
Review Article

18F-FDG-PET for Assessing Biological Viability and Prognosis
in Liver Transplant Patients with Hepatocellular Carcinoma

Arno Kornberg*, Martina Schernhammer and Helmut Friess

Department of Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany

Abstract

Liver transplantation (LT) has become standard of care in
patients with non-resectable early stage hepatocellular carci-
noma (HCC) in liver cirrhosis. Currently, patient selection
for LT is strictly based on tumor size and number, provided by
the Milan criteria. This may, however, exclude patients with
advanced tumor load but favourable biology from a possibly
curative treatment option. It became clear in recent years
that biological tumor viability rather than tumor macromor-
phology determines posttransplant outcome. In particular,
microvascular invasion and poor grading reflect tumor ag-
gressiveness and promote the risk of tumor relapse. Pretrans-
plant biopsy is not applicable due to tumor heterogeneity
and risk of tumor cell seeding. 18F-fludeoxyglucose (18F-FDG)
positron emission tomography (PET), an established nuclear
imaging device in oncology, was demonstrated to non-
invasively correlate with unfavorable histopathologic fea-
tures. Currently, there is an increasing amount of evidence
that 18F-FDG-PET is very useful for identifying eligible liver
transplant patients with HCC beyond standard criteria but less
aggressive tumor properties. In order to safely expand the
HCC selection criteria and the pool of eligible liver recipients,
tumor evaluation with 18F-FDG-PETshould be implemented in
pretransplant decision process.
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Introduction

Hepatocellular carcinoma (HCC) is the most frequent primary
liver tumor and its disease burden is significantly increasing
in recent years. Currently, it is the fifth most common cancer
and the third most common reason of cancer-related mortal-
ity worldwide.1,2 Major hepatic resection is mainly limited by
underlying cirrhosis and liver dysfunction. Apart from that,
tumor recurrence rates up to 75% have been reported follow-
ing surgical treatment.3,4 From an oncological point of view,
orthotopic liver transplantation (LT) offers best option of cura-
tion, since it removes both the tumor with widest possible
surgical margins and the tumor-generating liver cirrhosis.5

However, early experiences more than two decades ago
were hampered by unacceptably high tumor recurrence
rates (32%–54%) and poor survival (5-year survival 20%–
40%).6–8 In 1996, Mazzaferro et al. reported on excellent
prognosis in 48 patients with a single HCC nodule up to
5 cm, or a maximum of 3 tumor nodules, each not exceeding
3 cm, and absence of macrovascular invasion. Four-year
overall and recurrence-free survival rates were 85% and
92% for patients meeting the so-called Milan criteria (MC),
but only 50% and 59% for those exceeding them.9 By strictly
adhering to the MC, post-LT prognosis was shown to be com-
parable to LT in non-malignant diseases.10–13 Consequently,
the MC have been incorporated as standard for selecting
suitable liver transplant candidates in the United Network
for Organ Sharing and the Eurotransplant region. Based on
the model of end-stage liver disease score, patients with
HCC meeting the MC are currently prioritized by exceptional
waiting list points, in order to realize timely organ
allocation.14,15

In recent years, the MC were increasingly criticised for
being too conservative and, thereby, for refraining a signifi-
cant number of patients from a possible curative treatment
option.16 Apart from that, discrepancies between radio-
graphic and histopathologic tumor staging additionally
limited clinical applicability.17,18 Therefore, many expanded
HCC criteria sets were recently proposed. Yao et al. intro-
duced 2001 the so-called University of California San Fran-
cisco (UCSF) criteria (a single tumor up to 6 cm, or up to 3
tumor nodules, each not exceeding 4.5 cm in diameter
and total tumor diameter up to 8.5 cm). One and 5-year
recurrence-free survival rates were 98.6% and 96.7% in
patients meeting, but only 80.4% and 59.5% in those
exceeding them.19 In 2008, Herrero et al. reported on accept-
able outcome in LT for one HCC nodule up to 6 cm, or up to 3
tumor nodules each not exceeding 5 cm in size, when macro-
vascular invasion and extrahepatic tumor disease were
absent.12 More recently, Mazzaferro et al. proposed the
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so-called “Up-to-seven” criteria (UTS; sum of maximum size
of the largest tumor in cm and the number of tumors). Based
on histopathologic reports of 1112 liver recipients, the
authors demonstrated a comparable 5-year posttransplant
outcome between patients meeting the MC (73.3%) and
those fulfilling the UTS criteria (71.2%), when microvascular
invasion (MVI) was absent. In contrast, tumor-free survival
rate was only 48.1% at 5 years in patients exceeding the UTS
criteria.20 However, the study was based on postoperative
histopathologic and not on preoperatively available clinical
findings.20

It is nowadays generally accepted that the MC have to be
liberalized in order to increase the number of HCC patients
that may benefit from LT. However, it is still unclear how far
the selection limits may be pushed without excessively
increasing the risk of tumor relapse. Currently, a minimum
survival probability between 50% and 60% at 5 years post-LT
is demanded in order to balance benefit and harm of LT
beyond standard criteria.21 In the so-called Metrotricket
concept, Mazaferro et al. demonstrated a linear adverse prog-
nostic impact of tumor size, whereas this negative effect
tended to stagnate for tumor numbers beyond 3. With other
words: when moving beyond the MC, the risk of HCC recur-
rence is increasingly determined by tumor biology rather
than macromorphology.20

Currently, MVI and low tumor differentiation are recog-
nized as most important predictors of biological tumor
aggressiveness and poor outcome, along with serum alpha-
fetoprotein (AFP) level and response to neoadjuvant locore-
gional tumor treatment (LRTT).22–24 Although tumor size and
number may correlate with MVI and grading, they only inac-
curately describe biological behavior of HCC.25 Pretransplant
biopsy is not applicable, due to tumor heterogeneity and
the theoretical risk of tumor cell seeding and bleeding.26,27

Therefore, for safely expanding the macromorphometric
tumor burden limit, reliable non-invasive clinical surrogate
markers of aggressive tumor properties are essential.
Apart from different serologic features (AFP; des-gamma-
carboxy prothrombin; yglutamyltransferase; protein induced
by vitamin K absence or antagonist II), in particular
18F-fludeoxyglucose (18F-FDG) positron emission tomogra-
phy (PET) was recently shown to correlate with unfavorable
biological behavior and poor outcome.22,28 This review
reports on current available data about the prognostic
impact of 18F-FDG-PET in liver transplant patients with HCC,
with a special focus on possible implications for expanding the
HCC transplant criteria.

18F-FDG-PET for metabolic evaluation and staging
of HCC

PET is a well-established non-invasive diagnostic tool for
metabolic staging and monitoring of chemo- or radiotherapy
of different malignancies.29,30 Nowadays, it is combined with
computed tomography (CT) or magnetic resonance imaging
(MRI) for increasing diagnostic accuracy. The most commonly
used tracer in oncology is 18F-FDG, which is a glucose ana-
logue. Tumor imaging with this tracer is based on the principle
of enhanced glucose metabolism in cancer cells. Like glucose,
18F-FDG is uploaded by the tumor cells via several overex-
pressed glucose transporters. In normal liver tissue, activity
of the enzyme glucose-6-phosphatase, which converts FDG-
6-P to FDG is high, whereas it is very low in liver metastasis,
resulting in an increased FDG uptake pattern on PET scan.

In contrast, the enzyme activity varies considerably among
different types of HCC: Well differentiated HCC nodules
exhibit an enzyme activity that is comparable to normal
liver tissue. Therefore, low grade tumors tend to have a
similar FDG uptake pattern than the surrounding normal
liver tissue, finally leading to a low standard uptake value
(SUV). On contrary, increased FDG uptake may be visualized
in poorly differentiated HCC. Consequently, several studies
have reported only a modest (below 50%) sensitivity of 18F-
FDG-PET for diagnosing HCC.31–34 Although 18F-FDG-PET/CT
is currently not recommended as first line diagnostic tool in
suspected HCC, it may be useful for detecting and monitoring
moderate to poorly differentiated HCC lesions, advanced
stage HCC and extrahepatic metastases by a one-stop non-
invasive metabolic imaging. Thus, initial tumor staging and
treatment recommendations may change.35–37

Apart from that, 18F-FDG uptake on PET may provide
useful information on biological tumor behavior. In a series
of 48 HCC patients, Shiomi et al. demonstrated that the
tumor-volume doubling time, an indicator of aggressive
tumor growth, correlated significantly with PET results.38

Lee et al. showed that increased 18F-FDG uptake on PET was
not only associated with poor tumor differentiation but also
with overexpression of pro-cancerogenic gene profiles.39

Thus, important information on prognosis may be delivered
by 18F-FDG-PET. In a current meta-analysis including 22
studies and a total of 1721 HCC patients, SUV and tumor-
to-non tumor SUV ratio on pre-treatment 18F-FDG-PET both
correlated with poor outcome.40

In recent years, several new radiotracers, such as
11C-acetate, were introduced for improving sensitivity and
specificity. Despite promising early experiences, dual tracer
PET/CT did not yet emerge to a popular diagnostic device in
clinical routine.41,42

18F-FDG-PET for predicting tumor viability following
LRTT

Response to neoadjuvant LRTT, such as transarterial chemo-
embolization (TACE) and radiofrequency ablation, is regarded
as one of the most important clinical predictor of favorable
outcome following LT for HCC.22,43 Patients with HCC initially
exceeding the MC but responding to neoadjuvant LRTT by
downsizing or downstaging were shown to have a posttrans-
plant outcome that was comparable to that of patients with
standard criteria tumors.44 Post-interventional complete
tumor necrosis with subsequent LT may even result in
cancer cure.45 By using multiphasic contrast-enhanced CT
and MRI, the European Association for the Study of the Liver
criteria and the modified Response Evaluation Criteria in Solid
Tumors are current standard for assessing tumor response to
LRTT.46 However, the use of tumor macromorphology in this
context is controversial, since LRTTmay lead to cancer devas-
cularization and necrosis without accompanied tumor down-
sizing. Therefore, 18F-FDG-PET is increasingly studied for
evaluating metabolic response to LRTT Most studies in this
context were focusing on non-surgical palliative approaches.
They consistently demonstrated that 18F-FDG-PET is an
appropriate indicator of response to LRTT and postinterven-
tional outcome.47–51 Only few trials have correlated 18F-FDG-
PET data with histopathologic reports after liver resection or
LT following LRTT (Table 1). Already in 1994, Torizuka et al.
reported on the prognostic value of 18F-FDG-PET in 30 liver
transplant patients with 32 HCC nodules following pre-LT

Journal of Clinical and Translational Hepatology 2017 vol. 5 | 224–234 225

Kornberg A. et al: PET in liver transplant patients with HCC



neoadjuvant TACE.52 Based on visual PET evaluation, the
authors have stratified according to the following FDG
uptake pattern: Type A tumors showed increased FDG
uptake (SUV ratio 1.07–2.66; n = 19); Type B tumors dem-
onstrated similar FDG uptake than surrounding normal liver
tissue (SUV ratio 0.77–1.04; n = 6); Type C tumors showed
decreased or absent FDG uptake (SUV ratio 0.13–0.58; n = 9).
On explant histopathology, viable tumor remained in all Type
A and B tumors, whereas more than 90% necrosis was found
in type C tumors. The authors concluded that PET might be
useful to describe metabolic tumor behavior following TACE in
the liver transplant setting.52 Cascales Campos et al. noted a
decrease of the median SUV from pre-TACE 4 (range: 2.79–
6.95) to 0 post-TACE (range: 0–4) in 6 liver transplant
patients with HCC. On explant pathology, they found a
tumor necrosis rate above 80% where SUV decreased to
below 3.53 This interesting correlation could be confirmed in
a follow-up trial of 20 liver transplant patients.54 In a study by
Kornberg et al. including 93 liver transplant patients,
PET-negativity was found to be the only independent clinical
predictor of tumor response to LRTT (HR = 12.4; 95%CI
3.1–49.0; p < 0.001) assessed on explant pathology ($50%
tumor necrosis rate).55 Consequently, the authors concluded
that 18F-FDG-PET is useful for selecting patients with advanced

HCC that may benefit from LRTTand, thereby, from acceptable
posttransplant prognosis.55

Although the number of studies is still rather limited, there
is an increasing body of evidence that 18F-FDG-PET provides
valuable data for prognosis evaluation in the setting of LRTT.
With special regard to LT, the switch from enhanced 18F-FDG-
uptake pattern to PET-negativity following LRTT might prob-
ably indicate transplant eligibility. This, however, has to be
assessed in prospective trials.

18F-FDG-PET for predicting outcome after liver
resection for HCC

Hepatic resection in liver cancer may be performed with
curative intention or in a neoadjuvant concept prior to LT.
Themajor aim of a surgical bridging approach is tumor control
in order to prevent cancer progression and patients’ drop-out
from the waiting list. Besides, it allows for a precise assess-
ment of biological tumor viability by histopathologic analysis
of the resection specimen. After detection of aggressive
tumor features, like MVI or poor grading, early preemptive
LT may be recommended. In contrast, absence of unfavorable
tumor features justifies a “wait and see” attitude with LT in
case of recurrent tumor.57,58

Table 1. 18F-FDG-PET for predicting tumor viability following LRTT in a neoadjuvant approach

Authors Technique of LRTT n Stratification of subsets Main study results

Torizuka et al.52 TACE using iodized
oil

30 Type A HCC: Increased FDG
uptake (SUV 1.07–2.66)
Type B HCC: Similar to
surrounding liver tissue
(SUV 0.77–1.04)
Type C HCC: Decreased FDG
uptake (SUV 0.13–0.58)

Viable tumor following TACE in
type A and B HCC; more than 90%
necrosis in type C tumor; tumor
necrosis rate <75% in SUV <0.6
and z 100% in SUV >0.6.

Cascales Campos et al.53 TACE 6 Post-TACE SUV < vs. $3 Decrease of SUV to <3 post-TACE
was associated with necrosis rate
>80% on explant histopathology.

Cascales Campos et al.54 TACE 20 Post-TACE SUV < vs. $3 Decreases of SUV to <3 post-TACE
was associated with necrosis rate
>70% on explant histopathology
and adequate 1- (100%) and
3-year (80%) survival post-LT.

Kornberg et al.55 TACE and RFA 59 Increased vs. not increased
18F-FDG uptake
(PET+ vs. PET− status)

PET− status was identified as the
only independent clinical predictor
(HR = 12.4; 95%CI 3.1–49.0;
p < 0.001) of tumor response
($50% tumor necrosis rate on
explant pathology) to LRTT.

Kim et al.56 TACE with lipiodol 91 Grade I: no 18F-FDG uptake
or 18F-FDG uptake lower
than in surrounding liver
tissue
Grade II: 18F-FDG uptake
similar to the surrounding
liver tissue
Grade III: 18F-FDG uptake
greater than in the
surrounding liver tissue

18F-FDG uptake correlated with
histopathologic grade in
treatment-naïve tumors but not in
lipiodolized HCCs after TACE;
18F-FDG PET/CT showed a high
diagnostic sensitivity and a
moderate specificity in evaluating
viability of lipiodolized HCC
nodules.

Abbreviations: 18F-FDG, 18F-fludeoxyglucose; CI, confidence interval; HCC, hepatocellular carcinoma; HR, hazard ratio; PET, positron emission tomography; SUV, standard
uptake value;TACE, transarterial chemoembolization.
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Table 2. 18F-FDG-PET for predicting outcome after curative liver resection for HCC

Authors n Stratification of subsets Major study results

Torizuka et al.59 17 —————————
———————

Pre-resection SUV was 6.896 3.39 in low grade and 3.216
0.58 in high grade tumors (p < 0.005).

Kobayashi et al.60 60 High ($3.2) vs. low (<3.2)
SUVmax

Sensitivity and specificity of SUVmax $3.2 for predicting
MVI were 77.8% and 74%. It increased to 88.9% and
82.4% by combining SUVmax with lens culinaris agglutinin
a-reactive AFP.

Baek et al.61 54 Low (<6.36) vs. high
($6.36) TMR

TMR ratio on pre-resection 18F-FDG PET correlated with
MVI (p = 0.005) and tumor differentiation (p = 0.002).
TMR $6.36 almost reached statistical significance
in multivariate analysis for predicting HCC relapse
(p = 0.061).

Ochi et al.62 89 High ($8.8) vs. low (<8.8)
SUVmax

SUVmax correlated significantly with tumor distance to
microsatellite lesion pattern (R = 0.57; p < 0.0001).
SUVmax was identified as an independent predictor of
microsatellite distance >1 cm (HR = 1.60; 95%CI:1.23–
2.26; p = 0.002) and extrahepatic HCC recurrence
(HR = 1.24; 95%CI 1.01–1.55; p = 0.033).

Hatano et al.63 31 High (>2) vs. low (<2) SUV
ratio

Overall 5-year survival rate was 63% in the high and 29%
in the low SUV ratio subsets (p = 0.006). SUV ratio
correlated significantly with tumor-related mortality
(p = 0.001), tumor number (p = 0.002), tumor size
(p = 0.001), vascular invasion (p = 0.005) and capsule
invasion (p = 0.001). It did not remain as an independent
prognostic factor for overall survival in multivariable
analysis.

Seo et al.64 70 Low (<5) vs. high ($5) SUV
Low (<2) vs. high ($2) TNR

Overall and recurrence-survival rates were significantly
lower in the high than in the low FDG uptake groups
(p = 0.002; p = 0.0005 for SUV; p = 0.001; p = 0.0002 for
TNR). TNR but not SUV was identified as an independent
predictor of postoperative recurrence (HR = 1.3; 95%CI
1.03–1.62; p = 0.03) and overall survival (HR = 1.6;
95%CI 1.07–2.38; p = 0.02).

Han et al.65 298 Low (<3.5) vs. high (>3.5)
SUV

Preoperative SUV >3.5 was identified as an independent
predictor of high grade tumor (HR = 3.305; 95%CI:
1.214–8.996; p = 0.019), tumor recurrence (HR = 2.025;
95%CI: 1.046–3.921; p = 0.036), and overall survival
(HR = 7.331; 95%CI: 2.182–24.630; p = 0.001).

Ahn et al.66 93 Low (<4) vs. high ($4)
SUVmax
Low (<2) vs. high ($2) TNR

SUVmax and TNR correlated significantly (p < 0.001) with
poor tumor differentiation. SUVmax $4 and TNR $2 were
significant predictors for early recurrence-free survival
(p = 0.026; p = 0.015) and overall survival (p = 0.005;
p = 0.013). However, PET was no independent prognostic
factor.

Kitamura et al.67 63 Low (<2) vs. high ($2) TNR TNR $2 was identified as an independent predictor for time
interval to HCC recurrence. It was significantly lower in
patients with recurrence beyond 1 year (4.4 6 1.6; p <
0.05) or no recurrence (3.8 6 1.5; p < 0.01) compared to
those with early (within 1 year) tumor relapse (8.4 6 6.3).
Apart from that, TNR was identified as an independent
prognostic factor for recurrence patterns according to the
MC. It was significantly lower in patients developing tumor
relapse within the MC (1.9 6 1.6; p < 0.05) or no
recurrence (1.3 6 0.5; p < 0.01) compared to patients with
tumor recurrence exceeding the MC (2.9 6 2.6).

Abbreviations: 18F-FDG, 18F-fludeoxyglucose; CI, confidence interval; HCC, hepatocellular carcinoma; HR, hazard ratio; MC, Milan criteria; MVI, microvascular invasion;
PET, positron emission tomography; SUV, standard uptake value; TMR, tumor-to-muscle ratio; TNR, tumor-to-nontumor uptake ratio.
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In the past, several studies were able to demonstrate that
enhanced 18F-FDG uptake on PET correlates with presence of
aggressive histopathologic features assessed on resection
specimen (Table 2).59–62 Other liver resection studies have
focused on the prognostic role of 18F-FDG-PET with regard
to recurrence-free and overall survival (Table 2).63–67 In 2
subsequent trials, the group by Hatano et al. demonstrated
beneficial post-resectional outcome in patients with low
tumor to non-tumor SUV ratio (TNR). Apart from that, TNR
was even identified as a significant and independent predictor
of postoperative recurrence (HR = 1.3; 95%CI 1.03–1.62;
p = 0.03) and overall survival (HR = 1.6; 95%CI 1.07–
2.38; p = 0.02), along with other well-known prognostic
factors like AFP level and macroscopic portal vein invasion.64

In a subset of 298 HCC patients following liver resection,
Han et al. identified preoperative SUV >3.5 as an independent
predictor of high grade tumor (HR = 3.305; 95%CI: 1.214–
8.996; p = 0.019), tumor recurrence (HR = 2.025; 95%CI
1.046–3.921; p = 0.036), and overall survival (HR = 7.331;
95%CI 2.182–24.630; p = 0.001).65

Analyzing 93 HCC patients, Ahn et al. demonstrated
SUVmax $4 and TNR $2 to be significant predictors for
both early recurrence-free survival (within 1 year from liver
resection; p = 0.026; p = 0.015) and overall survival (p =
0.005; p = 0.013). However, FDG uptake had not enough
prognostic power for remaining as an independent predictive
factor on multivariate analysis.66

Kitamura and colleagues were able to demonstrate that
TNR $2 is an independent predictor for time interval to HCC
recurrence (within 1 year vs. beyond 1 year or no recur-
rence).67 TNR was significantly lower in patients with either
recurrence beyond 1 year (4.4 ± 1.6; p < 0.05) or no recur-
rence (3.8 ± 1.5; p < 0.01) compared to those with early
(within 1 year) tumor relapse (8.4 ± 6.3). Apart from that,
TNR was identified as an independent prognostic factor for
recurrence patterns according to the MC. It was significantly
lower in patients developing tumor relapse meeting the MC
(1.9 ± 1.6; p < 0.05) or no recurrence (1.3 ± 0.5; p < 0.01),
compared to patients suffering from tumor recurrence
exceeding the MC (2.9 ± 2.6). The authors finally concluded
that 18F-FDG-PET may be useful for establishing an individu-
alized treatment strategy. They proposed primary liver resec-
tion in patients with TNR <2 (low risk of early and extended
HCC recurrence), but LT or adjuvant treatment in those with
TNR $2 (high risk of early or extended HCC recurrence after
hepatic resection).67

According to the presented data, there seems to be
enough evidence that 18F-FDG-PET correlates with tumor
biology and outcome in HCC patients following liver resection.
In the context of LT, these data may have important clinical
implications for applying FDG-PET in an individual decision
making process on liver resection for pretransplant bridging.

18F-FDG PET for predicting outcome after liver
transplantation

Correlation with unfavorable histopathologic features

Poor tumor differentiation and MVI are highly relevant prog-
nostic features in LT for HCC.10,22 In order to select suitable
liver transplant patients with advanced HCC but favorable
biology, Cillo et al. have implemented preoperative tumor
biopsy decision making.68 However, such a diagnostic approach
may not generally be recommended due to heterogenic tumor
aggressiveness and risk of tumor cell spread.25,26,69 As shown
in Table 3, 18F-FDG-PET is able to non-invasively indicate pres-
ence of MV and poor differentiation. We found a wide range of
sensitivity, specificity, positive predictive value (PPV) and neg-
ative predictive value (NPV). In contrast, accuracy rates were
rather high in all available studies, ranging from 51.3% to
71.4% for poor grading, and from 63.3% to 88.1% for MVI,
respectively. These findings clearly implicate that radiographic
results should be augmented by 18F-FDG-PET data for improv-
ing pre-LT assessment of biological tumor aggressiveness.

Predicting posttransplant outcome

In recent years, there is an increasing number of studies
that were focusing on the predictive value of FDG-PET in the
liver transplant setting (Table 4). In 2006, Yang et al. from
South Korea were the first to correlate preoperative 18F-FDG-
PET with outcome in 38 HCC patients following LT.70 In this
study, positive PET-status (18F-FDG uptake in the tumor
greater than in surrounding normal liver tissue) correlated
significantly with markers of biological tumor activity, such
as AFP-level (p < 0.001) and vascular invasion (p = 0.003).
Posttransplant HCC recurrence rate was 61.5% in 18F-FDG-
avid, but only 12% in non-18F-FDG-avid patients (p = 0.003).
The 2-year recurrence-free survival rates were 85.1% and
46.1% in patients with PET− and PET+ tumors, respectively
(p = 0.0005). In the Milan In subset (n = 26), none of 20 PET-
negative (0%) but 4 of 6 PET-positive patients (66.7%)

Table 3. 18F-FDG-PET for predicting aggressive histopathologic features in liver transplant patients with HCC

Authors n PET−/PET+ (n)

Predicting poor grading
(Sensitivity/Specificity/PPV/NPV/
Accuracy)

Predicting MVI
(Sensitivity/Specificity/PPV/NPV/
Accuracy)

Yang et al.70 38 25/13 47.8%/85.7%/84.6%/50%/60.5% 77.8%/79.3%/53.8%/92%/78.9%

Kornberg et al.72 42 26/16 83.3%/69.4%/31.3%/96.1%/71.4% 82.3%/92%/87.5%/88.5%/88.1%

Kornberg et al.73 91 36/19 76.4%/70.3%/37.1%/92.9%/71.4% 81.1%/90.7%/85.7%/87.5%/86.8%

Lee et al.75 191 136/55 37.3%/81.7%/75.5%/46%/51.3% 45.4%/83.9%/66%/69.1%/67.5%

Lee et al.76 280 190/90 (beyond MC)
52.6%/62.3%/61.2%/53.8%/57.1%

(beyond MC)
58.4%/68.6%/67.2%/60%/63.3%

Hsu et al.78 147 117/30 100%/80.7%/6.7%/100%/81% 30.3%/85.7%/56.7%/66.7%/64.6%

Abbreviations: MC, Milan criteria; NPV, negative predictive value; PET, positron emission tomography; PPV, positive predictive value.
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developed tumor relapse. In contrast, tumor recurrence rates
did not differ between PET− (60%) and PET+ (60%) patients
when exceeding the Milan criteria.70 The same group reported
in 2009 on 59 HCC patients that underwent 18F-FDG-PET prior
to LDLT (n = 57) or deceased donor (n = 2) LT.71 In multi-
variate analysis, only tumor SUVmax (TSUVmax)/normal
liver SUVmax (LSUVmax) $1.15 (p = 0.001) and vascular
invasion (p = 0.014) were identified as significant and inde-
pendent predictors of tumor recurrence. The authors critically
noted that the significance of the data might be limited by a
high rate of preoperative LRTT (75%) and, thereby, altered
tumor biology.71

Kornberg et al. have specifically assessed the predictive
value of pretransplant 18F-FDG-PET for presence of MVI.72

PET-positivity was found as the only independent clinical

predictor of MVI (HR = 14.4; 95%CI 0.003–0.126; p =
0.001) in 46 liver transplant patients. Positive and negative
predictive values of enhanced 18F-FDG uptake on pretrans-
plant PET were 87.5% and 88.5%. Eight of 16 PET+ patients
developed HCC recurrence (50%) but only 1 of 26 PET−
patients (3.8%; p < 0.001). In the Milan In subset, none of
17 PET-negative (0%) but 1 of 3 PET+ patients (33.3%) dem-
onstrated tumor relapse (p = 0.004). In the Milan Out sub-
group, tumor recurrence rates were 11.1% and 53.8%
in non-18F-FDG-avid and 18F-FDG-avid HCCs, respectively
(p = 0.004). The authors concluded that pretransplant
18F-FDG-PET is a useful and reliable predictor of MVI and
post-LT tumor recurrence. The lack of repeat 18F-FDG-PET
after neoadjuvant LRTT was recognized as a major limitation
of this trial.72 In a follow-up trial including 55 liver transplant

Table 4. 18F-FDG-PET for predicting outcome after liver transplantation for HCC

Authors n n (PET−/PET+)
Overall outcome
(PET−/PET+)

Outcome beyond standard criteria
(PET−/PET+)

Yang et al.70 38 25/13 Overall 2y RFS:
85.1%/46.1%

RR beyond Milan: 60%/57%

Lee et al.71 59 38/21 Overall 2y RFS: 97%/42% RR beyond Milan: 9%/67%

Kornberg et al.72 42 26/16 Overall 3y RFS: 93%/35% RR beyond Milan: 11.1%/53.8%

Kornberg et al.73 55 36/19 Overall 3y RFS:
93.3%/46.9%

3y RFS beyond Milan: 80%/44%

Kornberg et al.74 91 56/35 Overall RR: 3.6%/54.3% 5y RFS beyond Milan: 81%/21%
5y RFS beyond UCSF: 85.7%/19.2%

Lee et al.75 191 136/55 3y RFS: 86.8%/57.1% -

Lee et al.76 280 190/90 5y RFS within Milan:
92.3%/76.3%
5y RFS within UCSF:
91.9%/81.8%

5y RFS beyond Milan: 73.3%/37.5%
5y RFS beyond UCSF: 72.8%/30.7%

Lee et al.77 280 NCCK–In/
NCCK-Out
164/116

NCCK–In/NCCK-Out
5y RFS (clin. staging):
80.7%/45.1%
5y RFS (path. staging):
84%/44.4%
5y OS (clin. staging):
83.6%/59.8%
5y OS (path. staging):
85.2%/60.2%

NCCK–In/NCCK Out + Milan In/beyond
NCCK and Milan
5y RFS (clin. staging): 80.7%/75.5%/30.8%
5y RFS (path. staging): 84%/81%/30.8%
5y OS (clin. staging): 83.6%/73.5%/53.9%
5y OS (path. staging): 85.2%/73.8%/57.6%

Hsu et al.78 147 117/30 Overall 5y RFS:
84.8%/68.3%

Risk stratification based on PET and UCSF
(low-risk/intermediate risk/high risk)
5y RFS (clin. staging): 85.5%/83.9%/29.6%
5y RFS (path. staging): 94.0%/75.8%/29.6%

Hong et al.79 123 87/36 Overall 5y RFS:
93.4%/49.1%

Risk stratification based on PET and AFP
level
(low risk/intermediate risk/high risk)
Overall 5y RFS: 93.6%/77.7%/8.3%
5y RFS within Milan: 92.6%/73.9%/16.7%
5y RFS beyond Milan: 100%/100%/0%

Takade et al.80 182 139/43 Overall RR: 12%/28% Risk stratification based on Milan, AFP
and PET
(Milan In or Milan Out + AFP <115ng/ml
+ PET−/Others)
5y OS: 75%/44%

Abbreviations: AFP, alpha-fetoprotein; NCCK, National Cancer Center Korea; OS, overall survival; PET, positron emission tomography; RFS, recurrence-free survival;
RR, recurrence rate; UCSF, University of California San Francisco.
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patients, the authors reported on a relative risk of 9.5 and 6.4
for 18F-FDG-avid patients to reveal poor grading and MVI.
In multivariate analysis, only poor differentiation (HR = 44;
95%CI 4.248–455.774; p = 0.002) and PET+ status (HR =
23.9; 95%CI 2.143–268.588; p = 0.01) were identified as
independent promoters of tumor recurrence.73

The same group focused in 2011 on the prognostic impor-
tance of 18F-FDG-PET in advanced HCC stages (Table 4).74 In a
series of 91 liver transplant patients, the authors were able to
demonstrate that patients with PET-negative tumors exceed-
ing the MC or UCSF criteria had a comparable outcome to
patients meeting standard criteria. In multivariate analysis,
PET status was identified as the strongest clinical predictor of
recurrence-free survival (Odds ratio = 21.6; 95%CI 4.9–94.9;
p < 0.001). In addition, the authors identified PET-positivity as
an independent clinical predictor of patients’ drop out from
the waiting list due to tumor progression (HR = 5.5; 95%CI
1.5–22.2; p = 0.01). They suggested that patients with
18F-FDG-avid HCC on the waiting list should undergo aggres-
sive LRTT and close re-evaluations in order to prevent their
drop-out due to tumor progression.74

Lee et al. were the first to describe a specific association
of metabolic behavior of HCC on 18F-FDG PET/CT with risk
of early posttransplant tumor recurrence.75 In a series of
191 patients following LDLT, 20 patients suffered from early
(within 6 months) and 18 patients from late (beyond
6 months) tumor relapse, whereas 153 patients remained
tumor-free. Overall 3-year survival rate was 0% in patients
with early HCC recurrence, compared to 64% and 94% in
those with late or no tumor relapse (p < 0.001), respectively.
In multivariate analysis, only PET+ status was identified as an
independent predictor of early tumor recurrence (HR 8.472;
95%CI 3.077–23.325; p < 0.001), whereas PET-positivity did
not correlate with late HCC recurrence. The authors, there-
fore, concluded that early and late tumor relapse reveal dif-
ferent biological aggressiveness, which may be reflected by
18F-FDG uptake pattern on PET.75

In recent years, studies have increasingly focused on the
prognostic significance of hybrid selection criteria combining
18F-FDG uptake with morphometric data. In 2015, Lee et al.
reported on the so-far largest series in this context, including
280 HCC patients following LDLT.76 Apart from total tumor
size (TTS >10 cm) and MVI, PET-positivity was identified as
most significant independent prognostic factor in the Milan
Out subset (HR = 3.803; 95%CI 1.876–7.707; p < 0.001).
Consequently, the authors have stratified their data according
to PET findings and TTS, since both features were available
prior to LT. In PET-negative Milan Out patients with TTS <10 cm
(n = 55), 5-year overall and recurrence-free survival rates
were not significantly different (73.4%; 80.4%) from Milan
In patients (87.2%; 89.9%), but significantly better than in
PET-positive beyond Milan patients exceeding 10 cm in TTS
(59.7%; 42.8%; p < 0.001). By combining 18F-FDG-PETwith
TTS, 37.4% of patients beyond the MC were identified as
eligible liver transplant candidates in this series.76 The prog-
nostic power of this novel expanded HCC criteria set (“The
National Cancer Center Korea criteria”; NCCK criteria) in com-
parison to other established selection approaches has been
evaluated by the same transplant group.77 Enrolling 280
patients following LDLT, 164 of them fulfilled the NCCK criteria
(PET-negative + TTS <10 cm) and 132 met the MC. Based
on both preoperative and histopathologic staging, 5-year
recurrence-free survival rates were significantly higher in
patients fulfilling the NCCK criteria (80.7%; 84%) compared

to those exceeding them (45.1%; 44.7%; p < 0.001). Com-
parably, tumor-specific outcome was not different when
stratified according to the MC (Milan In: 82%; 84.4%; Milan
Out: 46.9%; 52.7%; p < 0.001). However, the NCCK
revealed a higher accuracy of predicting explant pathology
by preoperative imaging than the MC (95% vs. 78.9%;
Cohen’s Kappa 0.850 vs. 0.583).77

Recently, Hsu et al. proposed an expanded HCC selection
approach that was based on 18F-FDG uptake and UCSF crite-
ria.78 The authors distinguished between high (TNR $2;
n = 9), low (TNR <2, n = 21) and no FDG uptake (n = 117)
subgroups. The 5-year recurrence-free survival was signifi-
cantly worse in the high (29.6%) than in the low (85%; p =
0.005) and the no FDG uptake subsets (85%; p < 0.001). In
contrast, tumor-specific outcome did not differ between low
and negative FGD-uptake patients (p = 0.337). Based on
PET and pathological UCSF data, the following risk groups
were defined: Low-risk: UCSF In + negative FDG-PET;
intermediate-risk: beyond UCSF + FDG-negative or FDG-
positive with TNR <2; high-risk: FDG-uptake $2. Recur-
rence-free survival rates at 5 years post-LT were 94% in the
low-risk group, 75.8% in the intermediate-risk group (p =
0.013 vs. low-risk) and 29.6% in the high risk subset (p <
0.001 vs. low- and intermediate-risk patients). In multivari-
able analysis, only high risk status based on pathological
staging remained as a significant and independent promoter
of HCC recurrence (HR = 24.15; 95%CI 5.76–101.23; p <
0.001). Discrepant results between clinical and pathological
tumor staging and the small sample size in the high-risk sub-
group (n = 9) were recognized as study limitations.78

Other transplant groups recently suggested that combin-
ing 18F-FDG-PET with AFP level may significantly improve
pre-LT selection process. Hong et al. reported on a series of
123 patients that underwent 18F-FDG-PET prior to LDLT.79

Only pre-LT available tumor factors were included in this
analysis. In multivariable investigation, only PET-positivity
(HR = 9.766; 95%CI 3.557–26.861; p < 0.001) and serum
AFP level $200 ng/ml (HR = 6.234; 95%CI 2.643–14.707;
p < 0.001) were identified as independent prognostic factors
of HCC relapse. Accordingly, the authors defined the following
risk constellations: low risk: AFP <200 ng/ml + PET− status;
intermediate risk: AFP $200 ng/ml + PET− or AFP <200 ng/
ml + PET-positive; high risk: AFP $200 ng/ml + PET-positive.
Five-year recurrence-free survival rates were 93.6% in the
low-risk group (n = 75), 77.7% in the intermediate-risk
group (n = 36,) but only 8.3% in the high-risk subset (n =
12; p < 0.001).79 They proposed that the MC should be com-
pletely replaced by a biology-guided selection approach.

The prognostic value of combining 18F-FDG-PET with AFP
was just recently confirmed by a Japanese multicenter study
including 182 HCC patients.80 Apart from Milan Out status,
which was the strongest prognostic factor (p < 0.001), only
AFP level $115 ng/ml (relative risk = 3.077; 95%CI 1.748–
7.023; p = 0.008) and PET-positivity (RR = 2.554; 95%CI
1.101–5.924; p = 0.029) were identified as independent pro-
moters of HCC relapse. The following risk groups were defined:
group A: meeting the MC (n = 133); group B: beyond MC +
AFP level <115 ng/ml + PET− status (n = 22); group C:
beyond MC + AFP level $115 ng/ml and/or PET+ status (n =
27). Tumor recurrence-rates at 5 years post-LT were compa-
rable between group A and group B (6% vs. 19%; p = 0.176)
but significantly higher in group C (53%; p<0.001 vs. group A;
p = 0.012 vs. group B). Based on these findings, the authors
defined as novel expanded selection criteria: within the MC or
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beyond MC + AFP level <115 ng/ml + negative PET-status.
The 5-year recurrence-free survival rates were 75% and 44%
in patients meeting and exceeding them (p = 0.003). In addi-
tion, its correlation with poor grading and MVI was higher in
comparison to previously established HCC transplant criteria
(MC, UCSF, UTS; Kyoto, modified Tokyo).

Conclusions

Current available studies addressing the prognostic role of
18F-FDG-PET in liver transplant patients with HCC have
several limitations. First, they were of retrospective character

and included a relatively small number of patients. Second,
most of them have included patients after LDLT and the
results may not directly be transferred to recipients of a
deceased donor liver allograft. Third, study populations
were rather heterogeneous with regard to listing and
removal criteria, pretransplant waiting times and applied
LRTTconcepts. And furthermore, there were significant differ-
ences in qualitative and quantitative 18F-FDG uptake meas-
urements. However, as shown in this review, pretransplant
18F-FDG-PET provides very useful information on biological
tumor viability and posttransplant outcome. Despite the lack
of prospective clinical trials, there seems to be enough

Fig. 1. Selection algorithm using 18F-FDG-PET in HCC patients meeting morphometric standard criteria (A) or exceeding morphometric standard
criteria (B).
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evidence that 18F-FDG-PET may identify suitable liver trans-
plant patients with advanced tumor stages but less aggres-
sive behavior. By strictly adhering to established standards
of macromorphology-based liver allocation, these patients
are currently excluded from LT and, thereby, from a major
opportunity of cure. Based on the presented data, we
suggest a simplified selection algorithm combining morpho-
metric features with 18F-FDG-PET for improving outcome in
patients meeting (Fig. 1A) and exceeding (Fig. 1B) standard
criteria. Although these selection approaches have to be
validated by future studies, our review clearly suggests
that 18F-FDG-PET should be implemented in pretransplant
decision-making for safely expanding the acceptable tumor
burden limits and the pool of suitable liver transplant
patients with HCC.
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