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Abstract

Background: To infer homology and subsequently gene function, the Smith-Waterman (SW)
algorithm is used to find the optimal local alignment between two sequences. When searching
sequence databases that may contain hundreds of millions of sequences, this algorithm becomes
computationally expensive.

Results: In this paper, we focused on accelerating the Smith-Waterman algorithm by using FPGA-
based hardware that implemented a module for computing the score of a single cell of the SW
matrix. Then using a grid of this module, the entire SW matrix was computed at the speed of field
propagation through the FPGA circuit. These modifications dramatically accelerated the algorithm's
computation time by up to 160 folds compared to a pure software implementation running on the
same FPGA with an Altera Nios Il softprocessor.

Conclusion: This design of FPGA accelerated hardware offers a new promising direction to
seeking computation improvement of genomic database searching.

Background

The Smith-Waterman (SW) algorithm is a well-known
algorithm in bioinformatics that finds the optimal align-
ment between two DNA or protein sequences (the target
sequence and the search sequence) [1]. Determining how
well two sequences align is important in discovering
homologous genes and studying the evolutionary history
of molecules and species [2]. However, the SW algorithm
is not commonly used to search sequence databases
because it is too slow when executed against many
sequences. Instead, faster heuristic algorithms such as
FASTA [3] and BLAST [4] are used, even though they can
not guarantee that the score for the optimal local align-
ment will be found. Therefore, to achieve both increased

speed and the optimal alignment score, it is necessary to
develop an approach to reduce the processing time of the
SW algorithm. The SW algorithm first creates a two-
dimensional (2D) matrix with size equal to the lengths of
the two DNA sequences. The score of each cell in the
matrix is calculated from neighbouring cells. The optimal
alignment score between the two DNA sequences is the
highest score in the matrix and the corresponding align-
ment is determined by back-tracing from the cell with the
highest score to the first cell with a zero score.

Many attempts have been made to accelerate the SW algo-
rithm using either software or hardware by focusing on
parallel processing of the score matrix [5]. This has been
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implemented using VLSI (Very Large Scale Integration) [6]
and FPGA (Field Programmable Gate Array) [7] by simul-
taneously evaluating the cells along the minor diagonal of
the score matrix. Alternative implementations have been
used recently to accelerate the SW algorithm using soft-
ware parallel programming on common microprocessors
with a speed improvement up to six-fold [8]. Here, we
dramatically reduced the computation time of the SW
algorithm using an FPGA. Our implementation uses cus-
tom instructions to accelerate cell scoring in the SW
matrix and divides the SW matrix into grids of 8 by 8 cells.
Our approach is different from previous FPGA approaches
in that the cell scores in each grid are calculated through
unclocked signal propagation within the FPGA circuit,
whereas previous methods process the minor diagonal
values synchronously by the clock. Using our approach,
we reduced the expensive writing and reading time of
intermediary data between each computation of the diag-
onals. Furthermore, we eliminate the overestimation of
the computation time of the circuit caused by a clock. The
cost of this improvement is utilizing more logic elements
on the FPGA.

Results

Smith-Waterman algorithm

The SW algorithm belongs to a class of algorithms known
as dynamic programming. Dynamic programming is used
when a large search space can be structured into a succes-
sion of stages such that the initial stage contains trivial
solutions to subproblems [9]. Typically, this involves
structuring the problem to an iterative calculation of cells
in a scoring matrix. The following is the commonly used
scheme to compute the score of a single cell, score_x, in
the score matrix:

score_x = max {score_nw + match_bonus,
score_nw + mismatch_penalty,

score_n -
extension_gap_penality,

opening_gap_penalty -

score_w -
extension_gap_penality, }

opening_gap_penalty -

score_nw, score_n and score_w are the scores of the cells
to the upper-left (NW), above (N) and left (W) of cell X,
respectively (Figure 1). For simplicity, in our case, the
match_bonus was 1 if the additional letters to the align-
ment are equal; the mismatch penalty was 1 if letters are
not equal; the opening gap_penalty was 1; the
extension_gap_penalty was 0.1 for each additional gap.
Thus, the score of each cell in the 2D matrix (except for the
upper left corner) is calculated by three of its neighbour-
ing cells.
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Basic structure of the SW matrix. Each cell records the
score of the SW matrix, which depends on the search and
target sequences. NW, N, and W are cells to the northwest,
north, and west of the cell of interest X.

Software implementation

A pure software implementation of the SW algorithm was
developed in the C language to benchmark against FPGA-
based implementations. A single_cell_module (SCM) was
programmed containing the following I/O parameters:
score_nw, score_n, score_w, flag nw, flag n, flag w,
flag gap and result_score. The input parameters
score_nw, score_n and score_w are scores of the NW, N
and W neighboring cells, respectively. The input parame-
ters flag_nw, flag_n, and flag_w indicate the direction of
the gap (00, if no gap; 01,, gap from the target sequence;
102, gap from the search sequence) of the NW, N and W
neighboring cells, respectively. Since the direction of the
gap is known from the neighboring cells by the flags, we
can determine if the incremental gap penalty of the cell of
interest is an opening or extension gap penalty.

Thus, we can perform an affine gap penalty. The output
parameters (score_gap and result_score) give the direction
of the gap and the final score of the cell of interest, respec-
tively.

The program first loads the target and search sequences
into local memory from two text files stored in the flash
memory. Then, their sequence lengths are determined and
the scoring and gap matrices are created with dimensions
of the above sequence lengths. Next, the score of each cell
in the SW scoring matrix is calculated using the SCM.
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Lastly, the completed SW scoring matrix outputs the high-
est score in the matrix.

Custom instruction (Cl) for SCM using an FPGA

Since calculating the SCM in the SW scoring matrix is
repeated, this routine is a good candidate for FPGA-based
hardware acceleration. The reconfigurable logic elements
in FPGA can be optimally configured to run specific func-
tions through the implementation of custom microproc-
essor instructions, which are assigned logic elements that
perform user-defined operations. Custom instructions, in
particular, allow the passing of multiple inputs and out-
puts in a single clock cycle while the pure software imple-
mentation using a conventional microprocessor is limited
by the instruction set.

The SCM in the pure software implementation was con-
verted to an equivalent FPGA-based custom instruction
(hereafter, called 1xSCM) written in the Verilog hardware
description language. Since the format for the custom
instruction provided by our FPGA board (Altera Stratix)
only permits two 32-bit inputs (Input_A and Input B, Fig-
ure 2) and our 1xSCM requires 6 inputs (3 scores and 3
flags), the inputs are partitioned and rearranged to be all
read in a single clock cycle. Recall that the inputs for the
SCM in the pure software implementation are score_nw,
score_n, score_w, flag nw, flag n, and flag_w. Using bit
masking and shifting bit operations, all input scores and
their flags are passed to the 1xSCM of cell of interest in
one clock cycle (Figure 2). The CI produces the cell score
and flags quickly because it makes use of custom hard-
ware, rather than using the standard instruction set of the
Nios II as in the software version. The maximum field
propagation delay of the 1xSCM was estimated to be 21
ns. Thus, the clock speed of this computation could be no
faster than 47.6 MHz. Using the 1xSCM, we computed the
cell score and gap flag calculations using a single instruc-
tion rather than several.

Lastly, we added the CI for the scoring of a single cell to
the instruction set of the Nios II soft microprocessor on
the FPGA, so that it can be called in a C program. The flow
of computation is identical to that of the software imple-
mentation, except that instead of calling a function which
describes the SCM, we call the CI.

A grid design of SCMs using an FPGA

To further improve the computation speed, we combined
64 instances of 1xSCM into an 8 by 8 grid module (here-
after, called 64xSCM) (Figure 3A), the maximum size
allowed by our FPGA board. We programmed the FPGA
such that within the grid, the score update of each 1xSCM
is not synchronized to a clock, but rather triggered by the
changes of scores in neighbouring cells in the W, NW and
N direction (Figure 3A). This asynchronous data process-
ing method allows scores to propagate throughout the
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IXSCM 1/O instruction and arrangement. A. Bit parti-
tion of custom instruction for the 1*SCM. The input_A and
input_B are two 32-bit data containing the scores and flags
from the three neighbouring cells (north, northwest and
west). The output is one 32-bit data containing the final
scores and the direction of alignment gap. The grey areas
indicate the unused data bits. B. Schematic design of the
inputs and outputs from one |*SCM.

grid as fast as the field propagation speed allows in the
FPGA logic gates, hence drastically improving the compu-
tation speed. This implementation can be thought of hav-
ing all 64 1xSCMs processing at the same time, while the
score updating propagates in the grid. The SW matrix is
divided into as many grids as needed, which are then cal-
culated with 64xSCM one by one. Because all logic circuits
are connected inside the 64xSCM, it takes only one clock
cycle to compute the entire 8 by 8 grid. The maximum
field propagation delay of the 64xSCM was estimated to
be 324 ns. Thus, the clock speed of this computation
could be no faster than 3.1 MHz.

As input, this module requires segments of the search and
target sequences with a length of up to 8 characters (the
length and width of 64xSCM). Also, it requires the scores
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64xSCM signal and computation propagation. A. One
64xSCM module aligns an 8-character partial search
sequence to an 8-character target sequence. The arrows
show the propagation directions of the signals. Because the
64xSCM is unclocked, there is no pre-determined path of
propagation. B. When the search and/or target sequences
are greater than 8, the scoring matrix is partitioned into
many 8 by 8 segments, each to be computed by the 64xSCM.

and gap flags stored from prior 64xSCM calculations in
the NW, N and W direction. A second module was created
to calculate the maximum score of the 64xSCM by a cas-
cade of max-finders that first finds the maximal score of
each column and then finds the maximum of the columns
to determine the overall maximum (Figure 4). In order to
process sequences longer than the dimension of 64xSCM
(in this case, 8), a controller module was programmed to
reuse the 64xSCM. This module included a SRAM (static
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The max-finder implementations in 64xSCM. A. The
2-input max-finder circuit implementation. Both inputs and
the output are | 6-bit data representing the SW matrix score.
B. Construction of an 8-input max-finder using 2-input max-
finders. C. Max score computation of a 64xXSCM. The scores
of each column of cells in 64XSCM are inputted to a custom
designed 8-input max-finder, the outputs of the 8 columns
are then compared against each other using another 8-input
max-finder. The output of the last comparator gives the high-
est score of the 64xXSCM.

random access memory) block to store scores and gap
flags from previous 64xSCM calculations as well as a finite
state machine (FSM) to control loading and storing values
to the SRAM (Figure 5). Lastly, to access this hardware
from a C program, a final interface module defines a set of
registers to hold the sequences, lengths, various flags and
the final score.

The flow of computation of this hardware controlled from
a C program is as follows. First, the search and target
sequences are loaded from flash memory and copied to
local memory. Once this is done, an on-chip timer is
started. Second, score and gap matrices are initiated and
the values reset. Third, the search and target sequences are
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Figure 5

State diagram of the finite state machine (FSM). The
states of the moore-type FSM are in the rounded rectangles.
The output at each state are defined by the following vector -
(we = write enable for SRAM blocks, rm = reset 64xSCM
matrix, ena_seq = enable sequences to be loaded, ena_sf =
enable scores and flags to be loaded). To clear all scores and
flags from the matrix, the FSM is set to the 'Reset’ state.
Next, the FSM remains in the 'Wait for Sequence Load' state
until two sequences of length 8 or less have been loaded by
the C program. Once this loading is completed, the C pro-
gram will assert the done_load signal. At this point, the FSM
releases the matrix's reset signal which causes the sequences,
scores and flags to propagate through the matrix. After a set
delay determined by the critical path of the circuit, the FSM
asserts the done_sw signal, and enables the values just calcu-
lated to be written into the RAM. Theses scores and flags will
be read from the RAM for the next block. The FSM then
returns to the 'Wait for Sequence Load' state, and waits for
the next length of sequences to come from the C program.
This loop is repeated until the entire Smith-VWaterman
matrix has been calculated and the score of the optimal align-
ment has been determined. Finally, the results are printed to
a command window on the computer. The FSM can be reset
by writing to a status register, allowing the matrix to be used
for another set of sequences.

encoded by a custom instruction and loaded into the
64xSCM with their lengths. DNA bases are encoded into
two bits (A =00, T=01, G=10, C=11). Lastly, the result
propagates through the grid and completes in a time
determined by the field propagation delay. If the
sequences are longer than 8 characters, steps 3 and 4 are
repeated for the next grid (Figure 3B). Once all grids have
finished, the timer is stopped and the running time is dis-
played on the screen.

Testing

We tested and compared the performance of the three
implementations (pure software, 1xSCM, and 64xSCM)
for aligning two DNA sequences with identical lengths
ranging from 1 to 1024 base-pairs. We performed the
same input for each implementation and measured the
time to complete the computations (Table 1). Alignment
of the each sequence length was performed three times to
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Table I: Computation time comparison

Number of  Pure software IXSCM (ms) 64xSCM (ms)
cells (ms)

| 0.0244 0.0106 0.0141

4 0.0432 0.0194 0.0135

16 0.120 0.0568 0.0124

64 0.400 0.204 0.0128

256 I.55 0.809 0.0233
1024 6.57 3.45 0.0591
4096 26.2 14.5 0.193
16384 107 58.3 0.687
262144 1919 1126 1.3
1048576 7719 4504 42.8

produce the statistical variance, which was less than 0.5%.
The scoring matrices from the three implementations
were compared to ensure identical alignment results. The
performance of the implementation was found to be inde-
pendent to the sequence-similarity between the two DNA
sequence queries (data not shown).

The 1xSCM implementation produced a maximal 2-fold
speed improvement over the pure software implementa-
tion running on the same FPGA with an Altera Nios II
softprocessor, while the 64xSCM implementation pro-
duced a maximal of 160-fold improvement over the pure
software implementation (Figure 6). When the sequence
length was smaller or equal to the size of the 64xSCM
implementation, the computation time did not increase
as the length of the sequence increased (Figure 7A). In
comparison to the pure software and 1xSCM implemen-
tations, the computational time increased proportionally
to square of the sequence length. When the sequence
length was larger than the size of the 64xSCM implemen-
tation, the slopes of the log (computation time) vs. log

1000x 1

100x 9

ol

DNA sequence length (base-pairs)

Speed improvement (folds)

Figure 6

Speed improvements. Computation speed improve-
ments (in folds) of the three implementations. Black,
64xSCM over pure software; grey, 64xSCM over | XxSCM;
white, | XSCM over pure software.
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Computation speed and time. A, Computation time (in
milliseconds) and B, speed (cell evaluated per millisecond) as
functions of query DNA sequence length (in base-pairs). Cir-
cles are the 64xSCM implementation; squares are | XSCM
implementation; and diamonds are pure software implemen-
tation.

(sequence length) graphs of all three implementations
approach the same value (Figure 7A) and the speed per
cell approaches a constant value (Figure 7B). Thus, in this
case, the computation time of all three implementations
increased proportionally to square of the sequence length.
This is expected as the field propagation of the 64xSCM
implementation is restricted to the 8 by 8 grid. However,
if we increase the size of the grid to cover the average size
of sequences comparisons (for example, one thousand
base-pairs), we could significantly improve the computa-
tion time for the majority of sequence alignment queries.

Discussion

While this FPGA implementation using a single Altera
Stratix FPGA board does not compute cells per second in
a comparable speed to existing software implementations,
it is likely that expanding this design to state-of-the-art
FPGA architectures will outperform them. Rognes and
Seeberg's software implementation running on a Pentium
III 500 MHz processor (2000) showed a performance of
150 million cells per second [8], while recently Farrar's
software implementation running on a Xeon Core Duo 2
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GHz processor (2007) showed a performance of 3,000
million cells per second [10]. In Table 1, 1048576 cells
were computed by the 64xSCM implementation in 42.8
ms, which is equivalent to 24.5 million cells per second.
It is important to note that most of the processing time is
consumed by writing and reading intermediary data to
and from static RAM from multiple executions of the
64xSCM module that is necessary when computing a SW
matrix that is larger than an 8 by 8 grid size. For example,
the computation of a SW matrix with grid size 400 by 400
would require 2500 executions of the 64xSCM module.
This loading and reading time could be dramatically
reduced by using a larger grid size encompassing the aver-
age length of query sequences, perhaps 1000 by 1000
cells. Using this grid size, the computational time is the
initial load time of sequence data added with the field
propagation delay across the grid which is at most 1000
1xSCM across and 999 down for a total of 1999 1xSCM
propagation delays. Our above estimation for the maxi-
mum field propagation delay of one 1xSCM on our FPGA
board is 21 ns. If that estimate is used, the computation of
the 1000 by 1000 grid will be completed in at most
41,979 ns. This corresponds to a computation speed of
23,800 million cells per second. This would actually be an
underestimate in what can be achieve in state-of-the-art
FPGA boards as the field propagation delay is faster
because the density of the transistors is higher and there-
fore field propagation distance is shorter.

While a 1000 by 1000 grid size is desired, the 8 by 8 grid
size was limited by our FPGA board because it only has
40,000 logic elements. A single 1xSCM utilizes 267 logic
elements. If only 1xSCM modules were programmed on
this FPGA board, there could be a maximum of ~150
1xSCM, however only 64 1xSCMs could be programmed
because other internal FPGA hardware requires logic ele-
ments as well. One way to reduce logic element utilization
is to decrease the bit-size of the score. Currently, state-of-
the-art FPGA hardware (such as Starbridge Systems, HC-
62) have 11 Xilinx Virtex II FPGAs on single board for a
total of 62 million logic elements.

This FPGA hardware could create a maximum of
~230,000 1xSCM. Thus, we could potentially have a max-
imum grid size of 480 by 480. With ever improving hard-
ware, the gap to a 1000 by 1000 grid size will inevitably
be bridged.

Conclusion

Since the SW algorithm becomes computationally expen-
sive for comparing sequences in a large database, we accel-
erated the computation time by using FPGA hardware. To
quantitatively assess the computational improvement, we
compared an implementation of the algorithm in pure
software running on the Altera Nios II softprocessor with
FPGA-based implementations that had a SCM CI
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(1xSCM) and a SCM grid (64xSCM). The implementation
with a 64xSCM accelerated the algorithm by a maximal of
160-fold in sequence lengths less than or equal to the grid
length. The computation is significantly improved
because it is occurring as fast as electrons can propagate
through the FPGA circuit. By using a grid length that is the
size of an average sequence length, the computation time
of the average sequence comparison can be further signif-
icantly improved. Thus, expanding our FPGA design to
more powerful FPGA systems with parallel and higher
density logic elements is a promising direction to signifi-
cantly improve genomic sequence searching.

Methods

The Altera Stratix EP1S40 FPGA was used for development
and evaluation with Verilog was as the hardware descrip-
tion language. Using both the Altera Quartus II software
and Nios II Integrated Development Environment (IDE),
the Nios II softprocessor was programmed onto the FPGA
to execute C programs that use custom FPGA hardware for
the acceleration of the algorithm. Altera Quartus II and
Nios II software were running on a Dell OptiPlex compu-
ter with a 2 GHz Intel Pentium 4 processor, 512 MB RAM,
40 GB hard drive and a Windows XP operating system.

Availability and requirements
Name: FPGA-accelerated Smith-Waterman algorithm

Web address: http://individual.utoronto.ca/ktruong/soft

ware.htm
Operating system requirement: Windows XP

Programming language: C for software implementation,
Visual Basic 6.0 for graphical user interface, Verilog for
hardware description language

Hardware requirements: At least Altera Stratix FPGA
board

Software requirements: Altera Quartus I and Nios Il IDE

License: Open-source and free for academic and non-
profit use.
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