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18β-Glycyrrhetinic acid protects against alpha-

naphthylisothiocyanate-induced cholestasis through activation

of the Sirt1/FXR signaling pathway
Shou-yan Wu1,2, Shi-chao Cui2,3, Le Wang1,2, Yi-ting Zhang1,2, Xiao-xia Yan1,2, Heng-lei Lu1,2, Guo-zhen Xing1,2, Jin Ren1,2 and

Li-kun Gong1,2

Cholestasis is a common feature of liver injury, which manifests as bile acid excretion and/or enterohepatic circulation disorders.

However, very few effective therapies exist for cholestasis. Recently, 18β-Glycyrrhetinic acid (18b-GA), a major metabolic

component of glycyrrhizin, which is the main ingredient of licorice, was reported to protect against alpha-naphthylisothiocyanate

(ANIT)-induced cholestasis. However, its protective mechanism remains unclear. We hypothesized that 18b-GA may stimulate the

signaling pathway of bile acid (BA) transportation in hepatocytes, resulting its hepatoprotective effect. According to the results,

18b-GA markedly attenuated ANIT-induced liver injury as indicated the hepatic plasma chemistry index and histopathology

examination. In addition, the expression levels of nuclear factors, including Sirt1, FXR and Nrf2, and their target efflux transporters in

the liver, which mainly mediate bile acid homeostasis in hepatocytes, significantly increased. Furthermore, we first revealed that

18b-GA treatment significantly activated FXR, and which can be significantly reduced by EX-527 (a potent and selective Sirt1

inhibitor), indicating that 18b-GA activates FXR through Sirt1. Taken together, 18b-GA confers hepatoprotection against ANIT-

induced cholestasis by activating FXR through Sirt1, which promotes gene expression of the efflux transporter, and consequently

attenuates dysregulation of bile acid homeostasis in hepatocyte compartments.
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INTRODUCTION
Cholestasis is clinically associated with a variety of liver diseases,
has a very high incidence, and mainly manifests as a bile secretion
disorder and excessive bile acid (BA) accumulation in the liver.
Without effective intervention, cholestasis will eventually evolve
into hepatic fibrosis and cirrhosis [1, 2]. The etiology of cholestasis
is more complex, but cholestatic disease due to any cause can
lead to the retention of toxic substances, such as BA, leading to
liver damage and cholestatic liver disease [3–6]. Currently,
obeticholic acid and ursodeoxycholic acid (UDCA) are two FDA-
approved therapeutic drugs used as single agents or in
combination for primary biliary cholangitis (PBC) treatment in
adults, while there are no approved drugs for other cholesteric
diseases that are found throughout the world [7, 8]. Therefore,
novel therapeutic strategies for the treatment of cholestasis are
needed.
Many traditional Chinese medicines have been shown to

protect against liver diseases, such as hepatitis, cholestasis and
liver fibrosis [9]. Glycyrrhizin, which is the principal triterpene
component of licorice root, has been used to treat patients with
chronic hepatitis B in China and Japan for many years [10]. 18β-
Glycyrrhetinic acid (18b-GA) is a product of glycyrrhizin

metabolism through the intestinal flora [11]. 18b-GA has recently
been reported to have anti-inflammatory [12], anticancer [13, 14],
and hepatoprotective [15] effects. In addition, recent evidence
indicates that 18b-GA exerts a powerful protective effect in
multiple liver injury models, including models of exposure to free
fatty acids [16], BA [9], a choline-deficient L-amino acid-defined
diet [17], and carbon tetrachloride [18]. Although 18b-GA has
been reported to protect against alpha-naphthylisothiocyanate
(ANIT)-induced hepatotoxicity [10, 19], the mechanism remains
unclear.
Interrupting BA metabolism and transportation in hepatocyte

compartments is widely believed to play a role in cholestasis. BAs
are steroid acids that are mainly synthesized in the liver via
cholesterol oxidation and are subsequently secreted to help digest
fats [20]. When BA metabolism is impaired, BAs accumulate in the
liver at high concentrations, which may cause hepatocyte
apoptosis and necrosis [6]. Additionally, abnormal BA transporter
and enzyme expression and function may cause BA retention in
the liver, ultimately leading to cholestasis [21, 22]. The expression
and function of BA transporters and enzymes can be regulated by
nuclear receptors and transcription factors. Farnesoid X receptor
(FXR) plays important regulatory roles in repressing BA synthetic
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enzymes, inhibiting the hepatic uptake transporter, inducing bile
efflux transporters and increasing BA metabolism in the liver [23].
Nuclear factor-E2-related factor-2 (Nrf2), which is known to be
mainly involved in the body’s antioxidant response [24], also
participates in mediating phase II drug metabolism enzymes and
the efflux transporters [25]. Recent studies have reported that
Sirt1, a nuclear factor family receptor, can regulate the activities of
FXR and Nrf2, indicating that Sirt1 is a transcription factor and
plays an important role in BA homeostasis [8, 26, 27]. Therefore,
we hypothesized that the therapeutic effect of 18b-GA on hepatic
cholestasis may be related to its regulatory effect on Sirt1 to affect
downstream nuclear receptors, consequently attenuating the
imbalance of metabolism and transport of BA.
In this paper, based on an assessment of the protective effect of

18b-GA on ANIT-induced intrahepatic cholestasis, we further
systematically studied the effect of 18b-GA on BA transporter
expression and the ability of this compound to reverse ANIT-
induced toxicity. Therefore, we investigated key nuclear receptors,
which are crucial in regulating BA homeostasis. Subsequent
studies using luciferase assays on transfected cells were
performed to explore the effect of 18b-GA on signaling pathways
of Sirt1-FXR.

MATERIALS AND METHODS
Animals and experimental design
All animal experiments were performed in accordance with the
Institutional Ethics Committee of Shanghai Institute of Materia
Medica. Eighteen 6- to 8-week-old male Sprague-Dawley specific
pathogen-free (SPF)-grade rats were purchased from Shanghai
Laboratory Animal Co. (Shanghai, China). They were housed under
conditions of 55% humidity at 20-25 °C, provided a standard diet
with water available ad libitum and were kept on a 12-h light/dark
cycle. The rats were fed for one week and allowed to acclimate to
the environment before the experiment. The rats were then
randomly divided into three groups. Control group rats were
injected intraperitoneally with 5% dimethyl sulfoxide (DMSO) in
olive oil for 7 days, and olive oil was orally administered on the 5th
day. ANIT-treated rats were injected intraperitoneally with 5%
DMSO in olive oil for 7 days and, on the 5th day, were orally
administered ANIT (dissolved in olive oil) at 100 mg/kg body
weight, which was selected according to the supplemental data
(Supplementary Figure S1). ANIT and 18b-GA cotreated rats were
injected intraperitoneally with 18b-GA (60mg/kg, which was
selected according to preliminary data (Supplementary Figure S2)
for 7 days and given ANIT (100 mg/kg) via oral administration 4 h
after the 5th 18b-GA injection. On the 7th day, 48 h after ANIT
(100mg/kg) treatment, the rats were sacrificed to collect the livers

and blood. Blood samples were centrifuged at 3000 rpm for 10
min and stored at −80 °C. Liver samples were immediately frozen
and stored at −80 °C. ANIT, olive oil, and 18b-GA were purchased
from Sigma-Aldrich (St Louis, MO, USA).

Plasma biochemistry
Reagents for measuring plasma aspartate aminotransferase (AST),
alanine aminotransferase (ALT), alkaline phosphatase (ALP), total
bilirubin (TBIL), and γ-glutamyl transpeptidase (GGT) were
obtained from Roche, Germany and were tested using a
biochemical analyzer (Roche, Germany).

Histopathological analysis
After rats were euthanatized, the livers were fixed in 10%
paraformaldehyde. Tissue samples were then dehydrated and
embedded in paraffin, sectioned (4 μm thickness), and stained
with hematoxylin and eosin (H&E). Histological lesions were
scored by a pathologist . We evaluated tissue damage by a semi-
quantitative method according to the literature [28]. For
semiquantitative analyses, the area of necrosis or lesions in the
detected area was scored as +1 for <25%, +2 for 25–50%, +3
for 50–75%, and +4 for >75%.

RNA isolation and qRT-PCR analysis of mRNA expression
Total RNA was extracted from 30mg liver samples using TRIzol
(Invitrogen, USA) according to the manufacturer’s instructions.
cDNA was synthesized using a PrimeScript RT kit (Takara, Japan),
and quantitative real-time polymerase chain reactions (qRT-PCR)
were analyzed on a Rotor-Gene Q 2plex HRM system (Qiagen,
USA) using a SYBR® premix Ex Taq™ II kit (Takara, Japan). The
primer sequences are listed in Table 1. All results were normalized
to GAPDH expression and calculated using the ΔΔCt method.

Western blotting
Rat livers (30 mg) were lysed using radio immunoprecipitation
assay buffer (Beyotime, China). Protein lysates were separated on
10% SDS-PAGE gels and then transferred to PVDF membranes
(Millipore, USA). The membranes were incubated overnight at 4 °C
with antibodies against FXR (sc-1204, Santa Cruz Biotechnology,
USA), sirtuin 1 (Sirt1) (8469, Cell Signaling Technology, USA), p-
glycoprotein (P-gp; ab170904, Abcam, USA), bile salt export pump
(Bsep; ab112494, Abcam, USA), multidrug resistance-associated
protein 3 (Mrp3; sc-5774, Santa Cruz Biotechnology, USA) and
GAPDH (ab9485, Abcam, USA). Membranes were then washed
three times and incubated with horseradish peroxidase-
conjugated secondary antibodies (Jackson ImmunoResearch
Laboratories, Inc., USA). Protein band chemiluminescence was
detected using an ECL Plus immunoblot detection system

Table 1. Primer sequences for quantitative real-time PCR analysis

Gene Forward Reverse

r-Ahr GGATGAAGAAGGACGCGAAC TCCTTACTCGGGGTTGACTG

r-Bsep CAACGCATTGCTATTGCTCG GTTCTGGATGGTGGACAAACG

r-FXR CTCCCATTTACAAGCCACGG GACGAGGAGGAGATCTGTGG

r-GAPDH TTCCAGGAGCGAGATCCCGCTAAC CATGAGCCCTTCCACGATGCCAAAG

r-Hnf4α GAGCCATCACCACCATCGTC TGAGCCAGCAGAAGCCTCAC

r-Mrp2 GGAGCTGGTTGGAAACTTGG TTGGTCTCTGCTTCTGACGT

r-Mrp3 GAGAACCTTCACCTCCAGCT TGGAGCTCACGAACATCAGT

r-Mrp4 AATTGAGGAGACCACCCGAG TAGTATGGCCAGGATGAGCG

r-NF-ƙB AAGCAGGAAGATGTGGTGGA GATAAGGAGTGCTGCCTTGC

r-Nrf2 CTTTCCTAGCAGAGCCCAGT AAATGCCGGAGTCAGAGTCA

r-Shp CCTTGGATGTCCTAGGCAAG CACCACTGTTGGGTTCCTCT

r-Sirt1 TGCCATCATGAAGCCAGAGA CATCGCAGTCTCCAAGAAGC
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(Millipore, Billerica, MA, USA), and protein band density was
quantified by ImageQuant software (GE Healthcare, UK).

Primary rat hepatocyte isolation and sandwich culture
Primary hepatocytes were isolated from adult male Sprague-
Dawley rats by a two-step collagenase perfusion method and
purified by 45% isotonic Percoll [29]. The cell treatments and
culture methods have been described previously [30].
Under Mrp2 transport in cells, 5(and 6)-carboxy-2′,7′-dichloro-

fluorescein (CDF), which is a probe substrate for Mrp2, is
hydrolyzed from a fluorescent CDF diacetate promoiety (CDF-
DA). CDF fluorescence intensity is indicative of Mrp2 transport

function. CDF-DA was obtained from Sigma-Aldrich (St Louis, MO,
USA).

FXR luciferase assay
The luciferase reporter expression plasmids pcDNA3.1-FXRα,
pcDNA3.1-RXRα, and pGL3-FXRE-Luc and the Renilla luciferase
gene-containing plasmid pRL-SV40 were kind gifts from Prof. Xu
Shen (School of Medicine and Life Sciences, Nanjing University of
Chinese Medicine, Nanjing, China). We seeded Huh7 cells (ATCC,
USA) in 48-well plates for luciferase assay experiments. The
experimental method was consistent with that of Prof. Shen’s
laboratory [31]. Cell extracts were collected at 24 h after

Fig. 1 Protective effects of 18b-GA against ANIT-induced cholestasis in rats. Rats were intraperitoneally administered 18b-GA (60mg/kg) or
vehicle for 7 days and were orally provided ANIT (100mg/kg, ig) or vehicle after the 5th 18b-GA dose. The levels of biochemical indicators
(a) ALT, (b) AST, (c) ALP, (d) GGT, and (e) TBIL were measured. Blood samples were collected and analyzed, as described in the Materials and
Methods. Data are shown as the mean ± SEM. (n= 6). *P < 0.05, ** P < 0.01, ***P < 0.001 compared with the ANIT-treated group
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transfection, and luciferase activity was measured using a Dual-
Luciferase reporter assay system (Promega, Madison, WI, USA).
Renilla luciferase was used for normalization.

Statistical analysis
Data were statistically analyzed and graphed using GraphPad
Prism software (version 5.03; GraphPad Software, Inc., CA, USA). All
cell experiments were performed independently at least three
times. The data are expressed as the mean ± SEM, and Student’s t-
tests were used to analyze the significance of differences. P < 0.05
was considered statistically significant (*P < 0.05, **P < 0.01,
***P < 0.001).

RESULTS
18b-GA has anti-cholestatic and hepatoprotective effects
in vivo
To estimate the protective effect of 18b-GA on ANIT-induced
hepatotoxicity and cholestasis, rats were intraperitoneally injected
with 18b-GA (60mg/kg) for 7 days, and ANIT was administered
orally (100 mg/kg) 48 h before euthanasia. Then, plasma biochem-
istry was analyzed. Plasma ALT, AST, ALP, GGT, and TBIL levels
were increased by 31.2-, 33.4-, 5.1-, 5.0-, and 91.3-fold, respec-
tively, in ANIT-induced rats (P < 0.0001), and all levels were
significantly decreased by 62.0%, 38.5%, 45.7%, 51.6%, and
39.7%, respectively, after 18b-GA treatment (P < 0.05) (Fig. 1a–e).
H&E staining of liver sections showed that compared with the

control group, the ANIT-induced group displayed multifocal portal
vein degeneration/coagulation necrosis, fibrosis, neutrophil and
monocyte accumulation, and bile duct epithelial cell apoptosis
and hypertrophy. 18b-GA and ANIT coadministration significantly

improved the above symptoms in bile duct epithelial cells, as
shown in Fig. 2a. Histological scores revealed a significant
improvement in the animals treated with 18b-GA (Fig. 2b).

18b-GA altered receptor factors involved in BA homeostasis
To elucidate the protective effects of 18b-GA in ANIT-induced
cholestasis, we measured the gene expression of several nuclear
receptors and transcription factors associated with BA home-
ostasis. As shown in Fig. 3a, 18b-GA and ANIT cotreatment
significantly increased FXR, Nrf2, and Sirt1 mRNA levels and had
little effect on NF-ƙB, Ahr, and Hnf4α levels. These data
demonstrated that FXR, Nrf2, and Sirt1, but not NF-ƙB, Ahr,
and Hnf4α, are key factors in the anti-cholestatic effect of 18b-
GA. According to the literature, 18b-GA may protect the liver
through Nrf2-induced Mrp3/4 upregulation (Fig. 3b). Next, FXR
target genes in rats were studied by real-time PCR, which
revealed involvement of Shp, Bsep, and Mrp2 (Fig. 3c).
These data revealed that 18b-GA regulates the BA balance
through FXR.
To verify the accuracy of the qRT-PCR results on the induction of

transporters and nuclear factors by 18b-GA, we measured protein
levels using western blot analysis. The results revealed that ANIT
treatment marginally changed Bsep and FXR protein expression
and slightly increased P-gp, Mrp3 and Sirt1 protein expression.
18b-GA cotreatment dramatically increased Bsep, P-gp, Mrp3, FXR,
and Sirt1 protein levels (Fig. 3d). Therefore, 18b-GA and ANIT
coadministration can increase Bsep, Mrp3, P-gp, FXR, and Sirt1
mRNA and protein expression. This finding suggested that the
protective effect of 18b-GA against cholestasis may be a result of
enhanced BA output, which is possibly mediated via FXR or
Sirt1 activation.

Fig. 2 Liver histology of ANIT-treated rats and 18b-GA-attenuated liver injury induced by ANIT. a Liver tissues were fixed, followed by H&E
staining (×200). No histological change was observed in the control group, large areas of necrosis and inflammation were observed in the
ANIT-treated group, and a few spotty areas of necrosis and inflammation were observed in the ANIT and 18b-GA cotreated group. b The graph
shows the semi-quantitative analysis of cholangiocyte inflammation, necrosis, hypertrophy, and fibrosis. Data are shown as the mean ± SEM.
(n= 6). *P < 0.05, **P < 0.01, ***P < 0.001 compared with the ANIT-treated group
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18b-GA activated FXR through Sirt1 in vitro
As FXR plays an important role in regulating BA homeostasis, we
tested whether 18b-GA exerted protective effects against

cholestasis through modulating FXR activities. Interestingly, 18b-
GA exposure resulted in dose-dependent FXR activation when the
FXR ligand chenodeoxycholic acid (CDCA) was present, and

Fig. 3 Effects of 18b-GA on bile acid nuclear receptor and transcription factor homeostasis in vivo. Quantitative real-time PCR analysis was
performed to measure (a) the BA transcription factor; (b) the expression levels of Nrf2 target genes, including Mrp3 and Mrp4; and (c) the
expression levels of FXR target genes, including Shp, Bsep, and Mrp2. dWestern blot was used to measure transcription factor and transporter
levels. Data are reported as the mean ± SEM. (n= 6). *P < 0.05, **P < 0.01, ***P < 0.001 compared with the ANIT-treated group
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18b-GA exposure did not activate FXR when CDCA was absent.
(Fig. 4a, b), as indicated by the FXR luciferase assay in Huh7 cells
(SRT1720, a selective activator of human Sirt1, as a positive
control). Furthermore, as Sirt1 is a mediator of FXR, we
investigated whether 18b-GA activated FXR through Sirt1. The
results revealed that 18b-GA treatment significantly activated FXR,
which was significantly reduced by EX-527 (a potent and selective
Sirt1 inhibitor) (Fig. 4c), indicating that 18b-GA-mediated FXR
activation is associated with Sirt1. Similar results were obtained
when another tool, HEK293T cells, were used in the FXR luciferase
assay (Supplementary Figure S3).

18b-GA regulated FXR activity and FXR target gene expression via
Sirt1
Since 18b-GA activated FXR through Sirt1 in vitro, we further
evaluated the protective effect of 18b-GA against EX-527 by
transporters and nuclear factors in sandwich-cultured rat hepato-
cytes (SCRHs). As illustrated in Fig. 5a, 18b-GA can significantly
increase Sirt1 and FXR mRNA levels, which are significantly
reduced by EX-527. Then, we examined the mRNA levels of
downstream FXR genes, such as Shp, Bsep and Mrp2. The results
revealed that 18b-GA significantly increased Shp, Bsep and Mrp2
mRNA expression, which was inhibited by EX-527 (Fig. 5b). In
addition, cells were pretreated with 18b-GA for 1 day and then re-
treated with ANIT for 24 h, as shown in Fig. 5c. After treatment
with ANIT, the fluorescence substrate of Mrp2, CDF, was
decreased. Compared with ANIT treatment, 18b-GA and SRT1720
(a selective activator of human Sirt1) cotreatment increased CDF
fluorescence intensity. ANIT treatment reduced the fluorescence
intensity of CDF, which was reversed when the cells were
cotreated with 18b-GA and ANIT, thus increasing the intensity of
the fluorescent substrate of Mrp2. These results indicated that
18b-GA can protect against ANIT-induced impairment of the efflux
function of Mrp2. Taken together, these observations indicated
that 18b-GA ameliorated ANIT-induced cholestasis through the
Sirt1/FXR pathway.

DISCUSSION
Our data highlight the protective effect of 18b-GA against ANIT-
induced liver injury by stimulating the expression of Sirt1, FXR and
Nrf2 nuclear factors. Nrf2 activation stimulated the expression of
its targeted efflux transporter gene (Mrp3, Mrp4) and regulated
bile acid homeostasis. In addition, 18b-GA treatment significantly
activated FXR, which promotes the expression of its targeted
efflux transporter gene (Mrp2, Bsep), and this effect was prevented
by the selective Sirt1 inhibitor EX-527. Therefore, 18b-GA activated
FXR through activation of Sirt1 and exerted a hepatoprotective

effect against ANIT-induced cholestasis, which promotes the
expression of efflux transporter genes, thus impairing bile acid
homeostasis disorders in hepatocytes.
ANIT, a hepatotoxic agent that is widely used to induce

intrahepatic cholestasis in rodents, leads to cholestasis by
impairing parenchymal hepatic cell polarization, directly injuring
biliary epithelial cells and inhibiting BA transporter function and
expression [32]. According to the literature, treating rats with ANIT
significantly decreases bile flow, and cotreatment with ANIT and
18b-GA significantly increases bile flow [10]. We speculated that a
close relationship exists between increased bile flow and BA efflux.
Since BA content is regulated by various nuclear factors, we
investigated whether the expression of these genes was changed
in the liver by 18b-GA cotreatment. The results revealed that
compared with the ANIT treatment group, 18b-GA cotreatment
significantly increased FXR, Nrf2 and Sirt1 gene expression levels.
However, changes in BA-related nuclear receptors induced by
ANIT are inconsistent across studies [21, 23, 33–39]. Our results
show that compared with the control rats, the levels of FXR, Sirt1,
and Nrf2 mRNA in the rats treated with ANIT did not change. The
diversity of this effect may be due to the different experimental
conditions and the complex regulation of nuclear receptors, i.e.,
the negative feedback of BA balance, the body’s stress response
[35, 36], cross-regulation of BA in the body [39], and even
intestinal flora [40, 41].
Activating Nrf2 may ameliorate bile duct ligation (BDL)- or ANIT-

induced cholestasis [7, 42, 43]. Recent studies have reported that
Mrp2, Mrp3, and Mrp4 are direct Nrf2 target genes whose
expression was increased by prototypical Nrf2 chemical activators
in rodent livers and decreased to basal expression levels in Nrf2-
knockout mice [44–46]. Our results revealed that 18b-GA
significantly increased Mrp2, Mrp3, and Mrp4 mRNA expression
(Fig. 3c). The protective effect of 18b-GA in ANIT-induced
cholestasis has been indicated to be due to increased bile efflux,
which is closely related to Nrf2-mediated Mrp2, Mrp3, and Mrp4
upregulation. Under baseline conditions, FXR-knockout (FXR−/−)
mice develop plasma BA, and when fed cholic acid, these mice
develop severe liver toxicity [47, 48]. Previous studies have
demonstrated that the synthetic FXR agonist GW4064 improves
cholestatic symptoms induced by ANIT [49] and BDL [50]. To
further confirm the effect of 18b-GA on the FXR pathway, the
expression of FXR and FXR target genes, including Bsep, Mrp2, and
Shp, were quantified in rats treated with 18b-GA. The results
demonstrated that 18b-GA improved FXR, Shp, Bsep and Mrp2
expression, as shown in Fig. 3b, d, indicating that 18b-GA alleviates
liver injury via activation of the FXR/Shp signaling pathway.
Sirt1, a class III NAD-dependent histone deacetylase, plays a key

role in lipid, glucose, and BA metabolism. Sirt1 and FXR can form

Fig. 4 18b-GA activates FXR in vitro. After transfection with FXR plasmid DNA for 6 h, the dose-dependent response of Huh7 cells to 18b-GA
exposure for 24 h with (a) and without (b) CDCA (50 μM), an effective FXR endogenous ligand, was measured. (c) Luciferase reporter assays
confirmed that FXR is regulated by Sirt1. 18b-GA treatment significantly activated FXR, and FXR activity was significantly reduced by EX-527.
SRT1720, a selective activator of human Sirt1, and EX-527, a potent and selective Sirt1 inhibitor, were used. Data are reported as the mean ±
SEM (n= 3). *P < 0.05, **P < 0.01, ***P < 0.001 compared with DMSO, #P < 0.05 compared with 18b-GA
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Fig. 5 18b-GA upregulates the expression of FXR and FXR target genes, and 18b-GA promotes Mrp2 function in SCRHs. Rat primary
hepatocytes were treated with 18b-GA (30 μM) and/or EX-527 (10 μM) for 3 days and with ANIT (40 μM) on the 4th day. RNA isolation and
quantitative real-time PCR analysis were performed to measure the levels of the transcription factors Sirt1 and FXR (a) and FXR target genes
(b). Data are reported as the mean ± SEM (n= 3). *P < 0.05, **P < 0.01, ***P < 0.001 compared with ANIT and 18b-GA cotreatment).
c Intracellular amounts of CDF were determined by spectrofluorimetry. Rat primary hepatocytes were treated with ANIT (40 μM) and 18b-GA
(7.5, 15, 30 μM); 18b-GA pretreatment lasted for 1 day, and cells were treated with ANIT the following day. Then, a fluorescent substrate of
Mrp2, CDF, was added. The fluorescence represents the function of the Mrp2-related canalicular efflux pump. Scale bar= 100 μm
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an interactive regulatory network: acetylation stabilizes FXR but
reduces its activity by decreasing FXR/RXR heterodimerization and
the ability of FXR to bind FXRE and transactivate other genes [51,
52]. Liver-specific Sirt1 deletion can lead to BA metabolic
dysfunction by downregulating FXR signaling and affects choles-
terol gallstone development in lithogenic diets, which can be
reversed by Sirt1 overexpression [53]. To analyze the influence of
18b-GA on Sirt1/FXR signaling, we first tested whether 18b-GA can
activate FXR in Huh7 cells. In the presence of CDCA, an
endogenous FXR ligand, 18b-GA activated FXR in a dose-
dependent manner; this effect did not occur in the absence of
CDCA (Fig. 4b). Reports in the literature have also demonstrated
that when no ligand is present, FXR remains in a silent state [54].
Subsequently, we found that 18b-GA activated FXR, and this effect
was prevented by EX-527, a potent and selective Sirt1 inhibitor,
indicating that 18b-GA-mediated FXR activation is associated with
Sirt1.
To further analyze the effect of 18b-GA on the Sirt1/FXR

pathway in vitro, Sirt1 and FXR target gene expression levels were
quantified in SCRHs. The results demonstrated that 18b-GA
increased Sirt1, FXR, Shp, Mrp2, and Bsep expression levels, which
were significantly inhibited by EX-527 (Fig. 5a, b). In addition, we
found that CDF fluorescence intensity was markedly increased in
18b-GA-treated SCRHs compared with that in ANIT-treated SCRHs
(Fig. 5c), indicating that 18b-GA can improve BA efflux into bile. As
CDF is a substrate of efflux transporter Mrp2, its fluorescence in
bile pockets of SCRHs may reflect the function of efflux
transporters at the bile canalicular side of hepatocytes.
In conclusion, the current study indicates that 18b-GA protects

against ANIT-induced cholestasis through activation of the Sirt1/
FXR signaling pathway and the Sirt1/Nrf2 signaling pathway
(Fig. 6). However, how 18b-GA activates FXR through Sirt1 is still
unclear. Further studies focusing on molecular structure may help
determine their interactive mechanism.
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