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Abstract: The rhizomicrobiome is composed of microbes that live in association with plant roots.
From nutrient cycling to carbon sequestration, soil microorganisms have provided a solid base
for natural and agricultural ecosystems to function. The relationship between plant roots and soil
microorganisms is especially relevant in food staples such as rice (Oryza sativa L.), as the various
properties of these microbes can influence crop yield and plant health, thereby affecting a major
portion of the food supply for an ever-growing world population. In this study, we used 16S rRNA
gene-based metagenomic analysis to investigate the impact of crop rotation and soil cultivation
methods (no-till or tillage) on rhizosphere bacterial diversity and composition in eight crop fields
in Arkansas. Illumina MiSeq sequencing revealed 56 Phyla, with four major Phyla: Proteobacteria,
Acidobacteria, Actinobacteria, and Bacteroidetes. Soil microbial communities in the samples studied
were phylogenetically diverse but with a stable community structure. Crop rotation and tillage did
not significantly affect bacterial diversity.

Keywords: crop rotation; Illumina MiSeq sequencing; microbial soil diversity; rice; tillage;
16S rRNA gene

1. Introduction

Soil microbial communities are the drivers of many ecological functions [1,2], can affect
plant species diversity and productivity [3], and are a crucial component of agricultural
systems. The soil microbiota, composed of archaea, bacteria, fungi, and protists, has a
vital role in natural and agroecosystems, mainly by regulating carbon and nitrogen cycling
and fostering plant growth and productivity. Despite the pivotal roles microbes play in
sustaining life on Earth [4], our knowledge of their diversity, ecology, and interactions is
limited. Over 99% of microbes are not amenable for cultivation in a laboratory setting [5].
Nowadays, such limitation can be circumvented with metagenomics—a technique that
allows the identification of microbes directly from environmental samples. In this way,
multiple genomes can be analyzed simultaneously by extracting the DNA from all the
microorganisms found in a sample of interest [6]. In this study, we investigated the
impact of crop type (no rotation (rice monoculture) and rotation (with or without rice
in the rotation)) and soil cultivation methods (no-till or tillage) on rhizosphere bacterial
diversity and composition in eight crop fields in Arkansas using 16S rRNA gene-based
metagenomic analysis.
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1.1. Rice as a Major Crop in Arkansas and the World

Rice is considered one of the most vital grains globally due to its worldwide agricul-
tural importance as a food staple [7]. In 2018, the United States ranked as the twelfth major
rice producer and fifth major rice exporter in the world [8]. Rice is grown in seven US states,
Arkansas, California, Florida, Louisiana, Mississippi, Missouri, and Texas. Arkansas is the
major rice producer in the country, with approximately 50% of total US rice production [9].

The conventional method of rice irrigation in Arkansas is flooding. Seeds are planted
in drilled dry seeded rows; levees are constructed around the field and flooded when
plants reach the V4 stage. Conventional tillage and no-tillage methods are employed in rice
fields [9]. Fertilizer utilization is also a common practice in rice production, with nitrogen
as the most commonly used fertilizer [10,11]. Crop rotation, especially with legumes, is
also widely used as it promotes higher crop productivity and benefits the soil’s chemical,
physical, and biological properties [12–15]. Several studies have focused on the biological
properties of soils, including interactions between plants and their associated root microbial
communities—the rhizosphere. In the past decades, scientists have uncovered a number of
microbial pathogens and microbial symbionts that can affect plant growth and health, with
the interaction between rhizobia and mycorrhizal fungi as a classic example [16,17].

1.2. Soil Microbiome

The co-evolution between plants and associated microbial communities dates back
to the evolution of terrestrial plants, 450 million years ago. Ultimately, it led to the evolu-
tion of mutualistic, commensalistic, and pathogenic relationships [18]. Soil is a functional
and vital living system, and soil health is required to sustain agricultural productivity
and promote plant and animal welfare while maintaining or enhancing water and air
quality. Soil microorganisms are indispensable to the living soil and serve as soil health
indicators [19]. In the past few years, major advances in molecular analysis have opened
the way towards a deeper understanding of plant–microbe interactions, ranging from
composition to structure to function. We can use such knowledge to solve modern-day agri-
cultural problems. For instance, disease-suppressive soils are a well-known phenomenon
where microorganisms in the rhizosphere (soil close to the root surface) assist plants in
fighting off soil-borne pathogens via mostly as-yet unknown mechanisms [16]. Rhizoctonia
solani is a root-pathogenic fungus that affects many economically important crops such
as beet, potato, and rice [20]. Mendes et al. [21] used a PhyloChip-based metagenomics
approach and culture-dependent functional analysis to identify the bacterial taxa and genes
involved in suppressing R. solani. The 16S rRNA sequencing of samples taken from rice
root compartments has revealed distinct microbiomes that provide beneficial interaction
with plant roots [22]. Another study used RNA-sequencing of samples taken from rice
roots that were colonized with nitrogen-fixing bacteria and showed a relationship to plant
growth promotion, as well as differential gene expression related to flavonoid biosynthesis
pathways, nitrate transporters, defense pathways, and hormone signaling [23]. Metage-
nomic approaches have also been employed to identify microbial genes present in the rice
microbiome and their association with plant hormone metabolism, pathogenic resistance,
methanol oxidation, and nitrogen fixation [24,25].

2. Materials and Methods
2.1. Soil Sampling and Processing

Soil samples were collected from eight locations in Arkansas (Table 1) and, except for
location F (Fayetteville), all other collection sites were located in the Arkansas rice-growing
region. Three locations had no crop rotation, i.e., only rice was planted as a crop. These
locations were named B, C, and D and belonged to Isbell Rice Farms. On this private
commercial rice farm, monocrop rice has been the only agricultural practice for the past
48, 57, and 50 consecutive years, respectively. The next three locations had crop rotations
between rice and soybean and were called locations E, G, and H. In location E, found at the
Arkansas Agricultural Experiment Station, Rice Research and Extension Center (RREC), rice
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and soybean are alternated every year (1 year rice: 1 year soybean). Location G, known as
North, has a rotation of 2 years soybean: 1 year rice. Location H, in Stratton, has a rotation
of 3 years soybean: 1 year rice. Finally, two locations had no rice in their rotations. Location
A (RREC), has a rotation of 2 years corn: 1 year cotton, and location F in Fayetteville has a
rotation of 1 year corn: 1 year soybean (Table 1). In all five locations with crop rotation, the
practices had been performed for at least 10 years. The soil cultivation method employed
in the eight study sites was either no-till, where the soil hardpan layer remained intact, or
tillage, where the hardpan layer was broken by mechanical means using a plow machine.
In addition, field management activities, such as fertilizer application, were implemented
according to the standard rice growth recommendations for Arkansas [9].

Table 1. GPS coordinate locations for the eight study fields where soil was collected. Crop rotation
scheme adopted shown in the last three columns. In locations with crop rotation (A, E, F, G, and H),
the practice has been performed for at least 10 years.

Location Field Coordinates Last Crop Current Crop (Nov. 2017) Rotation

A RREC 34◦27′44” N
91◦24′08” W Corn Cotton 2 years corn: 1 year cotton

B Isbell 34◦34′56” N
91◦45′47” W Rice Rice Rice 48 years

C Isbell 34◦35′46” N
91◦45′28” W Rice Rice Rice 57 years

D Isbell 34◦37′32” N
91◦45′12” W Rice Rice Rice 50 years

E RREC 34◦27′48” N
91◦25′10” W soybean Rice 1 year soybean: 1 year rice

F Fayetteville 36◦05′56” N
94◦10′23” W Corn Soybean 1 year corn: 1 year soybean

G North 34◦17′19” N
91◦34′32” W Rice Soybean 1 year rice: 2 years soybean

H Stratton 34◦29′42” N
91◦34′42” W Rice Soybean 1 year rice: 3 years soybean

All soil samples were collected in mid-November 2017, after harvesting the crops, but
before the cultivation of the soil. The number of soil samples collected ranged from 4–8,
depending on the field size. Each sample was collected in the root zone area (rhizosphere)
using a shovel, within ca. 10.5 cm depth for row crop fields, i.e., rice, soybean, and corn.
Samples were stored in a cold room at 4 ◦C until DNA was extracted (see below). Soil
physical and chemical composition analyses were performed at the University of Arkansas
soil test laboratory, Keiser, AR.

2.2. DNA Extraction and DNA Sequence Analysis

Total DNA was extracted from freshly collected soil samples (within three months after
collection) using PowerLyzer® PowerSoil® DNA isolation kit (MO BIO Laboratories, Inc.,
Carlsbad, CA, USA) according to the manufacturer’s instructions. DNA was quantified
using a Qubit™ 3.0 Fluorometer (Life Technology Ltd., Paisley, UK). The presence of DNA
was also verified by gel electrophoresing 10 µL of total DNA on 2% agarose using SYBR®

safe DNA gel stain (Invitrogen, Groningen, the Netherlands). The 260/280 ratio was
measured using a Biophotometer (Eppendorf, Hamburg, Germany). DNA samples were
stored at −20 ◦C until DNA sequencing was performed.

Two samples from each of the eight study locations (except for location G, where
three samples were used instead of two) were sequenced at the University of Arkansas
for Medical Sciences (UAMS) Sequencing Core Facility. V3 and V4 regions of the bacterial
16s rRNA gene were amplified using primers containing Illumina adapters following Il-
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lumina’s 16S Metagenomics Protocol (Part # 15,044,223 Rev. B). Briefly, the Kapa Library
Amplification Kit (Kapa Biosystems, Wilmington, MA, USA) was used for PCR, and prod-
ucts were cleaned using Beckman Coulter Agencourt AMPure XP Beads (Beckman-Coulter,
Pasadena, CA, USA) according to the 16S Metagenomics protocol. We used universal
primers reported by Klindworth et al. [26]. Forward and reverse primer sequences were,
5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′ and
5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3′,
respectively, and created a single amplicon of approximately 460 bp. Concentrations were
adjusted to 4 uM and prepared for loading on the Illumina MiSeq according to Illumina’s
16S Metagenomics Protocol (Part # 15,044,223 Rev. B). Samples were pooled, denatured,
and loaded on the Illumina MiSeq at 8 pM and sequenced paired-end (2 × 300) using a
MiSeq ® Reagent Kit v3 (600 cycles) (Illumina, Inc., San Diego, CA, USA).

2.3. Bioinformatics Analysis

The 16S rRNA sequencing data is available at the NCBI Sequence Read Archive
(SRA) (http://www.ncbi.nlm.nih.gov/sra) (accessed on 15 December 2021) under accession
number PRJNA782652. Raw sequence data were processed in multiple steps using the
Quantitative Insights into Microbial Ecology (QIIME) pipeline [27]. First, the 300 bp paired-
end reads were joined using the fastq-join method with a minimum allowed overlap of
120 bp and 15% maximum allowed difference within the overlap region. Second, reads
with more than three consecutive base calls having Phred score <20 were truncated, reads
with any ambiguous base call were discarded, and reads from different samples were
tagged with sample identifiers and merged into a single FASTA file. Third, sequence reads
were aligned against the core reference alignments of the GreenGenes database (GG13_5;
https://greengenes.lbl.gov) (accessed on 15 December 2021) [28] using pyNAST [29], and
operational taxonomic units (OTUs) were identified at the 97% DNA similarity level using
UCLUST [30]. The counts of each OTU were normalized by the total number of aligned
reads per sample. Sequences that failed the closed-reference alignment to the GreenGenes
database were aligned de novo, and OTUs with <2 aligned sequences were discarded.

Alpha and beta diversity metrics were calculated in QIIME to estimate bacterial com-
munity composition. Alpha diversity (within-sample diversity) was measured using the
observed number of OTUs, phylogenetic distance (PD), and Chao1 [31,32] and visual-
ized as rarefaction plots. Beta diversity (between-sample diversity) was estimated using
unweighted Unifrac pairwise sample dissimilarity in OTU abundance profiles among
samples [33,34]. Principal component analysis (PCA) and hierarchical clustering were used
to visualize the results.

We calculated the correlation between bacterial community structure and soil prop-
erties (Table 2) using non-metric multidimensional scaling (NMDS) as implemented in
the vegan package in R [35]. Distance matrices were constructed using Bray–Curtis and
Euclidean distances. ANOVA was performed to identify environmental factors (predictors
or independent variables) that influence the diversity index (response or dependent vari-
able). Type I (sequential) ANOVA returned drastically different results when the order of
the predictors changed; hence, we used a Type II ANOVA method that was independent
of the order of predictors in the model. We used the Shannon diversity index, a measure
of within-sample variation, as the response variable and P, K, Ca, Mg, SO4-S, Zn, Fe, Mn,
Cu, B, pH, rotation, and till as the predictors. Predictors were ordered by their absolute
pairwise Pearson’s correlation coefficient with the Shannon diversity index.

http://www.ncbi.nlm.nih.gov/sra
https://greengenes.lbl.gov
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Table 2. Physical and chemical properties of soil in eight crop study fields in Arkansas. Two soil
samples were analyzed for each of the eight locations, with the exception of location G (North), where
three soil samples were analyzed. P = phosphorus, K = potassium, Ca = calcium, Mg = magnesium,
SO4-S = sulfate-sulfur, Zn = zinc, Fe = Iron, Mn = manganese, Cu = copper, and B = boron,
ECEC = effective cation exchange capacity. Two types of soil cultivation methods were employed:
tillage or no-till, which led to the absence or presence of soil hardpan layer, respectively.

Location
(Field) P K Ca Mg SO4-S Zn Fe Mn Cu B

Soil pH
(1:2 Soil-
Water)

Soil
ECEC

(cmolc/kg)

Estimated
Soil

Texture
Crop Rotation Yes/No Till

Yes/No

A (RREC)
109 1033 69 13 3.0 141 190 0.8 0.3 6.3 9

Silt loam
Yes

2 years corn:
1 year cotton

Yes
19 131 1097 75 11 6.2 136 223 1.5 0.3 6.3 9

B (Isbell)
12 279 3289 850 65 3.2 263 53 7.1 0.7 6.4 29 Clay No

Rice 48 years
No

20 376 2715 631 84 4.3 337 63 4.0 0.8 5.8 25

C (Isbell)
11 237 3753 728 29 3.6 369 116 2.0 0.7 6.8 29 Clay No

Rice 57 years No
10 196 3142 674 26 3.0 406 166 1.9 0.7 6.9 25

D (Isbell)
49 161 1700 266 119 7.1 434 28 3.2 0.7 6.5 15 Silt loam—

Silty clay
loam

No
Rice 50 years No

57 158 1869 276 259 6.1 388 35 3.3 0.7 6.5 16

E (RREC)
26 71 600 89 12 5.5 382 189 1.0 0.4 5.7 8

Silt loam
Yes

1 year soybean: 1 year rice Yes
16 69 649 101 9 6.7 225 202 1.4 0.3 5.9 7

F
(Fayetteville)

21 61 659 44 7 1.2 61 149 1.3 0.1 6.6 6
Silt loam

Yes
1 year corn:

1 year soybean
Yes

30 80 618 42 7 1.4 74 165 1.4 0.2 6.3 6

G (North)

44 272 367 72 21 3.7 262 12 1.1 0.2 5.3 8 Sandy
loam Yes

1 year rice:
2 years soybean

No67 220 483 101 18 4.7 343 20 1.0 0.3 5.2 9
25 174 534 85 148 4.3 523 11 0.3 0.4 4.6 10 Silt Loam

H (Stratton)
81 236 3619 338 19 3.5 174 67 2.1 1.1 8 24 Clay

Yes
1 year rice:

3 years soybean
No

101 375 4895 390 33 4.9 201 66 3.1 1.5 8.1 31

3. Results and Discussion

The number of merged reads aligned successfully to each sample varied among the
eight locations studied. Sample 3 (location B, rice monoculture) had the lowest number
(372,886), whereas sample 7 (location D, rice monoculture) had the highest number (794,318).
The percentage of reads passing quality filtering was 95% or higher for all 17 samples
(Table 3). Given the rarity of Archaea in our dataset (0.0–0.1%), we decided to omit Archaea
and focus on the members of the bacteria domain. Among 221,105 detected OTUs, we
considered 170,853 OTUs associated with bacteria. While close-reference OTU-picking
detected 14,474 OTUs, 156,379 OTUs were picked de novo. Detected OTUs were assigned
to 56 Phyla (100% of OTUs), 164 classes (98.4% of OTUs), 261 orders (87.9% of OTUs),
314 families (56.8% of OTUs), 522 genera (23.4% of OTUs), and 190 species (1% of OTUs).

Out of the 56 Phyla identified, ten were considered major Phyla by average rela-
tive abundance across samples among the eight locations studied. The ten most promi-
nent Phyla were Proteobacteria (average: 30.7%; range: 27.4–34.4%), followed by Aci-
dobacteria (16.4%; 4.6–24.40%), Actinobacteria (12.5%; 6.5–20.8%), Bacteroidetes (10.3%;
3.1–35.10%), Chloroflexi (9%; 4.6–12.8%), Verrucomicrobia (3.7%; 1.5–5.20%), Gemmatimon-
adetes (3.5%; 1.3–6%), Firmicutes (3.3%; 1–13%), Nitrospirae (1.4%; 0.20–2.8%), and TM7
(1.2%; 0.1–3.60%). Figure 1 shows the relative abundance of the top ten bacterial Phyla in all
17 samples. The other Phyla were merged together into one group, called minority group,
as indicated in the legend. All ten major Phyla have been described as dominant taxa in
soil studies [36,37]. Planctomycetes was the only Phylum with low representation in our
samples (0.2–1.2%) but commonly listed as a major group in soil studies.

At the class level, alpha-, beta-, and delta-Proteobacteria were the top three classes
across the 17 samples with a total percentage of reads of 10.9%, 9.30%, and 6.8%, re-
spectively. Gamma-proteobacteria ranked as number eight. Other top classes included
Actinobacteria and Thermoleophilia (Phylum Actinobacteria); Solibacteres; Acidobac-
teriia; Chloracidobacteria; Acidobacteria-6 (Phylum Acidobacteria); Anaerolineae (Phy-
lum Chloroflexi); Saprospirae; Bacteroidia; Flavobacteriia (Phylum Bacteroidetes); Pe-
dosphaerae (Phylum Verrucomicrobia); and Gemmatimonadetes (Phylum Gemmatimon-
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adetes) (Supplemental Table S1). Differences among locations included the presence of
Bacteroidia as the second most common class in location C (rice monoculture). In contrast,
Flavobacteriia was the most prevalent class in location D (rice monoculture).

Table 3. 16S rRNA metagenomic sequencing statistics.

Location Field Metagenomics
Sample ID Total Reads Reads Passing

Quality Filtering
% Reads Passing
Quality Filtering

Aligned Merged
Reads per Sample

A RREC
S1 936,364 899,156 96.0 749,518

S2 771,282 743,354 96.4 617,111

B Isbell
S3 483,099 464,663 96.2 372,886

S4 623,931 594,092 95.2 460,853

C Isbell
S5 892,264 860,061 96.4 725,334

S6 909,293 875,900 96.3 713,702

D Isbell
S7 1,028,520 980,191 95.3 794,318

S8 597,720 576,338 96.4 478,296

E RREC
S9 906,681 873,317 96.3 730,662

S10 904,034 869,247 96.2 705,984

F Fayetteville S11 495,227 476,026 96.1 376,829

S12 860,221 829,259 96.4 677,953

G North
S13 886,695 848,726 95.7 692,452

S14 803,096 775,715 96.6 642,329

S17 913,691 881,743 96.5 746,262

H Stratton
S15 948,914 908,703 95.8 741,907

S16 476,703 459,319 96.4 378,918
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Figure 1. Barplot illustrating bacterial diversity at the Phylum level for rice/crop rhizosphere soil.
Only the top ten Phyla by average relative abundance across samples are shown, and all other Phyla
were merged into one group called the minority group. Relative abundance of each bacterial Phylum
refers to the proportion of reads aligned to OTUs associated with the phylum in each sample. See
Table 1 for soil sample location description.

The rarefaction plot for the observed number of OTUs showed that sample 10 (loca-
tion E), had the highest number of OTUs. In this location, rice is rotated every year with
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soybean, which can help explain the high diversity of bacteria. We discuss the importance
of crop rotation later on in the paper. In contrast, sample 8 (location D, rice monoculture)
had the lowest number of OTUs (Figure 2A). While OTU count allows pure estimates
of community richness, phylogenetic distance (PD) provides additional information as
it accounts for the degree of phylogenetic divergence between sequences within each
sample [31]. The rarefaction plot based on the PD (Figure 2B) produced similar results to
the OUT count, even though biodiversity was not fully captured in our samples (rarefaction
curves were not parallel to the X-axis). Similar results have been observed in other studies
of soil bacterial diversity [38]. Chao1 metric, which estimates the number (richness) and dis-
tribution (evenness) of taxa expected within a single sample or environment [32], revealed
that sample 10 (location E, crop rotation) had the highest diversity. On the other hand,
sample 8 (location D, rice monoculture) had the lowest diversity and was dominated by
members of the Phylum Bacteroidetes (35.10%), class Flavobacteriia (19.75%) (Figure 2C).
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Figure 2. (A–C). Alpha diversity analysis of the rhizosphere microbiome in eight agricultural fields
in Arkansas. (A–C): Rarefaction plots showing the observed number of OTUs (Operational Taxo-
nomic Units), phylogenetic distance (PD), and Chao1 estimate, respectively, for the 17 soil samples
analyzed. S1–S17 = Metagenomic sample ID followed by field name, location, and type of culture:
rice monoculture or crop rotation.

Hierarchical clustering based on unweighted Unifrac pairwise sample dissimilarity
produced a tree with two clades further divided into two smaller clades (Figure 3). The
dendrogram showed that replicated samples from each of the eight locations shared more
similarities in bacterial community structure as they clustered together. The one exception
was location B (rice monoculture), which clustered with the location G samples (crop
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rotation) rather than the other two locations with rice monoculture. Overall, the location
where the soil samples were collected was predictive of bacterial composition, but the
separation between rice monoculture and crop rotation was unclear. Principal component
analysis (PCA) of the unweighted UniFrac matrix revealed a similar conclusion. In other
words, samples from the same location were more similar in bacterial composition and
could be subdivided into two groups: rice monoculture (locations B, C, and D) and crop
rotation (locations A, E, F, G, and H) (Figure 4).
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Figure 3. Dendrogram plot showing the similarity of the rhizosphere microbial communities in eight
agricultural fields in Arkansas. S1–S17 = Metagenomics sample ID followed by field name, location
(A–H), and type of culture: rice monoculture or crop rotation.

Several studies have shown that soil microbial community composition is dynamic
and can be influenced by many factors, including soil type [39], pH [40], salinity [41],
temperature [4], water content [42], and nutrient availability [3]. Furthermore, similar
microbial composition is often observed in closely resembling environments. For example,
microbial communities in deserts are taxonomically, phylogenetically, and functionally
closer than in non-desert soils [4]. Forests and agricultural fields have distinct microbial
compositions [43] but are more similar than subterranean environments [44].

Crop rotation and tillage, two common practices in agriculture, can also affect soil
microbial makeup. Crop rotation has been historically used in agriculture because of its
benefits to soil’s abiotic and biotic characteristics [12–15]. However, some studies have
shown microbial diversity did not change and decreased under crop rotation [45,46]. A
meta-analysis to assess the impact of crop rotation on soil microbial diversity revealed that
the aboveground vegetation (presence or absence of rotation with legumes) did not affect
the belowground microbial diversity or richness consistently [47]. Tillage can lead to soil
disturbance by increasing soil erosion and nutrient runoff. In contrast, no-till increases
soil compaction. Both procedures, till and no-till, can negatively affect crop production by
interfering with plant growth due to nutrient deficiency or poor root development [48,49].
Furthermore, soil conditions can affect the soil microorganisms’ habitat, lowering microbial
diversity and abundance and negatively affecting crop quality and yield [50].
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Figure 4. Principle component analysis (PCA) using the unweighted Unifrac metric colored by field
site. S1–S17 = Metagenomics sample ID followed by field name, location (A–H), and type of culture:
rice monoculture or crop rotation.

In our analysis, Pearson correlation coefficients between different factors and the
Shannon diversity index showed that crop rotation did not significantly affect bacterial
diversity (p = 0.2069; Table 4), whereas tillage was marginally significant (p = 0.0669; Table 4).
All of the mineral nutrients we analyzed significantly affected the bacterial profile, except
for magnesium and potassium. pH was only marginally significant (Table 4). Finally,
NMDS analysis using OTU abundances and environmental factors (see Table 4) revealed
that samples from locations C and D (rice monoculture fields), with no crop rotation and
no-till, occupied the top-right quadrant of the NMDS scatter plot. Samples from location
H with crop rotation and no-till occupied the bottom-right quadrant of the NMDS scatter
plot. The rest of the samples occupied the left side (Figure 5A,B). It was also noticeable that
all samples from soil with clay texture (locations B, C, D, and H) could be separated from
all other samples by a straight line (see Figure 4 or Figure 5), implying that soil texture
plays a major role in sample diversity at the OTU level. With the exception of samples
from location G, the same separation was possible between samples with till and no-till.
Unfortunately, most samples with no-till came from clay soil, and the two factors (till and
clay texture) may play a confounding effect that is hard to separate with statistical models
using the current data.
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Table 4. Type II ANOVA. Shannon diversity index (within-sample variation) was used as the
response variable. Predictors are shown in the first column. Predictors were ordered by their
absolute pairwise Pearson’s correlation coefficient with Shannon diversity index. P = phospho-
rus, K = potassium, Ca = calcium, Mg = magnesium, SO4-S = sulfate-sulfur, Zn = zinc, Fe = iron,
Mn = manganese, Cu = copper, and B = boron. Rotation: no rotation (rice monoculture) or crop
rotation. Till = cultivation method: tillage or no-till. Asterisks represent significance level. * p > 0.05;
** p > 0.005. Period (.) = marginally significant.

Pearson’s Correlation
with Shannon Diversity Sum Sq Df F-Value Pr (>F)

SO4-S −0.657 0.248172 1 446.0492 0.002234 **

Fe −0.347 0.012271 1 22.05459 0.042474 *

Mg −0.294 0.000161 1 0.290031 0.644121

ECEC −0.274 0.035436 1 63.69047 0.015341 *

Ca −0.241 0.036469 1 65.54779 0.014916 *

B −0.195 0.058488 1 105.1231 0.009379 **

Mn 0.187 0.016118 1 28.97011 0.032828 *

pH −0.135 0.007749 1 13.92685 0.064893 .

Cu −0.121 0.120177 1 215.9979 0.004598 **

Zn −0.086 0.012036 1 21.63242 0.04325 *

K −0.063 0.001383 1 2.485264 0.255624

P −0.043 0.249766 1 448.9144 0.00222 **

Rotation 0.001886 1 3.390498 0.206919

Till 0.007491 1 13.46463 0.066902 .

Residuals 0.001113 2
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Figure 5. (A,B). Non-metric multidimensional scaling (NMDS) was applied to OTU abundances
and fitted the environmental factors: P, K, Ca, Mg, SO4-S, Zn, Fe, Mn, Cu, B, pH, ECEC in (A); and
rotation, texture, and till were also added to these in (B). Samples from fields/locations planted with
only rice (no crop rotation) are colored in red, whereas samples from fields/locations were crop
rotation was practiced (including rice and no rice) are colored in blue. Grey arrows = non-significant
environmental factors; black arrows = significant factors (p < 0.05).
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In a study comparing soil microbial communities in crop fields and forests, Jangid et al. [43]
observed that microbial composition and abundance were primarily determined by land-
use history rather than vegetation and soil properties. Moreover, the authors observed that
crop fields displayed lower abundance and composition of many bacterial Phyla compared
to forests. Although we did not include soil from non-agricultural fields in our analysis, our
results are in agreement with Jangid et al. [43]. Namely, the type of vegetation aboveground
(rice monoculture or crop rotation) did not significantly influence the microbial makeup
belowground. Regarding till and no-till, the practice was not a significant contributor to
bacterial diversity either. Although till and non-till practices can negatively affect crop
production [49], the high level of microbial biodiversity in our study sites suggests that
compensation mechanisms are in place in each location to maintain high soil productivity.
Further studies are required to confirm this assertion.

4. Conclusions

Present-day agriculture faces a tremendous challenge by the increased global demand
for food, as the human population is projected to reach nine billion people by 2050 [51]. The
success of tomorrow’s agriculture will rely on improving current practices and exploring
new alternatives. Our study assessed the impact of farming practices, i.e., crop rotation
and tillage, on the rhizosphere bacterial diversity and abundance of rice fields in Arkansas
using 16S rRNA gene-based metagenomic analysis. Our results revealed differences in
bacterial composition and abundance in the eight study sites, but crop rotation and tillage
were not significant contributors to the variation observed. Knowledge of the rhizosphere
microbiome can lead to the creation of microbial-based biofertilizers to increase plant
performance and decrease the use of traditional fertilizers and land [52]. Ultimately, such
knowledge can have a significant economic and environmental impact.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12010222/s1, Table S1: Class level diversity for the
eight locations analyzed (17 samples). See Table 1 for location details.

Author Contributions: C.O. and E.S. conceived and designed the experiments; D.N. collected the
samples; C.O., M.M., M.B.-D. and E.B. performed the experiments; G.G. and Y.R. analyzed the
data; C.O. and E.S. wrote the paper. All authors have read and agreed to the published version of
the manuscript.

Funding: C.O. was funded by the Arkansas IDeA Network of Biomedical Research Excellence
(Arkansas INBRE) grant P20GM103429 and Lyon College. E.S. was funded by the University of
Arkansas System Division of Agriculture and Arkansas Rice Research and Promotion Board. G.G.
and Y.R. are supported in part by the Arkansas INBRE grant P20GM103429.

Data Availability Statement: The 16S rRNA sequencing data presented in this study is available
at the NCBI Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) (accessed on 15
December 2021) under accession number PRJNA782652.

Acknowledgments: We appreciate Chris E. Isbell for granting us permission to collect soil samples
at his farm. We are very grateful for the valuable suggestions from two anonymous reviewers.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in
the design of the study; in the collection, analyses, or interpretation of the data, in the writing of the
manuscript, and in the decision to publish the results.

References
1. Philippot, L.; Spor, A.; Hénault, C.; Bru, D.; Bizouard, F.; Jones, C.M.; Sarr, A.; Maron, P.-A. Loss in microbial diversity affects

nitrogen cycling in soil. ISME J. 2013, 7, 1609–1619. [CrossRef] [PubMed]
2. Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G. Soil biodiversity and soil community composition determine ecosystem

multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [CrossRef]
3. Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The unseen majority: Soil microbes as drivers of plant diversity and

productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/agronomy12010222/s1
https://www.mdpi.com/article/10.3390/agronomy12010222/s1
http://www.ncbi.nlm.nih.gov/sra
http://doi.org/10.1038/ismej.2013.34
http://www.ncbi.nlm.nih.gov/pubmed/23466702
http://doi.org/10.1073/pnas.1320054111
http://doi.org/10.1111/j.1461-0248.2007.01139.x
http://www.ncbi.nlm.nih.gov/pubmed/18047587


Agronomy 2022, 12, 222 12 of 13

4. Fierer, N.; Leff, J.W.; Adams, B.J.; Nielsen, U.N.; Bates, S.T.; Lauber, C.L.; Owens, S.; Gilbert, J.A.; Wall, D.H.; Caporaso, J.G.
Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA 2012,
109, 21390–21395. [CrossRef]

5. Riesenfeld, C.S.; Schloss, P.D.; Handelsman, J. Metagenomics: Genomic Analysis of Microbial Communities. Annu. Rev. Genet.
2004, 38, 525–552. [CrossRef] [PubMed]

6. Handelsman, J. Metagenomics: Application of Genomics to Uncultured Microorganisms. Microbiol. Mol. Biol. Rev. 2004, 68,
669–685. [CrossRef] [PubMed]

7. Yoshida, S. Fundamentals of Rice Crop Science; International Rice Research Institute: Los Baños, Philippines, 1981.
8. FAO. Food and Agriculture Organization of the United Nations. 2018. Available online: http://www.fao.org/faostat/en/#data/

QC/Vis (accessed on 12 December 2021).
9. Hardke, J.T. Arkansas Rice Production Handbook; University of Arkansas Division of Agriculture Cooperative Extension Service—

MP192: Little Rock, AR, USA, 2013.
10. Frink, C.R.; Waggoner, P.E.; Ausubel, J.H. Nitrogen fertilizer: Retrospect and prospect. Proc. Natl. Acad. Sci. USA 1999, 96,

1175–1180. [CrossRef]
11. Cao, P.; Lu, C.; Yu, Z. Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015:

Application rate, timing, and fertilizer types. Earth Syst. Sci. Data 2018, 10, 969–984. [CrossRef]
12. Souza, R.C.; Hungria, M.; Cantão, M.E.; Vasconcelos, A.T.R.; Nogueira, M.A.; Vicente, V.A. Metagenomic analysis reveals

microbial functional redundancies and specificities in a soil under different tillage and crop-management regimes. Appl. Soil Ecol.
2015, 86, 106–112. [CrossRef]

13. Bullock, D.G. Crop rotation. Crit. Rev. Plant Sci. 1992, 11, 309–326. [CrossRef]
14. Peters, R.D.; Sturz, A.V.; Carter, M.R.; Sanderson, J.B. Developing disease-suppressive soils through crop rotation and tillage

management practices. Soil Tillage Res. 2003, 72, 181–192. [CrossRef]
15. Aschi, A.; Aubert, M.; Riah-Anglet, W.; Nélieu, S.; Dubois, C.; Akpa-Vinceslas, M.; Trinsoutrot-Gattin, I. Introduction of Faba

bean in crop rotation: Impacts on soil chemical and biological characteristics. Appl. Soil Ecol. 2017, 120, 219–228. [CrossRef]
16. Weller, D.M.; Raaijmakers, J.M.; Gardener, B.B.; Thomashow, L.S. Microbial populations responsible for specific soil suppressive-

ness to plant pathogens. Annu. Rev. Phytopathol. 2002, 40, 309–348. [CrossRef]
17. Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and

human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [CrossRef]
18. Hassani, M.A.; Durán, P.; Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 2018, 6, 58. [CrossRef]
19. Nielsen, M.N.; Winding, A.; Binnerup, S.J.; Hansen, B.M.; Hendriksen, N.B.; Kroer, N. Microorganisms as Indicators of Soil Health;

Ministry of the Environment, National Environmental Research Institute: Copenhagen, Denmark, 2002.
20. Anderson, N.A. The Genetics and Pathology of Rhizoctonia Solani. Annu. Rev. Phytopathol. 1982, 20, 329–347. [CrossRef]
21. Mendes, R.; Kruijt, M.; de Bruijn, I.; Dekkers, E.; van der Voort, M.; Schneider, J.H.M.; Piceno, Y.M.; DeSantis, T.Z.; Andersen, G.L.;

Bakker, P.A.H.M.; et al. Deciphering the Rhizosphere Microbiome for Disease-Suppressive Bacteria. Science 2011, 332, 1097–1100.
[CrossRef]

22. Edwards, J.; Johnson, C.; Santos-Medellín, C.; Lurie, E.; Podishetty, N.K.; Bhatnagar, S.; Eisen, J.A.; Sundaresan, V. Structure,
variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 2015, 112, E911–E920. [CrossRef]
[PubMed]

23. Thomas, J.; Kim, H.R.; Rahmatallah, Y.; Wiggins, G.; Yang, Q.; Singh, R.; Glazko, G.; Mukherjee, A. RNA-seq reveals differentially
expressed genes in rice (Oryza sativa) roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense.
PLoS ONE 2019, 14, e0217309. [CrossRef]

24. Okubo, T.; Ikeda, S.; Sasaki, K.; Ohshima, K.; Hattori, M.; Sato, T.; Minamisawa, K. Phylogeny and functions of bacterial
communities associated with field-grown rice shoots. Microbes Environ. 2014, 29, 329–332. [CrossRef] [PubMed]

25. Sessitsch, A.; Hardoim, P.; Döring, J.; Weilharter, A.; Krause, A.; Woyke, T.; Mitter, B.; Hauberg-Lotte, L.; Friedrich, F.; Rahalkar,
M.; et al. Functional Characteristics of an Endophyte Community Colonizing Rice Roots as Revealed by Metagenomic Analysis.
Mol. Plant Microbe Interact. 2012, 25, 28–36. [CrossRef] [PubMed]

26. Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glockner, F.O. Evaluation of general 16S ribosomal RNA
gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [CrossRef]

27. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.;
Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Meth. 2010, 7, 335–336. [CrossRef]
[PubMed]

28. DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L.
Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 2006, 72,
5069–5072. [CrossRef] [PubMed]

29. Caporaso, J.G.; Bittinger, K.; Bushman, F.D.; DeSantis, T.Z.; Andersen, G.L.; Knight, R. PyNAST: A flexible tool for aligning
sequences to a template alignment. Bioinformatics 2010, 26, 266–267. [CrossRef]

30. Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [CrossRef] [PubMed]
31. Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [CrossRef]
32. Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270.

http://doi.org/10.1073/pnas.1215210110
http://doi.org/10.1146/annurev.genet.38.072902.091216
http://www.ncbi.nlm.nih.gov/pubmed/15568985
http://doi.org/10.1128/MMBR.68.4.669-685.2004
http://www.ncbi.nlm.nih.gov/pubmed/15590779
http://www.fao.org/faostat/en/#data/QC/Vis
http://www.fao.org/faostat/en/#data/QC/Vis
http://doi.org/10.1073/pnas.96.4.1175
http://doi.org/10.5194/essd-10-969-2018
http://doi.org/10.1016/j.apsoil.2014.10.010
http://doi.org/10.1080/07352689209382349
http://doi.org/10.1016/S0167-1987(03)00087-4
http://doi.org/10.1016/j.apsoil.2017.08.003
http://doi.org/10.1146/annurev.phyto.40.030402.110010
http://doi.org/10.1111/1574-6976.12028
http://doi.org/10.1186/s40168-018-0445-0
http://doi.org/10.1146/annurev.py.20.090182.001553
http://doi.org/10.1126/science.1203980
http://doi.org/10.1073/pnas.1414592112
http://www.ncbi.nlm.nih.gov/pubmed/25605935
http://doi.org/10.1371/journal.pone.0217309
http://doi.org/10.1264/jsme2.ME14077
http://www.ncbi.nlm.nih.gov/pubmed/25130883
http://doi.org/10.1094/MPMI-08-11-0204
http://www.ncbi.nlm.nih.gov/pubmed/21970692
http://doi.org/10.1093/nar/gks808
http://doi.org/10.1038/nmeth.f.303
http://www.ncbi.nlm.nih.gov/pubmed/20383131
http://doi.org/10.1128/AEM.03006-05
http://www.ncbi.nlm.nih.gov/pubmed/16820507
http://doi.org/10.1093/bioinformatics/btp636
http://doi.org/10.1093/bioinformatics/btq461
http://www.ncbi.nlm.nih.gov/pubmed/20709691
http://doi.org/10.1016/0006-3207(92)91201-3


Agronomy 2022, 12, 222 13 of 13

33. Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol.
2005, 71, 8228–8235. [CrossRef]

34. Hamady, M.; Lozupone, C.; Knight, R. Fast UniFrac: Facilitating high-throughput phylogenetic analyses of microbial communities
including analysis of pyrosequencing and PhyloChip data. ISME J. 2010, 4, 17–27. [CrossRef]

35. Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.;
Szoecs, E.; et al. Package “Vegan”. Community Ecology Package, Version 2. 2013. Available online: https://cran.ism.ac.jp/web/
packages/vegan/vegan.pdf (accessed on 12 December 2021).

36. Youssef, N.H.; Elshahed, M.S. Diversity rankings among bacterial lineages in soil. ISME J. 2008, 3, 305–313. [CrossRef] [PubMed]
37. Janssen, P.H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol.

2006, 72, 1719–1728. [CrossRef] [PubMed]
38. Bent, S.J.; Forney, L.J. The tragedy of the uncommon: Understanding limitations in the analysis of microbial diversity. ISME J.

2008, 2, 689–695. [CrossRef]
39. Wu, T.; Chellemi, D.O.; Graham, J.H.; Martin, K.J.; Rosskopf, E.N. Comparison of soil bacterial communities under diverse

agricultural land management and crop production practices. Microb. Ecol. 2008, 55, 293–310. [CrossRef]
40. Rousk, J.; Baath, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal

communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [CrossRef]
41. Lozupone, C.A.; Knight, R. Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. USA 2007, 104, 11436–11440. [CrossRef]
42. Bossio, D.A.; Scow, K. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and

substrate utilization patterns. Microb. Ecol. 1998, 35, 265–278. [CrossRef]
43. Jangid, K.; Williams, M.A.; Franzluebbers, A.J.; Schmidt, T.M.; Coleman, D.C.; Whitman, W.B. Land-use history has a stronger

impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol. Biochem. 2011, 43,
2184–2193. [CrossRef]

44. Upchurch, R.; Chiu, C.-Y.; Everett, K.; Dyszynski, G.; Coleman, D.C.; Whitman, W.B. Differences in the composition and diversity
of bacterial communities from agricultural and forest soils. Soil Biol. Biochem. 2008, 40, 1294–1305. [CrossRef]

45. Navarro-Noya, Y.E.; Gómez-Acata, S.; Montoya-Ciriaco, N.; Rojas-Valdez, A.; Suárez-Arriaga, M.C.; Valenzuela-Encinas, C.;
Jiménez-Bueno, N.; Verhulst, N.; Govaerts, B.; Dendooven, L. Relative impacts of tillage, residue management and crop-rotation
on soil bacterial communities in a semi-arid agroecosystem. Soil Biol. Biochem. 2013, 65, 86–95. [CrossRef]

46. Venter, Z.S.; Jacobs, K.; Hawkins, H.-J. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia 2016,
59, 215–223. [CrossRef]

47. Adams, M.D.; Celniker, S.E.; Holt, R.A.; Evans, C.A.; Gocayne, J.D.; Amanatides, P.G.; Scherer, S.E.; Li, P.W.; Hoskins, R.A.;
Galle, R.F.; et al. The genome sequence of Drosophila melanogaster. Science 2000, 287, 2185–2195. [CrossRef] [PubMed]

48. Smith, C.R.; Blair, P.L.; Boyd, C.; Cody, B.; Hazel, A.; Hedrick, A.; Kathuria, H.; Khurana, P.; Kramer, B.; Muterspaw, K.; et al.
Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem. Ecol. Evol. 2016, 6, 8075–8084.
[CrossRef] [PubMed]

49. De Moura, M.S.; Silva, B.M.; Mota, P.K.; Borghi, E.; Resende, A.V.d.; Acuña-Guzman, S.F.; Araújo, G.S.S.; da Silva, L.d.C.M.;
de Oliveira, G.C.; Curi, N. Soil management and diverse crop rotation can mitigate early-stage no-till compaction and improve
least limiting water range in a Ferralsol. Agric. Water Manag. 2021, 243, 106523. [CrossRef]

50. Mathew, R.P.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, K.S. Impact of No-Tillage and Conventional Tillage Systems on Soil
Microbial Communities. Appl. Environ. Soil Sci. 2012, 2012, 548620. [CrossRef]

51. Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.;
Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [CrossRef]

52. Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil Microbial Resources for Improving Fertilizers Efficiency in an
Integrated Plant Nutrient Management System. Front. Microbiol. 2018, 9, 1606. [CrossRef]

http://doi.org/10.1128/AEM.71.12.8228-8235.2005
http://doi.org/10.1038/ismej.2009.97
https://cran.ism.ac.jp/web/packages/vegan/vegan.pdf
https://cran.ism.ac.jp/web/packages/vegan/vegan.pdf
http://doi.org/10.1038/ismej.2008.106
http://www.ncbi.nlm.nih.gov/pubmed/18987677
http://doi.org/10.1128/AEM.72.3.1719-1728.2006
http://www.ncbi.nlm.nih.gov/pubmed/16517615
http://doi.org/10.1038/ismej.2008.44
http://doi.org/10.1007/s00248-007-9276-4
http://doi.org/10.1038/ismej.2010.58
http://doi.org/10.1073/pnas.0611525104
http://doi.org/10.1007/s002489900082
http://doi.org/10.1016/j.soilbio.2011.06.022
http://doi.org/10.1016/j.soilbio.2007.06.027
http://doi.org/10.1016/j.soilbio.2013.05.009
http://doi.org/10.1016/j.pedobi.2016.04.001
http://doi.org/10.1126/science.287.5461.2185
http://www.ncbi.nlm.nih.gov/pubmed/10731132
http://doi.org/10.1002/ece3.2553
http://www.ncbi.nlm.nih.gov/pubmed/27878079
http://doi.org/10.1016/j.agwat.2020.106523
http://doi.org/10.1155/2012/548620
http://doi.org/10.1126/science.1185383
http://doi.org/10.3389/fmicb.2018.01606

	Introduction 
	Rice as a Major Crop in Arkansas and the World 
	Soil Microbiome 

	Materials and Methods 
	Soil Sampling and Processing 
	DNA Extraction and DNA Sequence Analysis 
	Bioinformatics Analysis 

	Results and Discussion 
	Conclusions 
	References

