index.html


Page | 5  
 

PCR using primer-template homology as low as 70% has been achieved [23]. However, in total 

community DNA samples, differential sequence complementarity to primers between taxa will lead 

to a significant bias in the amplification products. Incorporation of multiple bases at degenerate 

positions and the use of inosine residues have been used effectively to provide 'universal specificity', 

but excess use of these bases has been reported to have biased template-to-product ratios [24] and 

led to amplification of non-target groups [25]. 

In the literature there are many variations of 'Archaea-specific' primers with identical or similar 

annealing sites. The specificities of these primers differ considerably. An 'ideal' primer pair should 

have 100% homology to representatives from all archaeal taxa and have substantial mismatch to 

bacterial and eukaryotic sequences. None of the published primers analysed in our study [9] 

possessed these attributes. Therefore, careful modification of currently used primers, based on an up-

to-date model of conserved nucleotides, or use of the primers described in this paper, is 

recommended in order to access a greater archaeal diversity, without the need for amplification with 

multiple primer sets. 
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manuscript. 

 

 

References 

1     Theron, J. and Cloete, T.E. (2000) Crit. Rev. Microbiol. 26, 37-57 

2     Elwood, H.J., Olsen, G.J. and Sogin, M.L. (1985). Mol. Biol. Evol. 2, 399 

3     Barns, S.M., Delwiche, C.F., Palmer, J.D. and Pace, N.R. (1996) Proc. Natl. Acad. Sci. U.S.A. 93,    

    9188-9193 

4     Huber, H., Hohn, M.J., Rachel, R., Fuchs, T., Wimmer, V.C. and Stetter, K.O. (2002) Nature  

    (London) 417, 63-67 

5     Hugenholtz, P., Pitulle, C., Hershberger, K.L. and Pace, N.R. (1998) J. Bacteriol. 180, 366-376 

 

94 



Page | 6  
 

6     Nielsen, A.T., Liu, W.-T., Filipe, C., Grady, L., Molin, S. and Stahl, D.A. (1999) Appl.  

      Environ. Microbiol. 65, 1251-1258 

7     Huber, H., Hohn, M.J., Stetter, K.O. and Rachel, R. (2003) Microbiology 154, 165-171 

8     Brunk, C.F. and Eis, N. (1998) Appl. Environ. Microbiol. 64, 5064-5066 

9     Baker, G.C., Smith, J.J. and Cowan, D.A. (2003) J. Microbiol. Methods 55, 541-555 

10   Reysenbach, A.-L. and Pace, N.R. (1995) in Archaea: A Laboratory Manual - Thermophiles  

   (Robb, F.T. and Place, A.R., eds.), pp. 101-107, Cold Spring Harbour Press, Cold Spring Harbor 

11   Liopez-Garcia, P., Gaill, P. and Moreira, D. (2002) Env. Microbiol. 4, 204-215 

12   Tajima, K., Nagamine, T., Matsui, H., Nakamura, M. and Aminov, R.I. (2001) FEMS Microbiol.  

    Lett. 200, 67-72 

13   Martinez-Murcia, A.J., Acinas, S.G. and Rodriguez-Valera, F. (1995) FEMS Microb. Ecol. 17,  

   247-256 

14   Jurgens, G., Glockner, F.O., Amman, R., Saana, A., Mon tonen, L., Likolammi, M. and   

     Munster, U. (2000) FEMS Microb. Ecol. 34, 45-56 

15   Vetriani, C., Jannasch, H.W., McGregor, B.J., Stahl, D.A. and Reysenbach, A.-L. (1999) Appl.  

    Env. Microbiol. 65, 4375-4384 

16    Whitehead, T.R. and Cotta, M.A. (1999) FEMS Microbiol. Lett. 179, 223-226 

17   Hansen, M.C., Tolker-Neilson, T., Givskov, M. and Molin, S. (1998) FEMS Microb. Ecol. 26,  

   141-149 

18   Casamayor, E.O., Massana, R., Benlloch, S., Ovreas, L., Diez, B., Goddard, V., Gasol, J.M.,  

   Joint, I., Rodriguez-Valera, F. and Predros-Alio, C. (2002) Env. Microbiol. 4, 338-348 

19   Reysenbach, A.-L., Giver, L.J., Wickham, G.S. and Pace, N.R. (1992) Appl. Environ. Microbiol. 58,  

   3417-3418 

20   Suzuki, M.T. and Giovanni, S.J. (1996) Appl. Environ. Microbiol. 62, 625-630 

21   DasSarma, S. and Fleischmann, E.F. (1995) in Archaea: A Laboratory Manual - Halophiles  

   (DasSarma, S. and Fleischmann, E.M., eds.), pp. 269-272, Cold Spring Harbor Press, Cold  

   Spring Harbor 

22   Barns, S.M., Fundyga, R.E., Jeffries, M.W. and Pace, N.R. (1994) Proc. Natl. Acad. Sci. U.S.A. 91,  

     1609-1613 

23   Stern, C.D. and Holland, P.W.H. (1993) in Essential Developmental Biology, p. 324, Oxford  

   University Press, Oxford 

24   Polz, M.F. and Cavanaugh, C.M. (1998) Appl. Environ. Microbiol. 64, 3724-3730 

25   Watanabe, K., Kodama, Y. and Harayama, S. (2001) J. Microb. Method. 44, 253-262 

 

 


