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16S rRNA gene sequencing of mock
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Abstract

Background: Next-generation sequencing platforms have revolutionised our ability to investigate the microbiota
composition of complex environments, frequently through 16S rRNA gene sequencing of the bacterial component
of the community. Numerous factors, including DNA extraction method, primer sequences and sequencing
platform employed, can affect the accuracy of the results achieved. The aim of this study was to determine the
impact of these three factors on 16S rRNA gene sequencing results, using mock communities and mock
community DNA.

Results: The use of different primer sequences (V4-V5, V1-V2 and V1-V2 degenerate primers) resulted in differences
in the genera and species detected. The V4-V5 primers gave the most comparable results across platforms. The
three Ion PGM primer sets detected more of the 20 mock community species than the equivalent MiSeq primer
sets. Data generated from DNA extracted using the 2 extraction methods were very similar.

Conclusions: Microbiota compositional data differed depending on the primers and sequencing platform that
were used. The results demonstrate the risks in comparing data generated using different sequencing approaches
and highlight the merits of choosing a standardised approach for sequencing in situations where a comparison
across multiple sequencing runs is required.

Keywords: Next-generation sequencing, Mock communities, 16S rRNA, MiSeq, Ion PGM, Gut microbiota, Bias, DNA
extraction

Background

The release of the first commercial next-generation sequen-

cer in 2004, the Roche 454 pyrosequencer, resulted in an

exponential increase in studies investigating the compos-

ition of microbiota in diverse and complex environments.

Although Roche 454 platforms were employed in numer-

ous important and enlightening human microbiome studies

[1–4], the Illumina MiSeq [5] and Life Technologies Ion

PGM [6] platforms are now most commonly used for 16S

rRNA gene-based investigations of microbiota composition

[7–11]. The decision as to which sequencing platform to

utilise for a given study frequently depends on require-

ments and resources, which vary based on the technology

used, the cost/run, data output, amplicon size tolerated,

data storage capabilities and error rates.

In order to achieve accurate sequencing results, many

factors have to be considered when designing a sequen-

cing study. Numerous studies have investigated the ef-

fects of different factors on 16S rRNA gene microbiota

data including, in the case of gut microbiota studies,

sample type [12] (e.g. faecal vs. cecal), sample storage

prior to DNA extraction [13], DNA extraction procedure

[14, 15], primers (sequences and 16S rRNA gene re-

gions) [16–18] and the sequencing platform used [19].

This study aims to look at the effects of a combination

of 3 factors on sequencing results, namely, 3 different
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16S rRNA gene primer sets, use of the Illumina MiSeq

and Life Technologies Ion PGM sequencers and com-

parison of 2 commonly used extraction procedures

(QIAamp DNA Stool Mini Kit compared to the repeat

bead beating (RBB) method [20] with elements of the

Qiagen faecal extraction kit). Regions of the 16S rRNA

bacterial gene are most commonly sequenced when

using next generation sequencing to study the bacterial

composition of an environment. This approach is

extremely useful, as even poor quality or low concentra-

tions of DNA can be successfully amplified by degener-

ate primers and PCR to facilitate sequencing of a region

or regions of the 16S rRNA gene, allowing sequencing of

diverse populations without prior selection for microbes

of interest (as in the case of culture based approaches).

However, the particular variable region targeted and pri-

mer pair used can impact on the results achieved [21]

and the ability of researchers to compare data generated

from different sequencing studies. Recent studies have

shown the region of the 16S rRNA gene that is se-

quenced will impact on the results achieved [22].

With respect to the choice of sequencing platform, the

two sequencers in question utilise different technologies,

which may affect the sequencing results achieved.

Briefly, Illumina’s MiSeq is a bench-top version of the

HiSeq platform, manufactured by the same company

[23]. This platform enables ‘paired-end’ sequencing, is

cost effective and can achieve 2 × 300 bp paired read

lengths. In contrast, the Ion PGM sequencer utilises

semiconductor technology through the real time detec-

tion of hydrogen ion concentration [6]. Currently, the

Ion PGM produces read lengths of approximately

400 bp in length. As research using high-throughput se-

quencing continues, there is a need for studies to opti-

mise accuracy while minimising, and where possible

eliminating, sequencing bias. While individual studies

have compared different primers [17, 21], extraction

procedures [14] and sequencing platforms [19], here our

aim is to investigate the individual and cumulative ef-

fects these 3 factors have on 16S rRNA gene-based in-

vestigations of bacterial composition. More specifically,

by using a mock community DNA sample and mock

community cells for DNA extraction, both with a prede-

termined composition, we aim to identify which factor(s)

have the greatest effects on sequencing results achieved.

Thus, our aim was to determine which extraction pro-

cedure, region of the 16S rRNA gene and sequencing

platform yield results that most accurately reflect the

known ratios of bacteria/bacterial DNA in the mock

communities. The choice of the V4-V5 and V1-V2 re-

gions to target with our primers was based on the fre-

quency with which they are currently used in such

research, thus there is a need to determine which, if ei-

ther, provides the most accurate results. Our results

revealed that the 3 Ion primers detected more of the ex-

pected mock communities than was the case when the

corresponding MiSeq primers were employed. Ultim-

ately, the choice of PCR primers and sequencing plat-

form had a more notable impact on the results than

either of the DNA extraction methods. These results will

be of value to researchers when planning future 16S

rRNA gene-based microbiota analyses.

Results
Sequencing data quality analysis

Mock community DNA (HM-782D) and DNA extracted

from mock community cells (HM-280/1) was sequenced

on the MiSeq and Ion PGM platforms. Details on numbers

of sequencing reads, read lengths and percentage of reads

retained following quality filtering and chimera removal are

provided in Table 1. The percentage of retained reads was

similar across platforms and primer sets, with the notable

exception of the V4-V5 primers on the Ion PGM, where

80–90 % were retained following chimera removal, com-

pared to an average of 99 % retained for the other primers

on both platforms. Rarefaction curves (Fig. 1) demonstrate

that the majority of curves begin to plateau, thus additional

sequencing is unlikely to yield novel data in most cases.

Effects of primers and sequencing platform on mock DNA

results

It was anticipated that sequencing of the mock DNA

(HM-782D) would reveal the presence of 20 species,

based on compositional details from the supplier (BEI

resources). The 3 primer sets differed in the number

of species detected relative to the number of antici-

pated species present in this DNA sample. The V4-V5

PGM combination was the only combination that

detected the template DNA from all of the 20 mock

community species (Table 2). In general, the 3 Ion

PGM primer sets detected more of the 20 mock

community species than the equivalent MiSeq primer

sets. There were also a number of instances of mis-

identification i.e. where taxa not represented in the

mock community DNA were detected. The mis-

identified species were, in the majority of cases,

closely related to species known to be present in the

mock samples (e.g. E. faecium detected but E. faecalis

DNA is present in the mock DNA sample. The

SPINGO species classifier highlights that these species

share 96.4 % species alignment). Figure 2 more specif-

ically highlights the differences in the data generated.

As can be seen in Fig. 2, all primers gave results that

differed from those expected for the mock DNA

community. The V4-V5 primers gave the most

comparable results across platforms while the V1-V2

degenerate primer set used on the Ion PGM platform
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gave results that most closely matched those expected

of an even mock community distribution of 20

species.

Other analyses were carried out to highlight the impact

of primer selection and sequencing platform on the

outcome of studies. A heat map of taxa abundance (Fig. 3)

was generated using Spearman correlations and Ward

Clustering. The results highlighted that samples separated

based on sequencing platform used, with MiSeq (blue) to

the left and Ion PGM (green) to the right. This is with the

Table 1 Details on number of sequencing reads, read lengths, percentage of reads retained post quality analysis

Primer set Raw Quality Length Remaining % Retained After Chimera Removal % Chimeras % Retained

MiSeq

V4-V5

Mock DNA 47966 Q25 365–385 42701 89.023475 47966 0 100

Qiagen PBSa

Qiagen glycerol 14071 Q25 365–385 13724 97.533935 13717 0.05100554 99.94899446

RBB PBS 18072 Q25 365–385 17253 95.4681275 18026 0.25453741 99.74546259

RBB glycerol 22650 Q25 365–385 20534 90.6578366 22626 0.10596026 99.89403974

V1-V2

Mock DNA 576244 Q25 305–325 310254 53.840734 308989 0.40773044 99.59226956

Qiagen PBS 206140 Q25 305–325 165035 80.05966 164117 0.55624564 99.44375436

Qiagen glycerol 274886 Q25 305–325 153566 55.86534 152034 0.99761666 99.00238334

RBB PBS 420677 Q25 305–325 327953 77.958386 324319 1.10808561 98.89191439

RBB glycerol 342405 Q25 305–325 189474 55.336224 181819 4.04013216 95.95986784

V1-V2 deg

Mock DNA 339219 Q25 305–325 164586 48.5190983 161382 1.94670264 98.05329736

Qiagen PBS 432220 Q25 305–325 170830 39.5238536 166923 2.28706902 97.71293098

Qiagen glycerol 277087 Q25 305–325 100478 36.262257 100031 0.4448735 99.5551265

RBB PBS 407061 Q25 305–325 111020 27.2735536 110057 0.86741128 99.13258872

RBB glycerol 373903 Q25 305–325 117567 31.4431818 116400 0.99262548 99.00737452

Ion PGM

V4-V5

Mock DNA 123511 Q25 420–440 57467 46.5278396 51923 9.64727583 90.35272417

Qiagen PBS 173203 Q25 420–440 74942 43.2683037 60366 19.4497078 80.55029223

Qiagen glycerol 194132 Q25 420–440 58267 30.0141141 49474 15.0908748 84.90912523

RBB PBS 211696 Q25 420–440 77227 36.4801413 68006 11.9401246 88.05987543

RBB glycerol 203949 Q25 420–440 84407 41.386327 71316 15.5093772 84.49062282

V1-V2

Mock DNA 389410 Q25 360–380 191184 49.0958116 190016 0.61092978 99.38907022

Qiagen PBS 21501 Q25 360–380 14852 69.0758569 14804 0.3231888 99.6768112

Qiagen glycerol 35900 Q25 360–380 26518 73.8662953 26418 0.37710235 99.62289765

RBB PBS 35343 Q25 360–380 19157 54.2030954 19046 0.57942267 99.42057733

RBB glycerol 62195 Q25 360–380 42150 67.7707211 42003 0.34875445 99.65124555

V1-V2 deg

Mock DNA 207570 Q25 360–380 75999 36.6136725 71500 5.91981473 94.08018527

Qiagen PBS 398459 Q25 360–380 236444 59.3396058 231427 2.12185549 97.87814451

Qiagen glycerol 439533 Q25 360–380 214562 48.8159023 208065 3.02802919 96.97197081

RBB PBS 376207 Q25 360–380 180289 47.9228191 174723 3.08726545 96.91273455

RBB glycerol 389283 Q25 360–380 184442 47.3799267 166537 9.70765878 90.29234122
aDNA failed to amplify with V4-V5 MiSeq primers for the Qiagen PBS extracted cells so no sequencing data for this extraction sample
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exception of the MiSeq V4-V5 primer which clusters with

the V4-V5 Ion PGM primers. Hence the use of this primer

pair is less influenced by platform choice.

Effects of extraction procedure on sequencing results

achieved

Having demonstrated the effects of both 16S rRNA gene

primer choice and sequencing platform on results, we

next aimed to determine the effects of DNA extraction

procedures on the sequencing results achieved. As

shown in Fig. 4 and Additional file 1, the relative abun-

dances of species detected was more dependent on the

primers and platform used, rather than on the choice of

extraction procedure. Notable differences occurred

based on storage agent (i.e. between glycerol ± PBS),

namely the glycerol stocked cells had a higher relative

abundance of Streptococcus, Clostridium and Listeria

compared to the PBS + glycerol cells. This was true for

sequencing results from both platforms and all primers

except using V4-V5 primers on the Ion PGM where

similar levels of these bacteria were seen between all ex-

tracts. Additionally, V4-V5 MiSeq RBB extracted PBS

cells were quite different to either the V4-V5 Qiagen ex-

tracted glycerol and RBB glycerol cells. Additionally, the

Qiagen PBS extracted DNA failed to amplify with the

MiSeq V4-V5 primers, while other primers amplified

this DNA. Thus perhaps inhibitors in this sample inter-

acted more strongly with these primers preventing PCR

amplification. These results suggest subtle differences

occur in sequencing data as a result of sample storage

agent and DNA extraction protocol used.

As was seen for the mock DNA, the different pri-

mer sets impacted on the species detected in the

mock cells. There was a strong impact of primer

choice on the results, with samples amplified with the

same primers being more similar than those amplified

with different primers. Extraction method had a lesser

effect on overall composition, with samples extracted

using the RBB or the Qiagen method and amplified

with the same primer, yielding similar results. Add-

itionally, as shown in Fig. 5, the samples do not show

clustering based on extraction method, with samples

extracted using different extraction procedures, but

amplified with the same primers yielding similar

results.

We anticipated that 22 species would be detected

from the DNA extracted from the mock community

cells, however, bioinformatic analysis again indicated

the presence of species known not to be within the

mock community. None of the primer sets, when

used on the MiSeq platform (irrespective of extraction

method or storage agent), detected all 22 expected

species (Table 2). Indeed the best performing primer

sets only detected 77 % of the expected species

(V4-V5 Qiagen glycerol and V1-V2 RBB glycerol ex-

tracts). All primer pairs used with the Ion PGM plat-

form detected a greater percentage of expected

species (77–100 %) compared to the corresponding

primers used on the MiSeq (55–77 %). The V1-V2

Fig. 1 Rarefaction curves based on sample ID and number of observed species for mock cells (a) and mock DNA samples (b). Curves are approaching
or are horizontal with the x axis indicating that additional sequencing would not yield additional novel data
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degenerate Ion PGM primers used on the RBB gly-

cerol extracted cells detected 100 % of the expected

species.

The heat map for the mock cells gave similar results

as for the mock community DNA (Fig. 5). The V4-V5

amplified samples cluster together irrespective of extrac-

tion procedure or sequencing platform used, with the

exception of the RBB PBS V4-V5 MiSeq sample that

clustered with the V1-V2 amplified samples. Observing

the coloured line indicating the extraction method, it is

evident that there is clustering by primer set used and

not by extraction method. The heat map also shows how

species abundances differed across samples with primer

choice, rather than extraction method, appearing to

cause differences in species detected between samples.

Discussion

With the rapid increase in studies investigating the micro-

biota of diverse environments using high-throughput se-

quencing approaches, it is critical that the impact of

numerous factors on the sequencing results be deter-

mined. This study analysed the effects of DNA extraction

procedures, 16S rRNA gene primer design and the choice

of sequencing platform on outcomes using mock commu-

nity cells and DNA.

Table 2 Number of expected vs. detected species in mock DNA and cells

Expected Detected No. of expected species detected % of expected species detected % Misidentified/false hit

MiSeq

V4-V5 mock DNA 20 29 16 80 44

V1-V2 mock DNA 20 37 15 75 59

V1-V2 deg mock DNA 20 34 16 80 53

V4-V5 RBB PBS 22 51 16 73 68

V4-V5 Qiagen glycerol 22 24 17 77 29

V4-V5 RBB glycerol 22 30 16 73 47

V1-V2 Qiagen PBS 22 70 14 64 80

V1-V2 Qiagen glycerol 22 36 15 68 58

V1-V2 RBB PBS 22 40 16 73 60

V1-V2 RBB glycerol 22 36 17 77 53

V1-V2deg Qiagen PBS 22 38 15 68 61

V1-V2deg Qiagen glycerol 22 32 12 55 63

V1-V2deg RBB glycerol 22 29 14 64 52

V1-V2deg RBB PBS 22 31 12 55 61

Ion PGM

V4-V5 mock DNA 20 33 20 100 40

V1-V2 mock DNA 20 27 19 95 29

V1-V2 deg mock DNA 20 27 19 95 29

V4-V5 Qiagen PBS 22 37 20 91 46

V4-V5 RBB PBS 22 40 20 91 50

V4-V5 Qiagen glycerol 22 31 20 91 35

V4-V5 RBB glycerol 22 38 20 91 47

V1-V2 Qiagen PBS 22 18 17 77 6

V1-V2 Qiagen glycerol 22 30 18 82 40

V1-V2 RBB PBS 22 24 18 82 25

V1-V2 RBB glycerol 22 26 18 82 31

V1-V2 deg Qiagen PBS 22 65 20 91 69

V1-V2 deg Qiagen glycerol 22 28 21 96 25

V1-V2 deg RBB glycerol 22 37 22 100 41

V1-V2deg RBB PBS 22 40 20 91 50

RBB repeat bead beating extraction method

Note: DNA failed to amplify with V4-V5 MiSeq primers for the Qiagen PBS extracted cells so no sequencing data for this extraction sample
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The vast majority of sequencing studies have relied on

sequencing of the 16S rRNA gene to determine the bac-

teria present in an environment [1, 3]. Previous studies

have also examined the effects of primers on sequencing

outcomes by amplifying the V1-V3, V3-V5 and V6-V9

regions of the 16S rRNA gene from the same mock

community cells as used in this study (HM 280/1) and

sequencing using Sanger and 454-pyrosequencing plat-

forms [16]. They also noted the effect of the region of

the 16S rRNA gene targeted on sequencing data. Our

study used primers targeting the V4-V5 and V1-V2 re-

gions and employed the Illumina MiSeq and Ion PGM

platforms. Despite both studies using the same mock

community cells (HM 280/1), differences occurred be-

tween our data sets, likely due to a combination of pri-

mer and sequencer effects. Similar to the study by Haas

et al., our study also noted non-uniform relative abun-

dances in the mock communities. The results demon-

strated that the V4-V5 primers gave the most

comparable results across platforms, which could be of

benefit to researchers moving between newer sequencing

platforms. However, this result must also be considered

in light of the fact that the same primer sets gave skewed

abundances. Thus while this primer set gave the most

comparable results across platforms suggesting it is least

affected of the primers sets by platform used, the results

still show discrepancies between the anticipated and

achieved results with this primer set. The results from

the V1-V2 and V1-V2 degenerate primers were distinct

from the V4-V5 primers and differed in their detection

of species. Considerable differences occurred based on

which primer and platform was used. Only two combi-

nations, namely the V4-V5 Ion PGM primers used on

the mock DNA and the V1-V2 degenerate Ion PGM

primers used on the RBB glycerol cells, detected 100 %

of the expected species. It is worth noting that the same

primers used on other extracted or mock DNA tem-

plates did not detect 100 % of the expected species,

thereby again highlighting that the results are due to a

combination of factors, including DNA extraction pro-

cedure, primer choice and sequencing platform. Further-

more, no primer set detected the expected species

exclusively and all gave false hits (% of reads achieved

that were not expected relative to total reads achieved)

Fig. 2 Percentage relative abundance of expected species (n= 20) detected in mock community DNA based on sequencing platform and primer set used
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(varying from 6 % for the Ion PGM V1-V2 Qiagen PBS

sample to 69 % for the Ion PGM V1-V2 degenerate

Qiagen PBS sample). These were present at very low

relative abundances and were closely related to the ac-

tual species present in the mock communities, thus we

suggest they were mis-assigned at species level, due to

similarities in their 16S rRNA gene sequence e.g. E.

faecalis present in the mock community but E. faecium

also assigned at species level. Based on these findings it

appears that the primers consistently performed best on

the Ion PGM platform, with higher percentages of ex-

pected species detected and lower false hits compared to

the MiSeq platform. A recent study also took a similar

approach to ours and compared the results of a mock

community sequenced using primers targeting the V1-

V2 region and sequenced on the MiSeq and Ion PGM

platforms [19]. The study found the relative abundances

to be generally in agreement with the expected commu-

nity composition and the results to be similar across

platforms. While our study did not analyse replicates

(due to limitations in starting material), Salipante et al.

did not find significant differences between replicates,

which is consistent with previous findings also [24]. Our

findings are similar to those of Tremblay et al. [22] who

also showed differences in sequencing results on the

454-pyrosequencer and the MiSeq when different re-

gions of the 16S rRNA gene were targeted, using a mock

microbial community. In this instance, the authors com-

pared the V4, V6-V8 and V7-V8 regions and found that

the V4 primers gave the least biased results. We also

found the V4-V5 primer set to yield the most compar-

able results across platforms. The authors also highlight

that currently there is no consensus on which primer set

yields the best result; therefore they suggest the potential

to use shotgun metagenomics to interrogate your dataset

and to compare the results with that of your different pri-

mer sets under investigation. However, due to cost this is

still not a feasible approach for most studies but could be

used perhaps to select between primer sets prior to com-

mencing a series of sequencing-based studies.

This study also conducted a direct comparison of the

MiSeq and Ion PGM platforms, both of which are being

used increasingly for 16S rRNA amplicon sequencing

studies. The results indicated that not only the depth of

sequencing achieved differs by platform, but also the

percentage of retained sequences following quality filter-

ing and chimera removal. We found the lowest percent-

age of reads was retained from the V4-V5 primer

sequences from the Ion PGM (80–90 % retained follow-

ing chimera removal compared to an average of 99 %

Fig. 3 Heat map of species abundance. Only the 20 expected taxa from mock DNA (HM-782D) were included. Hierarchical clustering was
performed using hclusing default parameters (complete linkage). The blue colours represent samples sequenced on MiSeq platform while green
represent the Ion PGM
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retained for the other primers on both platforms). This

may be due to the fact that these were the longest reads

achieved on the Ion PGM at 380–400 bp. Currently

400 bp is the longest read length supported by this plat-

form and although we achieved longer read lengths with

this primer set, the quality of these reads was consider-

ably lower than the shorter reads with the V1-V2 primer

sets (335–355 bp), resulting in increased numbers of

reads being removed during quality filtering and chimera

removal. This study has clearly shown the impact of se-

quencing platform on the results achieved, a finding also

observed in a previous study [22] which showed that

samples clustered by sequencing platform used. A recent

study also compared the MiSeq and Ion PGM platforms

for sequencing a mock microbial community using V1-

V2 16S rRNA primers [19]. Our results are in agreement

with this previous study that both platforms offer good se-

quencing depth and are a good alternative to older plat-

forms. However, they noted that more studies looking at

different regions of the 16S rRNA gene were needed to

fully comprehend the impact these factors have on se-

quencing outcomes. This previous study also highlighted

the potential to minimise sequencing artifacts using bidir-

ectional sequencing and also through optimization of flow

order on the Ion PGM platform. Again this study did not

conclude as to which platform/primer combination gave

the best results. Thus, we conclude that based on ours

and previous data, the most suitable primer and platform

to use for sequencing studies remains unclear. Perhaps the

inclusion of mock communities or the comparison of 16S

rRNA based data to shotgun metagenomic data may enable

an optimised approach to be devised at the beginning of a

large sequencing-based trial and there after the use of this

optimised approach would limit variation between results

within this trial. Thus we share the conclusions of Tremblay

et al. [22] that based on all current knowledge, protocol

consistency remains more pertinent to the study outcome

than primer or sequencing platform choice.

DNA extraction procedure has a significant impact on

sequencing results [25, 26]. Several studies have previously

shown the effects of using different commercial kits for

DNA extraction from faecal samples on sequencing out-

comes [14, 15, 17]. Our approach was to focus specifically

on just two extraction methods commonly used in micro-

biota studies to establish if the widely used Qiagen DNA

extraction approach was as successful as the RBB ap-

proach or if the additional bead beating steps yielded more

accurate results. Both extraction procedures yielded DNA

Fig. 4 Percentage relative abundance of expected species based on extraction procedure
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that gave comparable results with respect to phylogeny.

This may be due to the similarity in these approaches,

while the use of a different commercial DNA extraction

kit could yield significantly different results. Additionally,

this study used mock community cells to investigate the

effects of DNA extraction procedure. This is a relatively

simple microbiota community relative to, e.g. faecal sam-

ples. Thus results suggesting that the extraction method

has minimal effects on microbiota sequencing data could in

fact be due to the ease of extraction of DNA from the mock

community cells. While we have shown both DNA extrac-

tion procedures to yield similar sequencing results in this

instance, it is our recommendation that the selection and

use of just one DNA extraction method for longitudinal

studies is vital to ensure differences in the data that may be

observed are not occurring due to extraction bias.

Conclusions

This study provides a direct comparison of the Illumina

MiSeq and Ion PGM sequencers and has shown that the

MiSeq and Ion PGM sequencers offer good sequencing

depth and provides information at species level, not at-

tainable using older platforms. Given the demonstrated

differences in microbiota composition due to primer

choice and sequencing platform used, the need for the use

of internal controls on sequencing runs is evident. Overall,

our results are significant as they highlight important con-

siderations for designing and interpreting sequencing

studies. Thus as we enter an era of rapid sequencing de-

velopment, advancement and improvement, it is of utmost

importance to carefully consider, assess and continually

review best practice regarding designing, conducting and

interpreting microbiota sequencing studies.

Methods

PCR primers for 16S rRNA gene sequencing

PCR primers for 16S rRNA gene sequencing using the

Illumina MiSeq sequencing platform were designed to

consist of an Illumina adaptor sequence, a 12 nt index

(barcode) sequence, a 10 nt primer pad region, a 2 nt

linker region and the gene specific primer sequence

(Table 3). Three primer sets, one targeting the V4-V5 re-

gion [23] and two primer pairs targeting the V1-V2 region

of the 16S rRNA gene [4], with primer set 2 using a de-

generate forward primer [17] were used for sequencing to

determine the effect of primer design and the region of

the 16S rRNA gene which is targeted, on the sequencing

outcomes. A corresponding set of 3 primer pairs were

generated for use on the Ion PGM platform and were de-

signed to contain the Ion PGM linker sequence, a unique

Fig. 5 Heat map of species abundance by sequencer and extraction method for mock community cells. Only expected taxa were included and
hierarchical clustering was performed using hclust default parameters (complete linkage). The top colour legend depicts the sequencing
technology and primer set. The blue colours represent samples sequenced on MiSeq platform while green represent the Ion PGM. The bottom

legend represents the samples and extraction method
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10 nt Golay barcode sequence, a 2 nt spacer sequence and

the gene specific sequence (Table 4).

Mock community DNA

To determine the effects of different primer sets, and dif-

ferent DNA extraction procedures on sequencing results,

genomic DNA from Microbial Mock Community B (Even,

Low Concentration), v5.1L, for 16S rRNA Gene Sequen-

cing (HM-782D), and cells from Microbial Mock Com-

munity C in phosphate buffered saline (PBS) (HM-280)

and in PBS and 40 % Glycerol (HM-281) were obtained

through BEI Resources, NIAID, NIH as part of the Hu-

man Microbiome Project (Manassas, VA). Mock commu-

nity DNA was used as template DNA for sequencing

using 3 primer sets, per platform, as outlined below.

Metagenomic DNA extraction for PCR reactions

Mock community cells (HM-280/1) were used to ascer-

tain the effects of extraction procedure on the sequen-

cing results achieved, thus DNA was extracted from

these cells using 2 DNA extraction procedures and DNA

was subsequently amplified using 3 Illumina MiSeq and

Table 3 Sequences of primers used for MiSeq sequencing

Sample Primer sequence Barcode Ref

V4-V5 primer [23]

Forward primer AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGGGTGCCAGCMGCCGCGGTAA

Read 1 primer TATGGTAATTGGGTGCCAGCMGCCGCGGTAA

Read 2 primer AGTCAGTCAGTTCCGTCAATTYYTTTRAGTTT

Index primer AAACTYAAARRAATTGACGGAACTGACTGACT

Reverse barcoded primers

PBS Qiagen CAAGCAGAAGACGGCATACGAGATTAACGTGTGTGCAGTCAGTCAGTTCCGTCAATTYYTTTRAGTTT TAACGTGTGTGC

PBS RBB CAAGCAGAAGACGGCATACGAGATCATTATGGCGTGAGTCAGTCAGTTCCGTCAATTYYTTTRAGTTT CATTATGGCGTG

Qiagen Glycerol CAAGCAGAAGACGGCATACGAGATCCAATACGCCTGAGTCAGTCAGTTCCGTCAATTYYTTTRAGTTT CCAATACGCCTG

RBB Glycerol CAAGCAGAAGACGGCATACGAGATGATCTGCGATCCAGTCAGTCAGTTCCGTCAATTYYTTTRAGTTT GATCTGCGATCC

Mock DNA CAAGCAGAAGACGGCATACGAGATCAGCTCATCAGCAGTCAGTCAGTTCCGTCAATTYYTTTRAGTTT CAGCTCATCAGC

V1-V2 set 1 [4]

Forward primer AATGATACGGCGACCACCGAGATCTACACTATGGTAATTTCAGAGTTTGATCCTGGCTCAG

Read 1 primer TATGGTAATTTCAGAGTTTGATCCTGGCTCAG

Read 2 primer AGTCAGTCAGCATGCTGCCTCCCGTAGGAGT

Index primer ACTCCTACGGGAGGCAGCATGCTGACTGACT

Reverse barcoded primers

PBS Qiagen CAAGCAGAAGACGGCATACGAGATTCTTGGAGGTCAAGTCAGTCAGCATGCTGCCTCCCGTAGGAGT TCTTGGAGGTCA

PBS RBB CAAGCAGAAGACGGCATACGAGATTCACCTCCTTGTAGTCAGTCAGCATGCTGCCTCCCGTAGGAGT TCACCTCCTTGT

Qiagen Glycerol CAAGCAGAAGACGGCATACGAGATGCACACCTGATAAGTCAGTCAGCATGCTGCCTCCCGTAGGAGT GCACACCTGATA

RBB Glycerol CAAGCAGAAGACGGCATACGAGATGCGACAATTACAAGTCAGTCAGCATGCTGCCTCCCGTAGGAGT GCGACAATTACA

Mock DNA CAAGCAGAAGACGGCATACGAGATTCATGCTCCATTAGTCAGTCAGCATGCTGCCTCCCGTAGGAGT TCATGCTCCATT

V1-V2 degenerate [17]

Forward primer AATGATACGGCGACCACCGAGATCTACACTATGGTAATTTCAGMGTTYGATYMTGGCTCAG

Read 1 primer TATGGTAATTTCAGMGTTYGATYMTGGCTCAG

Read 2 primer AGTCAGTCAGCATGCTGCCTCCCGTAGGAGT

Index primer ACTCCTACGGGAGGCAGCATGCTGACTGACT

Reverse barcoded primers

PBS Qiagen CAAGCAGAAGACGGCATACGAGATTCTTGGAGGTCAAGTCAGTCAGCATGCTGCCTCCCGTAGGAGT TCTTGGAGGTCA

PBS RBB CAAGCAGAAGACGGCATACGAGATTCACCTCCTTGTAGTCAGTCAGCATGCTGCCTCCCGTAGGAGT TCACCTCCTTGT

Qiagen Glycerol CAAGCAGAAGACGGCATACGAGATGCACACCTGATAAGTCAGTCAGCATGCTGCCTCCCGTAGGAGT GCACACCTGATA

RBB Glycerol CAAGCAGAAGACGGCATACGAGATGCGACAATTACAAGTCAGTCAGCATGCTGCCTCCCGTAGGAGT GCGACAATTACA

Mock DNA CAAGCAGAAGACGGCATACGAGATTCATGCTCCATTAGTCAGTCAGCATGCTGCCTCCCGTAGGAGT TCATGCTCCATT
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3 Ion PGM primer sets. DNA was also extracted from

mock community cells in PBS (HM-280) and those in

PBS + glycerol (HM-281), thus determining if the storage

agent of the cells prior to extraction has any effect on

the results achieved. DNA was extracted from mock

community cells, using previously described methods [2,

27]. Briefly, DNA was extracted from mock community

cells (HM-280/1) using a QIAamp DNA Stool Mini Kit

(Qiagen, Sussex, UK), with the addition of an initial bead

beating step. DNA was also extracted using a RBB ap-

proach and a modified Qiagen DNA extraction proced-

ure [13, 20]. Briefly, 1 ml of lysis buffer (500 mM NaCl,

50 mM Tris–HCl pH8.0, 50 mM EDTA and 4 % sodium

dodecyl sulphate) was added to the bead beating tubes

containing the mock community cell sample. Samples

were homogenised for 3 mins at max speed using the

Mini Bead beater. Samples were incubated at 70 °C for

15mins. Following centrifugation the supernatant was

removed and the bead beating steps repeated. Following

pooling of the supernatant, samples were treated with

10 M ammonium acetate (Sigma Aldrich, Ireland), the

DNA was pelleted and washed with 70 % ethanol. The

DNA was then RNAse and proteinase K treated. Finally

the DNA was washed using buffers AW1 and AW2

(QIAmp Fast DNA Stool Mini kit) and eluted in 200 μl

of ATE buffer (QIAmp Fast DNA Stool Mini kit).

PCR amplification and preparation for next generation

16S rRNA gene sequencing

PCR reactions contained 25 μl Biomix Red (MyBio,

Kilkenny, Ireland), 1 μl forward primer (Sigma Aldrich,

Dublin, Ireland) (10pmol), 1 μl reverse primer (Sigma

Aldrich) (10pmol), template DNA (64 ng) and PCR grade

water (MyBio). PCR conditions were as follows: V4-V5

primer set: heated lid 110 °C, 94 °C × 3mins, followed by

35 cycles of 94 °C × 45 s, 67 °C × 1 min, 72 °C × 1 min,

followed by 72 °C × 2mins and held at 4 °C. For V1-V2

primer set 1: heated lid 110 °C, 94 °C × 2mins, followed by

25 cycles of 94 °C × 1 min, 67 °C × 45 s, 72 °C × 1 min,

followed by 72 °C × 2mins and held at 4 °C. Twenty five

cycles was chosen, as higher cycle numbers gave non-

specific bands. For V1-V2 degenerate primer set 2: heated

lid 110 °C, 94 °C × 2mins, followed by 35 cycles of 94 °C ×

1 min, 64 °C × 45 s, 72 °C × 1 min, followed by 72 °C ×

Table 4 Primers for amplification of DNA for sequencing on the Ion PGM platform

Ion Linker Barcode Spacer Primer Ref

V4-V5 [23]

Forward barcoded primers

Mock DNA CCATCTCATCCCTGCGTGTCTCCGACTCAG TCCCTTGTCTCC GT GTGCCAGCMGCCGCGGTAA

PBS Qiagen CCATCTCATCCCTGCGTGTCTCCGACTCAG ACGAGACTGATT GT GTGCCAGCMGCCGCGGTAA

PBS RBB CCATCTCATCCCTGCGTGTCTCCGACTCAG GCTGTACGGATT GT GTGCCAGCMGCCGCGGTAA

Glycerol Qiagen CCATCTCATCCCTGCGTGTCTCCGACTCAG ATCACCAGGTGT GT GTGCCAGCMGCCGCGGTAA

Glycerol RBB CCATCTCATCCCTGCGTGTCTCCGACTCAG TGGTCAACGATA GT GTGCCAGCMGCCGCGGTAA

Reverse primer CCTCTCTATGGGCAGTCGGTGAT CC CCGTCAATTYYTTTRAGTTT

V1-V2 set 1 [4]

Forward barcoded primers

Mock DNA CCATCTCATCCCTGCGTGTCTCCGACTCAG TGCATACACTGG GT AGAGTTTGATCCTGGCTCAG

PBS Qiagen CCATCTCATCCCTGCGTGTCTCCGACTCAG AGTCGAACGAGG GT AGAGTTTGATCCTGGCTCAG

PBS RBB CCATCTCATCCCTGCGTGTCTCCGACTCAG ACCAGTGACTCA GT AGAGTTTGATCCTGGCTCAG

Glycerol Qiagen CCATCTCATCCCTGCGTGTCTCCGACTCAG GAATACCAAGTC GT AGAGTTTGATCCTGGCTCAG

Glycerol RBB CCATCTCATCCCTGCGTGTCTCCGACTCAG GTAGATCGTGTA GT AGAGTTTGATCCTGGCTCAG

Reverse primer CCTCTCTATGGGCAGTCGGTGAT CC TGCTGCCTCCCGTAGGAGT

V1-V2 set 2 [17]

Forward barcoded primers

Mock DNA CCATCTCATCCCTGCGTGTCTCCGACTCAG GCGATATATCGC GT AGMGTTYGATYMTGGCTCAG

PBS Qiagen CCATCTCATCCCTGCGTGTCTCCGACTCAG CGAGCAATCCTA GT AGMGTTYGATYMTGGCTCAG

PBS RBB CCATCTCATCCCTGCGTGTCTCCGACTCAG AGTCGTGCACAT GT AGMGTTYGATYMTGGCTCAG

Glycerol Qiagen CCATCTCATCCCTGCGTGTCTCCGACTCAG GTATCTGCGCGT GT AGMGTTYGATYMTGGCTCAG

Glycerol RBB CCATCTCATCCCTGCGTGTCTCCGACTCAG CGAGGGAAAGTC GT AGMGTTYGATYMTGGCTCAG

Reverse primer CCTCTCTATGGGCAGTCGGTGAT CC TGCTGCCTCCCGTAGGAGT
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2mins and held at 4 °C. All PCR reactions were completed

in triplicate. Negative controls, where DNA was replaced

by PCR grade water, were run for each primer set, with no

amplification occurring. Triplicate PCR products were

pooled and cleaned using AMPure magnetic bead-based

purification system (Beckman Coulter, UK). Cleaned sam-

ples were quantified using Picogreen Quant-iT quantifica-

tion and the Nanodrop 3300 (Fisher Scientific, Dublin,

Ireland). To confirm purity and primer specificity of the

PCR reactions, samples were analysed using the Agilent

Bioanalyser. Samples were subsequently pooled in an

equimolar concentration and prepared for sequencing

using standard protocols. For MiSeq sequencing, libraries

were mixed with Illumina generated PhiX control libraries

(20 % of 12.5pM solution) and were denatured using

freshly prepared NaOH. Samples were loaded at 6pM and

sequenced using a V3 600 cycle kit and our specific 16S

rRNA gene sequencing primers. For PGM sequencing, li-

braries were pooled and loaded at 40pM and were se-

quenced according to Ion PGM protocols using the Ion

318 v2 chip and the Ion PGM Sequencing 400 kit. Load-

ing concentrations for the respective libraries were as per

manufacturer’s recommendations.

Bioinformatic analysis

Reads for the MiSeq were merged using the QIIME (ver-

sion 1.8) script join_paired_ends.py and the fastq-join

method [28], however this was not required for PGM

reads as they were single-ended. The QIIME script spli-

t_libraries.py was used to demultiplex both MiSeq and

PGM reads with default parameters, however, only reads

matching the main length distribution; MiSeq: V1-V2

primers (305–325 bp), V4-V5 primer (365–385 bp) and

PGM: V1-V2 primers (335–355 bp), and V4-V5 primer

(380–400 bp) and reads with a minimum average quality

score of Q25 were retained. Chimeric sequences were

removed via USEARCH version 7.0.1090 using the uchi-

me_ref.py script and the ChimeraSlayer GOLD database

[29]. The Mothur implementation of the Ribosomal

Database Project (RDP) classifier was used to assign tax-

onomy from phylum to genus [30] with a bootstrap cut-

off of 50 %. Any sequences outside this cut-off were

assigned as unclassified at that particular rank.

Species classification along with Clostridium Cluster

classification was obtained by utilising the species classi-

fier SPINGO version 1.2 with default parameters [31].

The quality filtered sequence reads for each technology

and primer set were inputted into SPINGO and the re-

sults were summarised using the script spingo_summar-

y.py included with the software. Heat maps were

generated in R version 3.1.3. The function heatmap.2

was performed on the mock cell and mock DNA sam-

ples with only the expected species included. Hierarch-

ical clustering was conducted using hclust.

Additional file

Additional file 1: Table S1. Percentage relative abundance of expected
species detected in the mock cell DNA. (DOCX 21 kb)
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