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Lactobacillus bacteria isolated from poultry
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Abstract

Background: The objective of our study is to evaluate the potential use of Amplified 16S Ribosomal DNA

Restriction Analysis (16S-ARDRA) and MALDI-TOF mass spectrometry (MS) as methods for species identification of

Lactobacillus strains in poultry.

Results: A total of 80 Lactobacillus strains isolated from the cloaca of chicken, geese and turkeys were identified to

the species level by MALDI-TOF MS (on-plate extraction method) and 16S-ARDRA. The two techniques produced

comparable classification results, some of which were additionally confirmed by sequencing of 16S rDNA.

MALDI-TOF MS enabled rapid species identification but produced more than one reliable identification result for 16.

25 % of examined strains (mainly of the species L. johnsonii). For 30 % of isolates intermediate log(scores) of 1.70–1.

99 were obtained, indicating correct genus identification but only presumptive species identification. The

16S-ARDRA protocol was based on digestion of 16S rDNA with the restriction enzymes MseI, HinfI, MboI and AluI.

This technique was able to distinguish 17 of the 19 Lactobacillus reference species tested and enabled identification

of all 80 wild isolates. L. salivarius dominated among the 15 recognized species, followed by L. johnsonii and L.

ingluviei.

Conclusions: The MALDI-TOF MS and 16S-ARDRA assays are valuable tools for the identification of avian lactobacilli

to the species level. MALDI-TOF MS is a fast, simple and cost-effective technique, and despite generating a high

percentage of results with a log(score) <2.00, the on-plate extraction method is characterized by high-performance.

For samples for which Biotyper produces more than one reliable result, MALDI-TOF MS must be used in

combination with genotypic techniques to achieve unambiguous results. 16S-ARDRA is simple, repetitive method

with high power of discrimination, whose sole limitation is its inability to discriminate between species with very

high 16S rDNA sequence homology, such as L. casei and L. zeae. The assays can be used for discrimination of

Lactobacillus bacteria from different habitats.
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Background

Lactobacilli are Gram-positive, non-sporing, aerotolerant

or anaerobic catalase-negative rods or coccobacilli. The

genus Lactobacillus currently (December 2015) com-

proses 224 species [1] and is thus the most numerous

group of lactic acid bacteria (LAB). The natural habitats

of these bacteria are dairy products, healthy and rotting

plants, and the mucous membranes of humans and

animals, including birds. They have been isolated from

the GIT (gastrointestinal tract) of chickens [2], geese [3],

ducks [4] and pigeons [5]. The most commonly identi-

fied species in these birds are L. salivarius, L. johnsonii,

L. crispatus, L. reuteri and L. agilis [2–5].

Lactobacilli, as beneficial components of the gut

microbiome, have a great impact on the health status of

farm animals, including poultry. While maintaining the

microbial balance of the mucous membranes, they pro-

vide protection against enteropathogenic infection [6, 7].

In addition, they improve digestion and nutrient assimi-

lation, remove toxic substances, and enhance immunity
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[8, 9]. Owing to their health-promoting properties Lacto-

bacillus bacteria are used to produce probiotic prepara-

tions for humans and animals. Probiotics, through

multi-pronged action, improve the health of animals and

increase the efficiency of livestock production. Interest

in the application of probiotics in poultry has grown

since the introduction in the EU of a ban on antibiotic

growth promoters in animals and the associated increase

in the frequency of intestinal infections in birds, mainly

induced by C. perfringens. The use of selected Lactoba-

cillus strains as feed additives for poultry can produce

similar effects to those of antibiotic growth promoters,

manifested by increases in weight and better feed effi-

ciency [10, 11], as well as resistance to pathogenic bac-

teria such as Salmonella sp. [12], C. perfringens [13, 14],

E. coli [10] or Campylobacter sp. [14]. Moreover, supple-

menting the diet of broilers with Lactobacillus strains

reduces fat deposition in the coelom [15] and increases

the size, quality and production of eggs [16, 17].

Accurate taxonomic classification of lactobacilli to the

species level is not an easy task. It is made difficult by

the large and continually growing number of species be-

longing to this genus and their biochemical and genetic

diversity. Identification by phenotypic methods is time-

consuming and has a low discriminatory level [18]. The

commercial kit API CHL50 (Biomerieux) for lactic acid

bacilli yields ambiguous results and even misidentifica-

tions [19]. Molecular methods have proven to be more

reliable. The target most commonly used for bacterial

identification is 16S rDNA. This ~1500 base-pair gene is

characterized by slow rates of evolution and encodes

16S rRNA, a component of the 30S small subunit of

prokaryotic ribosomes. In addition to highly conserved

sites (used for binding of universal primers in PCR), 16S

rRNA gene sequences contain hypervariable regions that

can provide species-specific signature sequences useful

in identifying bacteria and determining their phylogen-

etic position [20]. Despite its accuracy, the use of 16S

rRNA gene sequence analysis is not widespread outside

of reference laboratories because of technical and cost

considerations. Sequencer purchase prices exceed the fi-

nancial capacity of ordinary laboratories, and the costs

of sequencing performed by outside labs offering this

service is not cost-effective for identification of multiple

strains. The high price (about €30 per sample) is dictated

by the substantial length of 16S rDNA, which requires

two sequencing reactions (automated Sanger dideoxy

method) and assembly of the two fragments using ap-

propriate software.

Another method for identifying bacteria, based on ana-

lysis of the gene encoding 16S rRNA, is Amplified Riboso-

mal DNA Restriction Analysis of 16S rDNA (16S-ARDRA).

It is a simple method that can be routinely used in labora-

tories because it does not require specialized equipment. It

is also less expensive than 16S rDNA sequencing (costs of

identification depend primarily on the price of reference

strains and restriction enzymes). The power of discrimin-

ation of ARDRA depends on the restriction enzymes used,

which can be selected on the basis of in silico analysis using

16S rDNA sequences accumulated in public databases.

Strains are identified by comparing the electrophoretic

profiles of restriction fragments of wild-type strains with

profiles of reference strains [21].

Matrix-assisted laser desorption/ionization time-of-

flight mass spectrometry (MALDI-TOF MS) is an in-

creasingly used technique enabling quick identification

of isolates to the species or even sub-species level. It is a

valuable alternative to more time-consuming and more

expensive methods, including 16S rRNA gene sequen-

cing and 16S-ARDRA, which require DNA extraction,

amplification and electrophoretic separation [22, 23].

During MALDI-TOF MS, microbes are identified using

either intact cells or cell extracts, chemical compounds

are ionized into charged molecules, and their mass-to-

charge ratio (m/z) is measured. This technology gener-

ates mass spectra mostly composed of highly abundant

proteins, including many ribosomal proteins assumed to

be characteristic for each bacterial species. Mass spectra

based on detected proteins are unique signatures which

are treated as a fingerprint of the sample. The identification

relies on comparison of the mass spectrum of the tested

isolate with those of strains in reference databases [23]. The

reliability of the identification results obtained by MALDI-

TOF MS is comparable to that of genetic typing methods,

including 16S rDNA sequencing [3, 22, 24, 25]. The main

limitation of the technology is that identification of new iso-

lates is possible only if the spectral database contains pep-

tide mass fingerprints of the type strains of specific genera,

species or subspecies.

In the present study, MALDI-TOF MS and 16S-

ARDRA were evaluated as methods for identification of

Lactobacillus bacteria isolated from poultry, including

chicken, geese and turkeys.

Methods

Bacteria and growth conditions

Lactobacillus isolates were collected from the fresh faeces

or cloacae of 12 White Koluda geese, 10 broilers and 3

turkeys from large-scale poultry farms in Poland.

A total of 89 bacterial strains, including 46 strains from

geese, 35 from broilers and 9 from turkeys, were isolated

on MRS (Man, Rogosa and Sharp) medium (BTL, Poland)

supplemented with 0.05 % (w/v) cysteine hydrochloride

(Sigma-Aldrich, Poland) (MRS-cys) at 37 °C for 48 h in

5 % CO2. All isolates were Gram-positive and catalase-

negative. There were 10 strains (8 strains of goose origin

and 2 of chicken origin) with coccus morphology that

were excluded from further analysis. A total of 80 isolates
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(38 from geese, 33 from chickens and 9 from turkeys) with

rod-shaped morphology were considered to be lactobacilli

and were stored at −80 °C until further analysis. A total of

23 reference Lactobacillus strains, listed in Table 1, were

obtained from the BCCM™/LMG bacteria collection

(Ghent, Belgium) or from Argenta (Poland).

Species identification using MALDI-TOF MS

Measurements were performed with a UltrafleXtreme

MALDI TOF mass spectrometer (Bruker, Germany)

equipped with a 1000 Hz Nd-YAG laser (neodymium-

doped yttrium aluminium garnet) as it was descriped in

our previous work. In a simple direct method, a single

bacterial colony grown on MRS agar was transferred

onto a spot of the 384 MTP AnchorChip™ T F stainless

steel MALDI target plate (Bruker, Germany). Subse-

quently, the bacterial sample was overlaid with 1 μL 70 %

formic acid and then with 1 μL matrix solution containing

10 mg/mL HCCA (a-cyano-4-hydroxycinnamic acid,

Sigma-Aldrich, Poland) resolved in 50 % acetonitrile

(Sigma-Aldrich, Poland) and 2.5 % TFA (trifluoro-acetic

acid, Sigma-Aldrich, Poland) and air-dried [26, 27].

The MALDI target plate was then introduced into the

spectrometer for automated measurement and data in-

terpretation. Prior to the analyses, calibration was per-

formed with a bacterial test standard (Bruker, Germany)

containing extract of E. coli DH5 alpha.

The mass spectra were processed with the MALDI Bio-

typer 3.0 software package (Bruker, Germany) containing

3995 reference spectra, including 218 for lactobacilli. The

results were shown as the top 10 identification matches

along with confidence scores ranging from 0.00 to 3.00.

According to the criteria recommended by the manufac-

turer, a log(score) below 1.70 does not allow for reliable

identification; a log(score) between 1.70 and 1.99 allows

identification to the genus level; a log(score) between 2.00

and 2.29 means highly probable identification at the genus

level and probable identification at the species level; and a

log(score) higher than 2.30 (2.30 – 3.00) indicates highly

probable identification at the species level.

Analysis of each sample was performed in triplicate (3

spots for each sample). If the log scores from the first run

were <2.00 or a sample yielded a MALDI mass spectrum

with no peaks a second run was performed.

The result of identification was considered reliable

when at least the two best matches (log(score) 1.70-3.00)

with the MALDI Biotyper database indicated the same

species. For samples for which the top two matches indi-

cated different species, we took into account the first

match, provided that the log(score) was greater than the

value for the second match of ≥0.30.

Isolation of bacterial DNA

For DNA analysis the wild and reference Lactobacillus

strains were grown in MRS-cys broth for 18 h and gen-

omic DNA was isolated using a GeneMATRIX Bacterial

& Yeast Genomic DNA Purification Kit (Eurx, Poland)

following the manufacturer’s instructions with some

modifications. Lysozyme (30 mg/mL, Sigma-Aldrich,

Poland) and mutanolysin (30 U/mL, Sigma-Aldrich,

Poland) were added to lysis buffer. Bacteria suspended

in lysis buffer were incubated for 1.5 h at 37 °C. Further

DNA isolation steps were performed according to the

manufacturer’s protocol.

Table 1 Reference strains tested by MALDI-TOF MS analysis. The

two best matches obtained in the Biotyper were taken into account.

For strains for which the first and second best match indicated the

same species, only one result (with the highest log(score)) is shown

in the table. A-U – symbols for reference strains used in Table 3 and

in Figs. 1, 2, 3 and 4

No. Reference strains MALDI-TOF MS Biotyper
log(score)

Species Strain number

1 L. acidophilus (F) ATCC 4356 L. acidophilus 2.296

2 L. agilis (C) LMG 9186 L. agilis 2.321

3 L. amylovorus (J) LMG 9496 L. amylovorus 2.351

4 L. casei (M) ATCC 393 L. zeae 1.954

L. casei 1.84

5 L. crispatus (I) LMG 9479 L. crispatus 2.117

6 L. farciminis (E) LMG 9189 L. farciminis 1.982

7 L. gallinarum (L) LMG 9435 L. gallinarum 2.179

L. acidophilus 1.965

8 L. gasseri (G) ATCC 19992 L. gasseri 2.316

9 L. ingluviei (R1) LMG 20380 L. ingluviei 1.957

10 L. ingluviei (R2) LMG 22056 L. ingluviei 1.881

11 L. johnsonii (H) LMG 9436 L. johnsonii 1.994

L. gasseri 1.897

12 L. kitasatonis (K) LMG 23133 L. kitasatonis 2.078

L. amylovorus 1.953

13 L. mucosae (S) LMG 19534 L. mucosae 2.023

14 L. oris (U) LMG 9848 L. oris 1.949

L. antri 1.79

15 L. plantarum (D) ATCC 8014 L. plantarum 2.002

16 L. paracasei (P) ATCC BAA-52 L. paracasei 2.133

17 L. reuteri (T1) LMG 9213 L. reuteri 2.192

18 L. reuteri (T2) LMG 18238 L. reuteri 1.971

19 L. rhamnosus (N) ATCC 7469 L. rhamnosus 2.324

20 L. saerimneri (B) LMG 22875 L. saerimneri 2.249

21 L. salivarius (A1) LMG 9476 L. salivarius 2.224

22 L. salivarius (A2) LMG 9477 L. salivarius 2.342

23 L. zeae (O) LMG 17315 L. casei 2.021

L. zeae 2.007
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Amplification of the 16S rRNA gene

The 16S rDNA gene was amplified by PCR using

primers fD1 5′-AGA GTT TGA TCC TGG CTC AG-3′

and R1530 5′-AAG GAG GTG ATC CAG CCG CA-3′

[24] obtained from Blirt (Poland). The PCR reactions

were performed in an Eppendorf Mastercycler in a

50 μL reaction mixture consisting of 25 μL DreamTaq

PCR Master Mix (Thermo Scientific, USA), 3 μL of each

primer (100 pmol/μL, Blirt, Poland), 3 μL of template

DNA (~20 ng/μL) and 16 μL deionized water. The ther-

mocycle programme was as follows: initial denaturation

at 94 °C for 5 min; 30 cycles of 94 °C for 45 s, 56 °C for

45 s and 72 °C for 1.5 min; and a final extension step at

72 °C for 8 min. For all Lactobacillus strains tested, an

~1500-bp PCR single product was obtained.

Digestion of 16S rDNA amplicons

In the preliminary tests using only Lactobacillus refer-

ence strains, the PCR products were digested with the

following restriction enzymes: AluI, MseI, HaeIII, MpsI,

TagI, HinfI and MboI. These restriction enzymes were

selected on the basis of in silico analysis using the nu-

cleotide sequence of the whole 16S rDNA gene of differ-

ent Lactobacillus strains, deposited in GenBank. Six μl

of PCR product was digested in 12 μL of restriction en-

zyme buffer with 0.6 μL of restriction enzyme (initial

concentration of each enzyme 10 U/μL) and left to react

at 65 °C (for TaqI and MseI) or at 37 °C (for AluI,

HaeIII, MpsI, HinfI and MboI) for 4 h. All restriction en-

zymes were purchased from Thermo Scientific (USA).

The restriction enzymes with the greatest discrimin-

atory power for the reference lactobacilli, i.e., MseI,

HindI, MboI and AluI, were used to digest the PCR

products obtained on the DNA matrix of the wild-type

strains.

DNA electrophoresis and analysis of restriction profiles

The DNA restriction fragments were separated by elec-

trophoresis in a 3 % (wt/vol) high-resolution agarose

(Prona) gel with ethidium bromide (0.5 mg/mL) in 0.5x

Tris-borate-EDTA (pH 8.0) buffer at 90 V for 60 min

and visualized under a UV source. Each gel was docu-

mented with a GelDoc apparatus (BioRad, USA). For all

investigated bacterial strains (reference and wild), re-

striction fragment sizes were measured (in bp) by com-

parison with the M100-1000 bp DNA Ladder (Blirt,

Poland) using Quantity One software (BioRad).

Cluster analysis

To evaluate genetic diversity among the strains, the

ARDRA profiles were analysed and used to construct a

dendrogram. Each restriction fragment was treated as an

individual character and scored as 1 (presence) or 0

(absence). The percent disagreement was used to cluster

the isolates by the unweighted pair group mean arithmetic

method (UPGMA) in Statistica 9.0 (StatSoft, Inc., Tulsa,

USA). The results have been expressed for convenience as

a percentage of similarity between the restriction profiles of

the strains tested.

16S rDNA sequencing

PCR products from the 16S rRNA gene (~1500-bp) were

purified with an ExoSap-IT kit (Affymetrix, USA) accord-

ing to the supplier’s instructions. The DNA sequence was

determined by a commercial DNA sequencing service

provider (Genomed, Warsaw, Poland) using the same

primers as those for PCR and Sanger method. Sequences

were assembled with CLC Genomics Workbench 7.0

(CLC bio, a Qiagen Company) and compared to reference

sequences available in the GenBank database using the

NCBI BLAST algorithm (http://www.ncbi.nlm.nih.gov/

BLAST).

Results

Identification of Lactobacillus strains using MALDI-TOF MS

Reference strains

As a preliminary test of the applicability of MALDI-TOF

MS for the identification of Lactobacillus species, a set

of 23 reference strains were analysed. The log(score) for

7 strains were between 1.70 and 1.99 (first best match),

for 13 strains ranged from 2.00 to 2.29, and for 3 strains

it was >2.3 (Table 1). Despite the many low values of

log(score), that, according to Brucker’s criteria, allows

only for identification to the genus level, the analysis

yielded the correct results for all Lactobacillus strains.

However, the identification of the 4 strains was consid-

ered as unreliable as the first best match was correct

(except L. casei), and the second match of the similar

values of log (score), pointed to another closely related

species. Such equivocal results has been obtained in the

case L. casei ATCC 393, L. johnsonii LMG 9436, L. kita-

satonis LMG 23133 and L. zeae LMG 17315. Differences

between log values (scores) of the first and second

matching with those strains were ≤0.203.

Wild isolates

A total of 80 isolates od rod-shaped morfology were

classified as bacteria of the genus Lactobacillus with a

Biotyper log (score) equal or greater than 1.70. For 7

(8.75 %) of the strains the log(score) was 2.3–3.0, for 49

(61.25 %) strains it was 2.00–2.29, and for 24 (30 %) it

was 1.70–1.99.

For 67 (83.75 %) strains either at least the two best

matches in Biotyper indicated the same species or the

difference between the first and second best matches in-

dicating different species was greater than 0.30. Identifi-

cation of these isolates was considered to be reliable. For

13 samples the first and second best matches indicated
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different species, and the differences between their

log(score) values were less than 0.22. Among these

samples, for 12 isolates the best match indicated L.

johnsonii and the second best match L. gasseri, and

for one strain the best match indicated L. kitasatonis

and second best match L. amylovorus (Table 2).

Among the 80 strains identified to the species level

(log(score) 1.7–3.0) were: L. salivarius – 17 strains, L.

johnsonii/L.gasseri – 12, L. ingluviei – 11, L. crispatus –

8, L. reuteri – 8, L. agilis – 4, L. oris – 4,, L. plantarum

– 3, L. paracasei – 3, L. rhamnosus – 1, L. amylovorus

−2, L. kitasatonis/L. amylovorus – 1 L. farciminis – 2, L.

saerimneri- 2 and L. mucosae – 2 strains (Table 2).

Discrimination of reference Lactobacillus strains by

ARDRA

ARDRA was first applied to 23 reference strains repre-

senting 19 species to verify whether the method suffi-

ciently discriminates among species of the Lactobacillus

genus. None of the 6 restrictions enzymes applied differ-

entiated all 19 Lactobacillus species. The greatest dis-

criminatory power was noted for the enzymes MseI and

HinfI, as 14 different genotypes were obtained using

these enzymes. AluI and MboI each generated 12 unique

patterns. HaeIII, MpsI and TaqI digestion yielded 11, 9

and 7 specific patterns, respectively, among the reference

lactobacilli (Table 3).

Digestion of the 16S rDNA amplicon by most of the

enzymes made it possible to distinguish such closely re-

lated species as L. ingluviei, L. mucosae, L. reuteri and L.

oris, while only single enzymes differentiated L. crispatus

from L. kitasatonis and species of the L. casei group. On

the basis of analysis of genotypes obtained for the refer-

ence strains, the four enzymes with the greatest discrim-

inatory power, MseI, AluI, HinfI and MboI, were selected

to differentiate the wild-type isolates. The combined use

of three of these enzymes, Msel, HinfI and MboI, makes

it possible to distinguish each species of Lactobacillus

except for L. casei and L. zeae. However, because only

MboI was capable of discriminating between L. salivar-

ius and L. agilis, and only HinfI differentiated L. ingluviei

from L. mucosae, in order to confirm the differentiation

and to increase the precision of the results obtained, the

enzyme AluI was additionally used.

MseI was the only enzyme to differentiate the species L.

crispatus, L. kitasatonis and L. amylovoru/L. gallinarum.

Another advantage of this enzyme is its ability to discrimin-

ate between closely related species, i.e., to distinguish L.

gasseri from L. johnsonii and L. crispatus from L. acidoph-

ilus. However, unlike most of the enzymes tested (AluI,

HaeIII, MpsI, TagI and hindi), the use of MseI did not en-

able differentiation of L. ingluviei from L. mucosae or L.

reuteri from L. oris (Fig. 1, Table 3).

HinfI was the only enzyme to differentiate L. rhamnosus

from the remaining species of the L. casei group, as well as

L. amylovorus from L. gallinarum. Moreover, like MseI,

HinfI enabled differentiation of the closely related species L.

crispatus and L. acidophilus (L. delbruckii group) (Fig. 2).

The use of the enzyme MboI enabled differentiation of

L. paracasei from the remaining species of the L. casei

group. In the profile of L. paracasei two additional bands

of 118 and 130 bp were present, while one band of

312 bp occurring in the profiles of L. casei, L. zeae and

L. rhamnosus was absent (Fig. 3b).

Table 2 Identification of wild Lactobacillus isolates by MALDI-TOF MS compared to the results obtained using 16S-ARDRA analysis

No. of strains MALDI-TOF MS 16S-ARDRA (% similarity
between wild and reference
strains, based on Fig. 5)

1st best match (1.70–3.00) 2nd best match (≤2.29)

17 L. salivarius L. salivarius L. salivarius (100 %)

12 L. johnsonii L. gasseri L. johnsonii (100 %)

11 L. ingluviei L. ingluviei L. ingluviei (98.5 %)

8 L. crispatus L. crispatus L. crispatus (100 %)

8 L. reuteri L. reuteri L. reuteri (93.5 %)

4 L. agilis L. agilis L. agilis (98.5 %)

4 L. oris L. oris L. oris (97 %)

3 L. plantarum L. plantarum L. plantarum (98.5 %)

3 L. paracasei L. paracasei L. paracasei (100 %)

1 L. rhamnosus L. rhamnosus L. rhamnosus (100 %)

2 L. amylovorus L. amylovorus L. amylovorus (100 %)

1 L. kitasatonis L. amylovorus L. kitasatonis (100 %)

2 L. farciminis L. farciminis L. farciminis (91.5 %)

2 L. saerimneri L. saerimneri L. saerimneri (100 %)

Total 80
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Table 3 Genotypes of reference Lactobacillus strains obtained via digestion of 16S rDNA amplicons using different restriction

endonucleases; reference numbers of strains as shown in Table 1

No. of
genotypes

MseI MboI HinfI AluI HaeIII MspI TaqI

1 L. salivarius A1 L. salivarius A1 L. salivarius A1 L. salivarius A1 L. salivarius A1 L. salivarius A1 L. salivarius A1

L. salivarius A2 L. salivarius A2 L. salivarius A2 L. salivarius A2 L. salivarius A2 L. salivarius A2 L. salivarius A2

L. agilis L. agilis L. agilis

2 L. saerimneri L. saerimneri L. saerimneri L. agilis L. saerimneri L. oris L. farciminis

3 L. plantarum L.agilis L. ingluviei R1 L. saerimneri L. plantarum L. plantarum L. ingluviei R1

L. ingluviei R2 L. farciminis L. farciminis L. ingluviei R2

L. reuteri T1 L. mucosae L. oris

L. acidophilus

L. crispatus

L. kitasatonis

L. amylovorus

L. gallinarum

4 L. farciminis L. farciminis L. farciminis L. plantarum L. johnsonii L. reuteri T1 L. reuteri T1 L. reuteri T2

5 L. zeae L. zeae L. zeae L. zeae L. zeae L. zeae L. zeae

L. rhamnosus L. rhamnosus L. casei L. rhamnosus L. rhamnosus L. rhamnosus L. rhamnosus

L. casei L. casei L. paracasei L. casei L. casei L. casei L. casei

L. paracasei L. paracasei L. paracasei L. paracasei L. agilis L. paracasei

L. saerimneri L. agilis

L. saerimneri

L. plantarum

6 L. johnsonii L. gasseri L. gasseri L. gasseri L. gasseri L. gasseri L. gasseri

L. johnsonii L. johnsonii L. johnsonii L. johnsonii L. johnsonii

7 L. ingluviei R1 L. paracasei L. mucosae L. farciminis L. mucosae L. reuteri T2 L.mucosae

L. ingluviei R2

L. mucosae

8 L. acidophilus L. acidophilus L. acidophilus L. acidophilus L. acidophilus L. acidophilus

L. crispatus L. crispatus L. crispatus

L. kitasatonis L. kitasatonis L. kitasatonis

L. amylovorus L. amylovorus L. amylovorus

L. gallinarum L. gallinarum L. gallinarum

9 L. reuteri T2 L. reuteri T1 L. oris L. ingluviei R1 L. ingluviei R1 L. ingluviei R1

L. ingluviei R2 L. ingluviei R2 L. ingluviei R2

10 L. reuteri T1 L. reuteri T2 L. gallinarum L. reuteri T1 L. reuteri T1

L. oris L. reuteri T2 L. reuteri T2

L. mucosae

11 L. gasseri L. plantarum L. rhamnosus L. oris L. oris

12 L. amylovorus L. ingluviei R1 L. crispatus L. crispatus

L. gallinarum L. ingluviei R2 L. kitasatonis L. kitasatonis

L.mucosae L. amylovorus L. amylovorus

L. oris L. gallinarum

13 L. crispatus L. reuteri T2

14 L. kitasatonis L. plantarum
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The main advantage of AluI was the ability to distin-

guish L. salivarius from L. agilis and L. ingluviei from L.

mucosae (Fig. 4).

Discrimination of wild Lactobacillus isolates by ARDRA

By analysing the electrophoresis profiles of restriction

fragments obtained using MseI, AluI, HinfI and MboI, 80

wild poultry isolates with rod-shaped morphology were

classified into 15 Lactobacillus species belonging to 6

phylogenetic groups. Sixteen isolates have restriction

profiles characteristic for L. salivarius, 12 for L. johnso-

nii, 11 for L. ingluviei, 8 for L. crispatus, 8 for L. reuteri,

4 for L. agilis, 4 for L. oris, 3 for L. plantarum, 3 for L.

paracasei, 2 for L. farciminis, 2 for L. saerimneri, 2 for L.

amylovorus, 2 for L. mucosae, 1 for L. kitasatonis and 1

for L. rhamnosus (Table 2, Figs. 1, 2, 3 and 4). Strains of

Fig. 1 ARDRA patterns of reference and representative poultry Lactobacillus strains obtained by digestion of 16S rDNA amplicons with MseI; restriction

fragments were separated in 3 % agarose gel. Panel a - profiles of L. salivarius group strains, L. plantarum, L. farciminis and L. delbruckii group strains; panel

b - profiles of L. delbruckii group strains and L. oris strains; panel c - profiles of L. reuteri group strains; wm – DNA weight marker; bold letters A-T – reference

strains as shown in Table 1; A2 - L. salivarius, B - L. saerimneri, C - L. agilis, D – L. plantarum, E – L. farciminis, F – L. acidophilus, G – L. gasseri, H – L. johnsonii,

I – L. crispatus, J – L. amylovorus, K – L. kitasatonis, M – L. casei, N – L. rhamnosus, O – L. zeae, P - L. paracasei, R1 and R2 – L. ingluviei, S – L. mucosae, T1 and

T2 – L. reuteri, U – L. oris; G, Ch, T – strains isolated from geese, chickens and turkeys, respectively
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the species L. plantarum, L. paracasei, rhamnosus, L. amy-

lovorus and L. kitasatonis were isolated only from geese,

and L. saerimneri only from chickens. Other Lactobacillus

species were present in different species of birds.

The electrophoretic profiles of 16S rDNA digested

with endonucleases contained several (2–8) restriction

fragments ranging from 80 to 1300 bp. The sizes of all

bands characteristic for different Lactobacillus species

are shown in Table 4.

The electrophoretic patterns of the wild-type isolates

classified as L. salivarius, L. saerimneri, L. crispatus, L.

kitasatonis, L. amylovorus, L. johnsonii, L. paracasei and

L. rhamnosus were identical to those of the reference

strains in the case of each of the restriction enzymes ap-

plied. The profiles of the isolates characteristic for the

remaining Lactobacillus species, i.e., L. agilis, L. reuteri,

L. ingluviei, L. mucosae, L. oris, L. plantarum and L. far-

ciminis, were not always identical to the electrophoretic

patterns of the reference strains. The differences usually

involved one band and were observed even in the pro-

files of reference strains belonging to the same species,

i.e., L. reuteri.

Fig. 2 ARDRA patterns of reference and representative poultry Lactobacillus strains obtained by digestion of 16S rDNA amplicons with HinfI; restriction

fragments were separated in a 3 % agarose gel. Panel a - profiles of the L. salivarius group strains, L. plantarum and L. farciminis; panel b - profiles of the

strains belonging to the L. delbruckii and L. casei groups; panel c - profiles of L. reuteri group strains; wm – DNA weight marker; bold letters A-T – reference

strains as shown in Table 1; A1 and A2 - L. salivarius, B - L. saerimneri, C - L. agilis, D – L. plantarum, E – L. farciminis, F – L. acidophilus, G – L. gasseri, H – L.

johnsonii, I – L. crispatus, J – L. amylovorus, K – L. kitasatonis, L – L. gallinarum, M – L. casei, N – L. rhamnosus, O – L. zeae, P - L. paracasei, R1 and R2 –

L. ingluviei, S – L. mucosae, T1 and T2 – L. reuteri, U – L. oris; G, Ch, T – strains isolated from geese, chickens and turkeys, respectively
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Differences between the restriction profiles of strains

characteristic for L. reuteri appeared in the case of each

of the restriction enzymes used (Figs. 1c, 2c, 3c and 4c).

In MseI-ARDRA, in some of the wild-type strains and in

the profile of one of the two reference strains of L. reu-

teri (LMG 18238) there was a band of 450 bp, while in

the profile of L. reuteri strain LMG 9213 an additional

band of low intensity, 202 bp in size, was observed

(Fig. 1c). In the profiles obtained following digestion

with HinfI, there was an additional product of 910 bp in

some isolates and in the reference strain L. reuteri LMG

18238, and an additional band of 1200 bp in the profile

Fig. 3 ARDRA patterns of reference and representative poultry Lactobacillus strains obtained by digestion of 16S rDNA amplicons with MboI; restriction

fragments were separated in a 3 % agarose gel. Panel a - profiles of L. salivarius group strains, L. plantarum and L. farciminis; panel b - profiles of the

strains belonging to the group of L. delbruckii and L. casei; panel c - profiles of L. reuteri group strains; wm – DNA weight marker; bold letters A-T –

reference strains as shown in Table 1; A2 - L. salivarius, B - L. saerimneri, C - L. agilis, D – L. plantarum, E – L. farciminis, F – L. acidophilus, G – L. gasseri,

H – L. johnsonii, I – L. crispatus, J – L. amylovorus, K – L. kitasatonis, L – L. gallinarum, M – L. casei, N – L. rhamnosus, O – L. zeae, P - L. paracasei, R1 and

R2 – L. ingluviei, S – L. mucosae, T1 and T2 – L. reuteri, U – L. oris; G, Ch, T – strains isolated from geese, chickens and turkeys, respectively
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of strain 45b (Fig. 2c). In MboI-ARDRA analysis the oc-

currence of a band of 324 bp was observed in all strains

of L. reuteri except for the reference strain L. reuteri

LMG 18238. In the case of isolates classified as L. inglu-

viei differences were observed between the profiles ob-

tained using MseI restriction – in some isolates an

additional fragment of 650 bp was present. Differences

involving single bands of low intensity were observed

among strains classified as L. oris (Figs. 1b, 2c and 3c),

L. mucosae (Figs. 2c and 4c) and L. plantarum (Fig. 1a).

Genetic diversity of the examined strains

Restriction fragments obtained with MseI, HinfI, MboI

and AluI were used to determine the genetic diversity of

the examined lactobacilli and to cluster them into spe-

cific groups. These results can be seen in the dendro-

gram generated using the UPGMA clustering algorithm

and percent disagreement as a genetic distance (Fig. 5).

All strains are clustered at a similarity level of 69 %,

which could be considered evidence of a homogenous

population of one genus. All wild strains exhibited high

Fig. 4 ARDRA patterns of reference and representative poultry Lactobacillus strains obtained by digestion of 16S rDNA amplicons with AluI; restriction

fragments were separated in a 3 % agarose gel. Panel a - profiles of L. salivarius group strains, L. plantarum and L. farciminis; panel b - profiles of the

strains belonging to the group of L. delbruckii and L. casei; panel c - profiles of L. reuteri group strains ; wm – DNA weight marker; bold letters A-T –

reference strains as shown in Table 1; A1 and A2 - L. salivarius, B - L. saerimneri, C - L. agilis, D – L. plantarum, E – L. farciminis, F – L. acidophilus, G –

L. gasseri, H – L. johnsonii, I – L. crispatus, J – L. amylovorus, K – L. kitasatonis, L – L. gallinarum, M – L. casei, N – L. rhamnosus, O – L. zeae, P - L. paracasei,

R1 and R2 – L. ingluviei, S – L. mucosae, T1 and T2 – L. reuteri, U – L. oris; G, Ch, T – strains isolated from geese, chickens and turkeys, respectively
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Table 4 Sizes (bp) of restriction fragments obtained by cleavage of 16S rDNA amplicons of Lactobacillus strains isolated from poultry. The values in brackets refer only some strains

Group No. of isolates Identification Size (bp) of restriction fragments found in wild strains

MseI HinfI MboI AluI

L. salivarius 17 L. salivarius 350, 256, 145, 130 900, 385, 190 1070, 190, 118 840, 265, 205

2 L. saerimneri 400, 350, 256, 237, 202, 130 900, 385, 190 1070, 324 570, 270, 250, 210, 97

4 L.agilis 350, 256, 145, 130 900, 385, 190 1070, 312 720, (363), 205, 180, 80

L. plantarumm 3 L. plantarum (520), 470, 295, 256, 145, 130, 110, 90 910, 385, 190 1300, 175 570, 265, 205, 97

L. alimentarius 2 L. farciminis 620, 295, 256, 202, 130, 90 540, 390, 300, 200 (850), (470), (395), 235, 200, 175, 570, 265, 205, (130), (111), (80)

L. reuteri 11 L. ingluviei (650), 450, 256, 237, 202, 130, 90 900, 385, 200 850, 324, 180, 165 410, 265, 210, 205, 180, 100

2 L. mucosae 450, 256, 237, 202, 130, 90 (910), 900, 200, 170 850, 324, 180, 165 (570), 410, 265, 205, 180, 100

8 L. reuteri 650, (450), 256, 145, 130, 90 (1170), (910), 900, 385, 200 850, 324, 180, 165 (570), 410, 265, 205, 180, 100

4 L. oris 650, (550), (430), 256, 202, 130, 90 910, 290, 200, 110 850, (480), 324, 180, 165 570, 270, 180, 100

L. delbruckii 12 L. johnsonii 940, 256, 145, 130, 90 910, 385, 85 920, 324, 180 410, 250, 205, 180

8 L. crispatus 450, 256, 237, 130, 90 900, 385, 120, 85 920, 190, 175, 118 410, 210, 205, 180

2 L. amylovorus 650, 450, 256, 130, 90 900, 385, 120, 85 920, 190, 175, 118 410, 210, 205, 180

1 L. kitasatonis 450, 256, 237, 145, 130, 90 900, 385, 120, 85 920, 190, 175, 118 410, 210, 205, 180

L. casei 3 L. paracasei 470, 256, 202, 130, 110, 90 910, 290, 200 700, 330, 175, 130, 118 570, 265, 230, 205

1 L. rhamnosus 470, 256, 202, 130, 110, 90 910, 385, 200 700, 330, 312, 175 570, 265, 230, 205

Total: 80
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similarity, ie. ≥91.5 % to the appopriate reference strains.

Restriction profiles of 60 (75 %) isolates were identical

(100 % similarity) to the profiles of reference strains.

At a similarity level of 69 % the strains formed two

main clusters. One cluster consisted of strains with pro-

files characteristic for the L. casei group, L. plantarum

and L. farciminis, while all the other strains analysed were

in the second complex cluster. At a similarity level 76 %

five clusters were formed: 1) the strains of the L. salivarius

group (L. salivarius, L. agilis and L. saerimneri) 2) the

strains of the L. delbdruckii group (L. acidophilus, L. john-

sonii, L. gasseri, L. crispatus, L. kitasatonis, L. amylovoru

Fig. 5 Dendrogram based on UPGMA clustering of combined MseI, HinfI, MboI and AluI electrophoretic patterns obtained from Lactobacillus

reference and wild strains; reference strains as shown in Table 1
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and L. gallinarum), 3) the strains of the L. reuteri group

(L. ingluviei, L. mucosae, L. reuteri and L. oris), 4) the

strains of the L. casei group (L. casei, L. paracasei, L. zeae

and L. rhamnosus) and the L. plantarum group and 5) the

strains of the L. alimentarius group (L. farciminis).

At a similarity level of 100 %, 36 genotypes were dis-

tinguished among the 23 reference strains and 80 field

isolates (Fig. 5). The greatest distance was noted among

strains characteristic for L. farciminis, which were

grouped at a similarity level of 91.5 %, and among

strains classified as L. reuteri, forming a common clade

at a similarity value of 93.5 %.

ARDRA using the four restriction enzymes enabled

differentiation of all the Lactobacillus species analysed

except for L. zeae and L. casei.

Identification by sequencing of the 16S rRNA gene

rDNA sequencing of all isolates selected for analysis re-

vealed 99–100 % homology to the sequences of the ref-

erence Lactobacillus strains deposited in GenBank

(Table 5). The test confirmed the species identification

of the isolates that was previously established using the

ARDRA technique. The results obtained are particularly

significant in the case of strains whose restriction pro-

files were not always (not in the case of all restriction

enzymes) identical to those of the reference strains, i.e.,

42c-L. mucosae (Fig. 2c), 29c-L. ingluviei (Fig. 1c), 22b-L.

farciminis (Figs. 1a and 3a), 41a-L. reuteri (Fig. 4c) and

45b-L.reuteri (Fig. 2c).

Comparison of MALDI-TOF MS and ARDRA identification

results

In the case of MALDI-TOF technique the univocal re-

sults in the range log(score) 1.7-3.0, were obtained for

67 (83.75 %) strains. For the remaining 13 (16.25 %)

strains identification was considered unreliable due to

the lack of reproducibility in the two best matches that

showed similar (difference >0.2) log(score) values. Using

ARDRA technique made it possible to identify to species

level of all 80 strains tested. Taking into account an am-

biguous results (16.25 %) MALDI-TOF MS methodology

yielded clear agreement identification of 67 (83.75 %) of

80 isolates identified by ARDRA.

The use of ARDRA method and 16S rDNA sequen-

cing eliminated doubts as to the correct classification of

16.25 % strains for which non conclusive identification

result had been obtained in MS. ARDRA revealed that

the 12 strains which were identified in MS as L. johnso-

nii/L. gasseri belonged to the species of L. johnsonii, and

one strain marked as L. kitasatonis/L. amylovorus was

identified as L. kitasatonis. Notable is the fact that for

those 16.25 % samples the first best match from Biotyper

databse was always consistent with the identification

achieved by 16S-ARDRA.

Both methods do not allow to distinguish L. casei from

L. zeae, but both enable the discrimination other species

of L. casei group, ie. L. paracasei and L. rhamnosus.

16S rDNA analysis also showed that the MS species

identification results with intermediate values for the

log(score) (1.70–1.99) were correct (for 24 isolates, in-

cluding 6 for which the two best matches with similar

log(score) values indicating different species).

In comparison with MALDI-TOF MS, ARDRA is

more labour-intensive, but more reliable methods that

allow for differentiation even close related Lactobacillus

species. In the cases of some species restriction analysis

it revealed intraspecific differences.

Discussion

In this study we evaluated the usefulness of MALDI-

TOF MS and 16S-ARDRA for identification of Lactoba-

cillus isolates from poultry. The techniques proved to be

valuable tools for species-level classification of lactoba-

cilli and yielded comparable results.

The Lactobacillus bacteria we identified belonged to

15 species. Strains of the species L. salivarius (21.25 %),

Table 5 Identification of representative Lactobacillus strains by 16S rRNA gene sequence analysis compared to results obtained by

16S-ARDRA and MALDI-TOF MS

Isolate Source Identification by
16S rDNA sequence

Identity value GenBank
accession no.

Identification by 16S-ARDRA
(% similarity between wild
and reference strains, based on Fig. 5)

Identification by
MALDI-TOF
MS, log(score)

10d chicken L. salivarius 99 % KR492877 L. salivarius (100 %) L. salivarius 2.162

17c chicken L. johnsonii 99 % KR492880 L. johnsonii (100 %) L. johnsonii 1.971

L. gasseri 1.770

9e chicken L. ingluviei 99 % KR492878 L. ingluviei (100 %) L. ingluviei 2.182

29c goose L. ingluviei 99 % KR492882 L. ingluviei (98.5 %) L. ingluviei 2.018

22b chicken L. farciminis 99 % KR492881 L. farciminis (91.5 %) L. farciminis 1.88

41a chicken L. reuteri 99 % KR492883 L. reuteri (93.5 %) L. reuteri 2.026

45b chicken L. reuteri 99 % KR492885 L. reuteri (93.5 %) L. reuteri 1.900

42c goose L. mucosae 100 % KR492884 L. mucosae (99 %) L. mucosae 2.121
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L. johnsonii (15 %) and L.ingluviei (13.75 %) were

predominated.

For 83.75 % of the isolates both methods produced

concordant unequivocal results, and in the case of the

remaining 16.25 % of isolates, whose identification was

considered unreliable due to the lack of reproducibility

in the two best matches showing similar log(score)

values, the best match generated by Biotyper was always

consistent with the identification by 16S-ARDRA. Other

studies report similar high-percentage agreement be-

tween mass spectrometry and different genotypic

methods, including 16S rDNA sequencing [22], 16S-

ARDRA [24], analysis of the region 16S-23S of rDNA

[3] and species-specific PCR [28].

In recent years, MALDI-TOF MS has emerged as a

promising and reliable tool for bacteria identification

[29], including lactobacilli isolated from diary and meat

products [24, 30, 31], carious dentin in children [28], hu-

man oral cavities and women’s vaginas [22] and poultry

[3]. MALDI-TOF MS is quick and cost-effective and al-

lows many samples to be pooled in one analysis. The

performance of the method depends on many factors,

among which sample preparation plays a key role. It is

especially important in the case of Gram-positive bac-

teria, for which intact-cell MALDI-TOF MS somethimes

generates poor spectra due to their thick peptidoglycan

cell walls. With this in mind, in this study we used an

on-plate extraction method that is intermediate between

two well-described methods, i.e., the direct colony

method and the standard protein extraction method.

Formic acid overlaid directly onto the bacterial smear in

the on-plate extraction method facilitates cell wall dis-

ruption, yielding better spectra and identification results

with higher log(score) values as compared to the intact

cell method [26, 27]. At the same time, the analysis time

is much shorter than in the case of standard extraction,

which involves preparing a suspension of bacteria in al-

cohol and 3 centrifugation steps.

Using the on-plate extraction method for 30 % of the

wild Lactobacillus strains we obtained results with inter-

mediate log(scores) of 1.70–1.99, which indicate correct

genus identification but only presumptive species identi-

fication. In addition, the reliability of the identification

of some of these strains was further reduced by the lack

of conformity between the first and the second best

match and/or because the log(score) of the second

match (compatible or incompatible with the first match)

was less than 1.70. On the other hand, for all strains

with identification log(scores) 1.70–1.99 the best match

indicated the same species as 16S-ARDRA, suggesting

that despite the low log(score) the MALDI-TOF MS

identification to the species level was correct. Other au-

thors [3, 22] have also observed frequent occurrence of

Biotyper log(scores) ≤1.99 in identifying Lactobacillus

bacteria using MALDI-TOF MS (intact-cell or standard

extraction method) as well as agreement between the re-

sults of such values and the results of species identifica-

tion obtained in genetic methods (16S rDNA sequencing

or analysis of the region 16S-23S).

The second weak point of the MALDI-TOF MS tech-

nique demonstrated in the present study is its inability

to reliably differentiate (despite log(score) values ≥2.00)

closely related species, such as L. johnsonii and L. gas-

seri, L. amylovorus and L. kitasatonis, or lactobacilli of

the L. casei group. The same problem has been reported

in our previous work [3] as well as in studies by Dušková

et al. [24], Sedo et al. [32] and Schulthess et al. [26]. It

seems that expanding the commercial database by gen-

erating one’s own reference spectra may improve rates

of species identification [26].

The ARDRA technique used in the present study for

the identification of Lactobacillus isolated from geese,

chickens and turkeys, proved to be highly discrimin-

atory. The combined application of several restriction

enzymes, i.e., MseI, HinfI, MboI and AluI, for digestion

of 16S rDNA allowed us to divide the 80 isolates into

several phylogenetic groups and to affiliate them to 15

species. Strains of the species L. salivarius predominated

in all species of birds examined. Bacteria of the species

L. johnsonii, L. ingluviei, L. crispatus and L. reuteri were

also frequently isolated. The results of the present study

are in agreement with previous observations that L. sali-

varius, L. johnsonii and L. ingluviei are the predominant

Lactobacillus sp. In the GIT of geese [3], and L. crispa-

tus, L. reuteri and L. salivarius are the most abundant

intestinal lactobacilli in chickens [2, 33, 34].

The 16S-ARDRA technique we used to identify lacto-

bacilli is an alternative to more laborious and expensive

methods for the identification of eubacteria, as it is sim-

ple, relatively fast and highly repetitive. It analyses only

one gene, i.e., the gene encoding 16S rRNA, using uni-

versal primers and the same PCR and digestion condi-

tions for all Lactobacillus species. The discriminatory

power of ARDRA depends on the correct choice of re-

striction endonucleases.

Species identification of poultry lactobacilli determined

on the basis of 16S-ARDRA was confirmed by MALDI-

TOF MS and 16S rDNA sequencing of representative

strains.

The effectiveness of ARDRA observed in our study for

species identification of bacteria of the genus Lactobacillus

has also been reported by other authors. 16S-ARDRA has

previously been used successfully for identification of lacto-

bacilli isolated from dairy and meat products [21], wine

[35], mothers’ stool and breast milk and infants’ stool [36],

intestines of calves [37] and women’s vaginas [38]. Some

authors, however, have demonstrated that ARDRA is in-

capable of discriminating species with high 16S rDNA
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sequence homology. Rodas et al. [35], who identified LAB

by 16S-ARDRA using BfaI and MseI, were unable to dis-

tinguish the species of the L. casei group, L. reuteri from L.

oris or L. plantarum from L. pentosus. Difficulty in differ-

entiating species of the L. casei group using 16S-ARDRA

has been also reported by Ksicova et al. [21]. The restric-

tion enzymes used by these authors, AluI and MspI, also

failed to distinguish between L. plantarum and L. para-

plantarum and between L. johnsonii and L. gasseri. Our

study indicates that the problems in distinguishing between

closely related species may be solved in most cases by the

use of appropriately selected restriction enzymes. We con-

firmed that L. johnsonii cannot be distinguished from L.

gasserii using AluI or MspI, but the use of other restriction

enzymes, i.e., Msel and HaeIII, enabled discrimination of

these species. We also obtained a positive effect of differen-

tiation by the ARDRA protocol in the case of other closely

related species, i.e., L. reuteri and L. oris and species of the

L. casei group, comprising L. casei, L. paracasei, L. rham-

nosus and L. zeae. The use of the enzymes HinfI and MboI

enabled differentiation of L. rhamnosus, L. paracasei and

L.casei/L.zeae. Unfortunately, none of the 7 restriction en-

zymes tested was able to distinguish L. casei from L. zeae.

The grouping of Lactobacillus strains (dendrogram)

analysed by ARDRA is congruent with the evolutionary

distance of the 16S rRNA gene sequences and reflects

the actual genetic relationship between the strains. Based

on their 16S rDNA sequence the Lactobacillus species

are currently divided into 15 large phylogenetic groups,

4 pairs (small phylogenetic groups containing only two

species) and 10 groups represented by single species [38,

39]. The tested isolates of poultry origin belonged to 6

large phylogenetic groups, i.e., L. salivarius (identified

species: L. salivarius, L. saerimnerii and L. agilis), L. del-

bruckii (L. johnsonii, L. crispatus, L. amylovorus and L.

kitasatonis), L. plantarum, L. alimenatrius (L. farcimi-

nis), L. reuteri (L. reuteri, L. ingluviei, L. mucosae and L.

oris) and L. casei (L. paracasei and L. rhamnosus).

Our research has shown that ARDRA not only differen-

tiates strains well at the species level, but may also reflect

differences within a species. The differences we observed

in the electrophoretic profiles of the restriction fragments

of strains identified as the same Lactobacillus species usu-

ally involved one band. Such differences occurred between

profiles of the reference strains L. reuteri LMG 9213 and

L. reuteri LMG 18238, as well as among field isolates of

some Lactobacillus species. Intraspecific differentiation of

Lactobacillus strains analysed using 16S-ARDRA has also

been observed by other authors [21, 35].

Conclusions

In conclusion, our study demonstrates that the MALDI-

TOF MS and 16S-ARDRA assays are valuable tools for

the identification of avian lactobacilli to the species level.

The major advantages of MALDI-TOF MS are its rapidity,

simplicity and low cost. Despite generating a high percent-

age (30 %) of log(score) results <2.00, the on-plate extrac-

tion method is characterized by high-performance and

agreement of strain identification with that obtained by

16S-ARDRA. For strains for which the two best Biotyper

matches of log(sore) ≥ 1.7 indicate various species (eg. L.

johnsonii and L. gasseri) and the difference between their

log(score) values is <0.30, MALDI-TOF must be used in

combination with genotyping techniques to achieve an

unequivocal outcome.

The developed ARDRA protocol can be used for dis-

crimination of Lactobacillus bacteria from different habi-

tats. The advantages of ARDRA over other methods for

bacterial identification based on DNA analysis are its

simplicity, reproducibility and lower cost. In addition,

this technique allows us not only to identify the species,

but also to determine the genetic relationships between

strains. Due to its high power of discrimination, poly-

morphic ARDRA patterns may sometimes reflect differ-

ences between strains within a species. One limitation of

ARDRA is its inability to discriminate between species

of very high 16S rDNA sequence homology, i.e., L. casei

and L. zeae.
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