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While nuclear cardiology is dominated by myocar-

dial perfusion imaging, beyond assessment of the

downstream effects of coronary artery disease, molecu-

lar imaging with positron emission tomography (PET)

provides an opportunity to non-invasively evaluate

atherosclerotic disease activity complementing multi-

modal assessments of anatomic, morphologic, and

hemodynamic disease severity. The processes which

drive atherosclerotic plaque progression and are impli-

cated in plaque rupture, namely macrophage infiltration,

active calcification (or microcalcifications), and inflam-

mation (increased metabolic activity) can be efficiently

depicted with 68Ga-DOTATATE, 18F-sodium fluoride,

and 18F-fluorodeoxyglucose PET, respectively.
18F-fluorodeoxyglucose PET imaging of

atherosclerosis provides a reliable and reproducible

measure of vascular inflammation as it indicates

increased metabolic activity of macrophages and prob-

ably also reflects contributions from local hypoxia and

efficiency of tracer delivery by the microcirculation.

Unfortunately, coronary 18F-FDG imaging is hampered

by problems related to tracer uptake in the myocardium.

Despite stringent dietary recommendations suppression

of myocardial activity is typically achieved in 57-85%

of patients.1-3 Often suboptimal suppression results in a

patchy distribution of myocardial uptake that can

obscure activity in one or more coronary vessels.3

Given the limitations of 18F-fluorodeoxyglucose

coronary imaging, it was proposed that tracers with

established roles in cancer imaging (68Ga-DOTATATE,
11C-PK11195, and 18F-fluoromethylcholine) might be

more specific for vascular inflammation and better suited

to atherosclerotic plaque imaging than 18F-fluo-

rodeoxyglucose.4 Especially 68Ga-DOTATATE which

binds to the somatostatin subtype-2 receptor (SST2) on

the surface of activated macrophages is particularly

promising. 68Ga-DOTATATE PET offers measurement

of both generalized atherosclerotic disease activity and

detailed information about local plaque functional phe-

notype distinguishing culprit from non-culprit coronary

lesions.5

Aside from inflammation, active calcification pro-

cesses play a central role in plaque progression and

rupture. While established coronary calcifications are

largely a hallmark of stable lesions, developing micro-

calcifications are an established marker of plaque

vulnerability.6 Such small foci of hydroxyapatite (or the

bone mineral) which are beyond the resolution of non-

invasive CT imaging can be depicted with 18F-sodium

fluoride PET. This imaging modality has been shown to

distinguish culprit from non-culprit lesions and

stable high risk from bystander plaques.3,7 More recently

in the field of coronary artery imaging, 18F-sodium flu-

oride has been established as a predictor of plaque

progression and it was shown that a whole-vessel 18F-

sodium fluoride uptake measure (the coronary micro-

calcification activity) acts as a strong independent

predictor of myocardial infarction.8-12 These important

studies position 18F-sodium fluoride ahead of other

vulnerable plaque tracers as its clinical utility for risk

stratification is particularly promising.13

To date we lacked dual-tracer PET studies targeting

plaque imaging with dual-time-point imaging. The study

by Reijrink et al provides important insights into

atherosclerotic plaque progression in the context of

baseline 18F-fluorodeoxyglucose and follow-up 18F-
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sodium fluoride PET.14 On a small cohort of type 2

diabetes patients participating in the RELEASE trial the

authors have performed 18F-fluorodeoxyglucose PET

and, at 5 years after the baseline scan, an 18F-sodium

fluoride acquisition. Since both these emission scanning

sessions we performed along with a low-dose computed

tomography scan obtained for anatomic reference and

attenuation correction purposes, aside from evaluating

PET tracer activity it was also possible to assess the

extent of atherosclerotic plaque within the great vessels.

Interestingly the authors observed a strong correlation

between baseline 18F-fluorodeoxyglucose and 5-year

follow-up and 18F-sodium fluoride uptake (r = 0.709, P
= 0.022). Additionally, similar to previous studies, pla-

que progression as evidenced on CT was more

pronounced in patients with higher 18F-sodium fluoride

uptake.8,9 The current study has some limitations. It was

based on a small population and the assessments of

atherosclerotic plaque burden were based on low-dose,

thick-slice CT acquired for attenuation correction pur-

poses which does not provide optimal image resolution

and quality for quantifying the extent of atherosclerosis.

Additionally, 18F-sodium fluoride and 18F-fluo-

rodeoxyglucose uptake were expressed as single

SUVmax or TBRmax measured within a relatively large

volume of interest (such as the entire ascending aorta

and the aortic arch)—yet it was recently proposed that

measures of uptake which consider both the extent and

intensity of uptake might be superior to characterize

atherosclerotic disease activity in the great vessels.15

On the molecular level, the association between

osteogenesis and inflammation in atherosclerosis was

widely reported, and the study by Reijrink et al supports

these findings at a non-invasive imaging level.16,17 This

association was also explored in histological assessment

of carotid endarterectomy specimens and preclinical

models. It was demonstrated that plaques with increased
18F-sodium fluoride uptake not only showed increased

microcalcification but also showed more pronounced

macrophage infiltration and apoptosis.6,16,17

The interplay between inflammation and microcal-

cification was recently reinvigorated also due to the

invention of a CT-derived surrogate measure of plaque

inflammation—the pericoronary adipose tissue (PCAT)

attenuation. In outcome studies it turned out that by

measuring the attenuation of the adipose tissue that is

immediately adjacent to the vessel wall it is possible to

distinguish culprit from non-culprit plaque in subjects

with an acute coronary syndrome and to risk stratify

stable coronary artery disease patients.18,19 In the coro-

nary arteries 18F-sodium fluoride uptake, whether

expressed with the SUVmax or TBRmax, was associated

with lesion PCAT density again confirming a close

association between residual inflammation and active

calcification process in the coronary vasculature.20

Given the wealth of information that can be derived

from atherosclerotic plaque PET imaging there are great

both clinical and research potentials in this advanced

non-invasive imaging modality. Firstly, given the fact

that PET depicts processes directly involved in plaque

progression and rupture it is plausible that it could help

identify patients at the highest risk of adverse cardio-

vascular events. While to date we only possess data

which support the use of 18F-sodium fluoride in this

context, future studies might broaden our armamentar-

ium of tracers which can enhance risk stratification.

Secondly PET imaging could facilitate establishing new

medication targeting atherosclerosis or elucidate the

beneficial effects of existing medication on plaque, thus

further improving the management of atherosclerosis

and ultimately providing a hope for reducing the burden

of cardiovascular disease.
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