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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This report describes progress in vision and navigation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoutdoor mobile robots at the Carnegie 

Melbn Robotics Institute during 1986. This research was sponsored by DARPA as part of the Strategic 

Computing Initiative. 

Our work during 1986 culminated in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo demonstration systems. The first system drives the 

Terregator, a desk-sized robot with six wheels, around the network of campus sidewalks. This system, 

named Sidewalk 11, uses a video camera to follow sidewalks and a laser rangefinder to detect and avoid 

stairs. Sidewalk II makes extensive use of map data, for visual predictions and for path planning. 

The second system, Park Navigation, uses the Navlab, our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnew Chemlet Van robot. The Park system 

concentrated on vision for following d m i i l t  roads, including curves, dirt and leaves, shadows, puddles, 

and both moving and fixed obstacles. We developed vision techniques for handling difficult roads, and 

built range finder programs for detecting and avoiding obstacles. 

Both the Sidewalk II and Park experiments were built into complete systems using CODGER, a novel 

whiteboard developed as part of the project. CODGER provides tools for handling geometry, motion over 

time, multiple processes, multiple processors, and multiple languages. 

This report is divided into four main sections. Section 1 is an introduction and overview, including a 

chronology for the project and a list of 1986 publications. Section 2 describes the Sidewalk I1 system; 

section 3 describes the Park experiments, and section 4 is about CODGER. 





2 

Section I 

Introduction and Overview 

1. Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This report reviews progress at Camegie Mellon from January 15, 1986 to January 14, 1987 on 

research sponsored by the Strategic Computing Initiative of DARPA, DoD, through ARPA Order 5351, and 

monitored by the US Army Engineer Topographic Laboratories under contract DACA76-85-(2-0003, titled 

"Road Following". This report zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconsists of an introduction and overview, and three detailed reports on 

specific areas of research. 

2. Overview 
During this contract year we have built zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo complete systems, Sidewalk I1 and Park Navigation; used 

two robot vehicles, Terregator and Navlab; built a single underlying software system, the CODGER 

"whiteboard"; and transferred technology to Martin Marietta. Each of these are explained below. 

A key concept in our work is integration. We have Integrated data from various sensors, such as video 

and range, in our sensor modules. We integrate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmap data with perceived objects to update the vehicle's 

position. The whiteboard integrates separate modules into a coherent software package. And our 

systems integrate software, computing hardware, and mobile chassis into robots. In short, we have 

integrated all the separate conponents necessary to produce functioning mobile robots, capable of 

moving through difficult, realistic, outdoor scenes. 

2.1. Sldewalk II 
The Sidewalk II system uses information from a map, from video and range sensors, and from the 

Terregator's dead reckoning, to drive around the Camegie Mellon campus sidewalks. Sidewalk II 

demonstrated the Terregator in continuous motion down straight paths and through intersections, and 

was the first actual testbed for the CMU whiteboard and system architecture. Sidewalk II perception 

includes bw-level data fusion, building a colored range image, to recognize and kcate stairs on the 

campus sidewalk network. The stairs are then used both as obstacles to be avoided and as landmarks 

for position update. Further information on Sidewalk II can be found in section II, "Sidewalk II: Perception 

and Capabilities." The use of the whiteboard by Sidewalk II is described in section IV, "The CMU System 

for Mobile Robot Navigation." 

2.2. Park Navlgatlon 
The Park system drives the Navlab robot van along a winding, nanow, asphalt path through Schenley 

Park adjacent to the CMU campus. The focus of Park work was real world perception, both video for road 

following and range for obstade avoidance. Park perception copes with difficult circumstances, including 

changing lighting, limited a priori models, and irregularly shaped natural objects. When the system 

detects an obstacle, it drives around it if possible, or if there is no clear path on the road, stops and waits 

for the object to move or be moved. Park navigation uses the whiteboard for system coordination. The 

Park navigation system is explained in detail in Section 111 of this report, "Vision and Navigation for the 
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Carnegie Melbn Navlab." zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.3. Terregator 

The Terregator is the vehicle we used for all our experiments during 1985, and continues to be used for 

our sidewalk experiments. It is about the sue of a desk, carries power and communications gear, and 

provides built-in motion commands. This year we have added a platform for more room, and have 

replaced the microwave link with two VHF video transmitters. Details of the Terregator were reported by 

Whiiaker 121. 

2.4. Navlab 
The Navlab (named from "Navigation Laboratory") is a selfcontained laboratory for navigational vision 

system research. The Navlab was based on a commercial van chassis, and is large enough to carry 

power, computers and researchers on board. It has been a great asset to our work to have processing 

and experimenters dose to the action. We no bnger have problems with video communications to 

remote computers, and researchers can quiddy see the actions of their programs, and greatly speed up 

the debuglreprogramhest zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcycle. The Navhb was built under separate DARPA funding, and has been used 

for our Park experiments since fall 1986. The design and construction of the Navlab are chronicled by 

Singh [l]. 

2.5. Whlteboard 
Intelligent mobile robots need to reason zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAabout geometrical relationships and how they change with 

time. A mobile robot system is built of many cooperating processes which need to communicate and to 

synchronize themselves. During the last year we have developed CODGER, a whiteboard, which provides 

tools for handling geometry, time, synchronization, and communication. On top of the CODGER tools we 

have built an architecture that sets conventions for control and data flow. This system structure is the 

basis of both the Sidewalk II and Park Navigation systems. CODGER and the associated architecture are 

described in Section IV of this report, "The CMU System for Mobile Robot Navigation." 

2.6. Technology Transfer 
Part of our charter is to cooperate with Martin Marietta in the development of the ALV (Autonomous 

Land Vehicle). Accordingly we have during the last year participated in the ALV quarterly meetings, in 

several Critical and Preliminary Design Reviews, and in a variety of less formal contacts with Martin 

Marietta. We have hosted a visitor from Martin for most of a year, first as a visiting scientist and since 

September as a graduate student. We have influenced the design of the ALV software and hardware 

architecture. The current combination of Suns and specialized processors on the ALV should make it 

relatively easy in the future to run CMU software on the ALV. 

We have also contributed several stand abne modules to the ALV. Early in the year, they received a 

path planner that uses a terrain database of the Martin Denver site to plan paths for the ALV. In March 

they received code for obstacle detection using the ERlM scanner. And in October they acquired our 

code for terrain analysis, again using ERlM data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i 
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3. Chronology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
January: 

February: 

February: 

February: 

March: 

March: 

April: 

June: 

August: 

August: 

October: 

October: 

October: 

October: 

November: 

November: 

November: 

December: 

Adaptive color runs 

Color cone finding 

First prototype whiteboard system runs 

Color-ERIM registration 

Terregator using ERIM runs in coal mine 

Navlab runs under joystick control 

First color segmentation run using Navlab with remote computers 

Hosted Blackboard workshop 

Navlab runs for the first time with on board computing, using ERlM 

FlDO stereo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAruns on Warp 

€RIM terrain analysis software exported to Martin Marietta 

Sidewalk II navigates complete course, including 90 and 135 degree turns, with 
continuous motion 

Whiteboard runs on Navlab 

First Navlab run with on board vision 

First vision nrns using texture 

Successful runs stopping for obstacles and restarting 

Sidewalk II drives Terregator successfully around stairs 

DARPA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdem0 Of Navlab Pa& System 

4. Personnel 

William Whittaker. 

Faculty: Martial Hebert, Katsushi Ikeuchi, Takeo Kanade, Steve Shafer, Chuck Thorpe, Jon Webb, 

Staff: Paul Allen, Mike Blackwell, Tom Chen, Jill Crisman, Kevin Dowling, Ralph Hyre, Jim Moody, 
Tom Palmeri, Eddie Wyatt. 

Visiting scientists: Arun Agatwal, Yoshi Goto, Take Fujimori, Kchie Matsuzaki, Taka Obatake 

Graduate students: Keith Gremban, Karl Kluge, InSo Kweon, Doug Reece, Bruno Serey, Tony Stentz, 

Rich Wallace 

5. Publications 

Machine Perception. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Unix Review 4(9), 1986. 

Crisman, J. 

Elfes, A. 

A Sonar-Based Mapping and Navigation System. 

In IEEE International Conference on Robotics and Automation. 3986. 

Goto, Y., Matsuzaki, K., Kweon, I., and Obatake, T. 
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CMU Sidewalk Navigation System. 

In Fall Joint Computer Conference. ACMAEEE, November, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1986. 

Hebert, M., and Kanade, T. 

Outdoor Scene Analysis Using Range Data. 

In IEEE International Conference on Robotics and Automation. 1986. 

Kanade, T., Thorpe, C., and Whittaker, W. 

Autonomous Land Vehicle Project at CMU. 

In ACM Conputer Conference. February, 1986. 

Kanade, T. and Thotpe, C. 

CMU Strategic Convuting Vision Reject Report: 1984 to 1985. 
Technical Report, The Robotics Institute, Carnegie Melbn University, 1985. 

Krogh, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB., and Thorpe, C. 

Integrated Path Planning and Dynamic Steering Control for Autonomous Vehicles. 

In IEEE International Conferem on R0botk.s and Automation. 1986. 

Matthies, L.H., and Shafer, S.A. 

Error modelling in stereo navigation. 

In Fall Joint Computer Conference. ACMAEEE, November, 1986. 

Serey, B. and Matthies, L. 

W a d e  avoidance using 1-0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstereo vision. 
Technical Report, Carnegie Melbn Robotics Institute, 1987. 

Shafer, S., Stentz, A., Thorpe, C. 

An Architecture for Sensor Fusion in a Mobile Robot. 

In IEEE International Conference on Robotics and Automation. 1986. 

Singh, J. et at. 

NavLab: An Autonomous VehM8. 
Technical Report, Camegie Melbn Robotics Institute, 1986. 

Thorpe, C. 

Vision and Navigation for the CMU Navlab. 

In SPIE. Socity of Photo-Optical Instrumentation Engineers, October, 1986. 

Wallace, R., Matsuzaki, K., Goto, Y., Crisrnan, J., Webb, J., and Kanade, T. 

Progress in Robot Road-Following. 
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Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I  

Sidewalk II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Perception and System Capabilities 

Y. Goto, T. Obatake 

1. Kweon, K. Matsuzaki 

This section describes the perception and system capabilities of the Sidewalk Navigation System II. 

The Sidewalk II system architecture is described in section IV. 

1. Perception Using Colored-Range Image 

1 .l. PERCEPTION Module Architecture for Sensor Fusion 
The main effort in designing the PERCEPTION module is deciding how to combine several types of 

sensors and sensor data processing modules into one system, and how to make them work efficiently. 

We designed a hierarchical structure and a monitor module which manages all parts of the hierarchy (see 

figure 1 ). 

cop01 
'arameters 

Vehicle- 
Pomon Objects 

I 
predicted Object zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPosition 

POSITION CALIBRATOR 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I PATCH MAKER I I 

Figure 1 : Structure of PERCEPTION module 
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1.1 .l. PERCEPTION MONITOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The PERCEPTION MONITOR has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo major roles: communication with other modules (the PILOT) 

and control of internal submodules. The design principle of this system is to provide a common structure 

for different sensors and algorithms. This tends to make the module interface rather high level. For 
example, a desired vehicle position for image input is usually decided by an external module using sensor 

parameters. However, if there are several types of sensors with different view angles, the common 

interface for those modules will be where PERCEPTlON should see instead of whem PERCEPTION 
should look from. This means the perception module itself must decide the best position from which to 

see the requested place. Communication with other modules means interpretation between the high level 

module interface commands and actual commands to internal submodules. 

The control flow of the perception process is rather simple: it progresses from segmentation to position 

update. The PERCEPTION MONITOR activates the PATCH MAKER and the POSITION CALIBRATOR 

in this sequence. The functions for the interpretation of the high level commands from the other planning 

module (the PILOT) are described in the following paragraphs. 

The PILOT requests what Wjects to see, but does not say which sensor should be used. The 

PERCEPTION MONITOR decides which sensor and segmentation module is the best for the requested 

objects. The current system has two sensors and segmentation modules. If all requested objects are 

sidewalks or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAintersections on a flat plane, the PERCEPTION MONITOR selects the color segmentation 

module as a PATCH MAKER. If threegimensional objects such as stairs and slopes are included in the 

requested objects, the PERCEPTION MONITOR selects the cobred-range segmentation module. 

The PILOT module does not say when PERCEPTION should see an object because the view frame of 

PERCEPTION depends on the sensor used, and the PILOT does not know which sensor will be used. 

Instead, the PERCEPTION MONITOR uses its internal position decision algorithm. 

The position decision algorithm has two steps. First, this module simulates the view frame and the 

vehicle’s future path which is posted in the BLACKBOARD by LOCAL PATH PLANNER. When the 

simulated view frame covers the region which the PILOT has requested PERCEPTION to see, this 

vehicle position is defined as the image input position. Second, this module monitors current vehicle 

position by watching the moving vehicle position on the BLACKBOARD. When the moving vehicle 

position reaches the image input position, this module controls sensors to input an image. 

1.1.2. PATCH MAKER 

segmentation module, and a colored-range segmentation module. They are described in section 1.2. 

The PATCH MAKER, the region segmentation sub module, has a color segmentation module, a range 

The data structure which holds Patch data segments is common to all three segmentation modules. 

This data includes cobr fype, sudace fype and notmal, powgons for boundary shape, and relation to 

neighbor segments. 

1.1.3. POSITION CALIBRATOR 

The predicted objects are described in the current coordinate system, but the vehicle coordinate 

system is used to describe the detected objects. The POSITION CALIBRATOR then computes the 

vehicle position in the current coordinate system, by applying the transformation matrix between the two 
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coordinate systems. The problem for this computation is that the predicted object shape and the detected 

object shape are not the same because of imperfections in the MAP and in perception. Therefore, the 

POSITION CALIBRATOR must find the most appropriate match for these two shapes. 

To get the best matching point, the POSITION CALIBRATOR calculates the distance between the 

predicted lines and the detected lines of object polygons, and finds the position which minimizes the 

distance. Sometimes a scene is composed of only parallel lines (for example sidewalk), which are 

insufficient to decide a matching point. In this case, the POSITION CALIBRATOR derives a line equation 

on which the vehicle is located instead of a point for vehicle position. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.2. Colored-Range Image Analysls 

It is very difficult to recognize complex objects in outdoor scenes using only one kind of sensor, but 

several different sensors can provide many clues about the environment. For example, use of both range 

data and color images provides a very powerful vision system for outdoor scene analysis: range data 

provide information about the geometry of the scene, and color images provide information on the 

physical properties of objects. In order to use these different zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtypes of sensor data, we must integrate them 

using sensor fusion techniques. The registration between range data and color images can be a first step 

of sensor fusion. We call the image which has both color information and depth values a colored-range 

image. Next we describe the registration algorithm for color and range image, the segmentation 

procedure for range data, color segmentation algorithm, and how to use a colored-range image. 

1.2.1. Reglstratlon 

Colored-range images are created by registering color data onto range data. In order to register them, 

we need to know the camera parameters: the position and the orientation of the color camera relative to 

the range scanner. We developed a method to obtain these camera parameters, which consists of two 

steps: the initial value estimation and the optimum value estimation. The parameters calculated by the 

first step can be used for some simple objects. However, they are not accurate enough for our test site. 

The second step can give more accurate camera parameters by an iterative numerical method using the 

result of the first step as starting values. The details of these methods are described in the Appendix to 

this section. 

1.2.2. Range Image Segmentation 

We have two main processing modes in range segmentation: rough region segmentation and the 

extraction of vertical surfaces. Rough segmentation uses three basic attributes: jump edges, surface 

normals, and surface curvatures. Flat, horizontal surfaces can be extracted by using the surface normals, 

and large obstacles will be detected with surface normals pointed in other directions. This process, 

however, cannot provide a detailed description of a scene with small objects. In order to obtain a detailed 

description of a scene we need to use special purpose processing. For a scene containing stairs, we 

extract vertical surfaces using the fact that pixels along the column in the range image will have constant 

depth value. We produce the final range segmentation by combining the regions from these processes. 
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(a)Range image 

(b)Original color image (blue intensity) 

-- 

(c)Co/ored-range image 

Figure 2: Color and range image registration 

1.2.3. Color Segmentatlon 

Our test zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsite includes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfive types of objects to be distinguished: sidewalks, intersections, a slope, stairs, 

and grass. The surface color of the first four objects are almost the same shade of gray, and the grass is 

green. Therefore, we tried to segment the image into gray regions and nongray regions. 

The difficulties in color segmentation are caused by shadows of trees, of buildings, and of the vehicle 

itself, and by changing color values depending on weather conditions. In order to obtain reliable 

segmentation results, the program creates a 4B-G image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(B: brightness of blue, G: brightness of green), 

which is segmented by thresholding. Subtracting green from blue reduces the effect of shadows. There 

are two methods for finding the threshold: When the histogram of the 4B-G image has one clear valley, 

the program sets the intensity value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat the valley as the threshold. When it does not have a clear valley, 

the program selects a threshold which is close to the previous threshold value, and at which the 

histogram has a local minimum value. 

Our color segmentation method can separate the sidewalks, the intersections, the stairs, the slope, and 

the grass under different weather conditions: cloudy days, rainy days, and sunny days. It also works well 

even if scenes include pretty sharp shadows. 
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1.2.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASegmentation of Colored Range Image 

The segmentation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcolored range images is executed using both color segmentation and range 

image segmentation. Color segmentation assigns a color label to each pixel. Range image segmentation 

assigns a surface label to each pixel. Therefore, each pixel in a colored range image has both a color 

label and a surface label. Our method creates segments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that in each segment all pixels have the 

same color label and the same surface label. 

1.25. Result of Real Scene Analysls 
One good example to show the effectiveness of the colored-range segmentation module is a slope and 

stairs scene on the CMU campus sidewalk. The slope and the stairs are made of concrete and have the 

same gray color. The slope and roadside grass are almost on the same plane. Therefore, segmentation 

using only color can not separate the slope and the stairs, and segmentation using only range can not 

separate the slope and the road side grass. Overlap segmentation using a colored-range image can 

extract the concrete slope which is the only navigable region in this scene. Figure 3 shows the results of 

color segmentation, range segmentation, and final overlap segmentation. 

2. System Capabilities 

Navigation System can drive the vehicle, Terregator, on the CMU campus. It has capability 

Using perception as described above and the system architecture described in section IV, the Sidewalk 

0 to execute a prespecified user mission over a mapped network of sidewalks, including 

to recognize landmarks, stairs and intersections under different weather conditions including 

to drive continuously zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat 100 mmlsec, slowing down in turning to keep turns stable. 

tuming at the intersections and driving up the bicycle slope, 

sunny days, rainy days, and even if scenes include fairly sharp shadows, and 

Figure 4 illustrates the vehicle trajectories in the real runs. The vehicle navigated along the square and 

diagonal test course (a), and drove up the bicycle slope, avoiding the stairs (b). 

1. APPENDIX: A method for calibrating a color camera and a range scanner. 
In this appendix, we describe the details of the calibration method for a color camera and a laser range 

scanner. The calibration consists of two steps: the initial value estimation and the optimum value 

estimation. We used a conventional lens calibration method to obtain a nonlinear transformation (a third 

order polynomial was adopted in our experiment) between the real image plane and the ideal image 

plane. The focal length of the camera was assumed to be unity in this experiment. Then, if we transform 

real image points to ideal ones using the result of the lens calibration, we can use the linear perspective 

projection model. 

1.1. Initial estimation by a least-squares criterion 
In the initial value estimation step, the measured tilt angle of the color camera is used to simplify the 

problem. Thus the position of the camera relative to the range scanner and its focal length are the only 

unknown parameters. The unknown parameters are computed by solving a least-squares criterion. 

A pair of range/color images is first measured, then a set of of points <=(+ yi., ti) is selected in the 

range image along with the corresponding set of pixels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r,.. ci). From the homogeneous transformation, the 
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(a) Color segmentation 

(b) Range segmentation 

(c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAColored-range segmentation 

(d) Colored-range segmentation on x-y plane 

Figure 3: Colored range segmentation 

following relationship between cameracentered points and range scanner-centered points can be 

obtained. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P F = R P f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- P  

where, P: and are a 3D scene point in a camera-centered coordinate 

and a range scanner-centered coordinate respectively, 
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R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a) Along the square and diagonal test course zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
intersection’ + t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

slope 

(b) Around the bicycle slope and the stairs 

Figure 4: The Vehicle trajectories zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P is the position vector of the camera relative to the range scanner, 

and R is the 3x3 rotation matrix between two sensors. 

Perspective transformation provides the following equations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAri = fz; 

x;ci = fy ;  

where, Pf = (x;. y;, 2;) and f is the focal length of the camera. 
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By substituting Eq. (1) into Eq. (2) and Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) and rearranging it, we can obtain the following 

equations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPf ri - P, ri - f R, PI + Pz* = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

R ,  PI ci - P,ci - f R 2 <  + P,,' = 0 

where, R, ,  R,, and R, is each row vector of rotation matrix R and Py* = f Py, PzD = f Pz 

Using Eq. (4), the criterion can be written in the following form, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C = r k l ( ( A i  - P,Bi - f C i  + Pi)* + ( D i  - P x E i  - f F i  + P,,'),) 

where, Ai = R, P: ri, Bi = ri, Ci = R, P:, Di = R ,  f ci, Ei = ci, and F, = R, Pr 

To make a simpler form, we use a matrix representation. 

C = IlU - A VI2 + IlW - B VllZ 

where,V= [P P ' Pz'fJ', A= [Bi 0 - 1 Cil , U =  [A, - - A,,]', and W =  [D, - - - DJ' 
X Y  

(4) 

The camera parameters, which minimize the criterion, can be determined in the following form by 

taking the partial derivative of Eq. (5) with respect to the vector V and setting it to zero. 

V = ( A ' A + B ' B ) - ~ ( A ' U + B ' W )  (6) 

The problem of finding camera parameters is now just a matrix computation and the matrix form is 

given in Eq. (5). 

Because the focal length is fixed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunity in our projection model, the partial derivative with respect tof 

is equal to zero. This causes the following changes in A , U, B ,  and W of Eq. (5). 

v= [P, Py' Pz7' 
A=[BiO - 1 3  
B=[E iO - 1 1  

U = [ A ,  - C, - - 
W=[D1 - F, 

A,, - C,, 1' 
* - D,, - F,, 1' 

1.2. Optimum camera parameters by Newton-Gauss method 
Once the initial camera parameters are computed by the first step, the optimum camera parameters 

including positions and orientations of the camera can be numerically computed by using the Newton- 

Gauss method. 

The vector V has the unknown parameters as its elements. The unknown parameters are the position 

vector ( P, Py Pz ) of the camera relative to the range scanner, the pan (a), the tilt @), and the rotation (y) 

angle of the camera and the focal length f .  With the measured color image points ( ri ci ), the 

corresponding 3-D position vectors ( xi yi zi ) and the initial parameters computed by the first step, we can 

easily find a function Fi(V) which represents the relationship between the given 3-0 scene points and the 

corresponding color image points. The error between the measured color image points and the ideal 

image points can be expressed by the following equation. 
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The condition for minimum error value is that the partial derivative of Eq. (7) with respect to camera 

parameters should be equal to zero. From this condition, we obtain the following equation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA ( v ) + ~  A(C)=O (8) 

where, 4 is Jacobian of function Fi, 
A(v) is correction for camera parameters, 
and A(c) =-(li-Fi(VJ) 

Finally the equation for the correction of camera parameters can be obtained as 

Using Eq. (9) the procedure is iterated until there is no change in the correction values of the camera 

parameters. 
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1. Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Robotics is where Artificial Intelligence meets the real world. AI deals with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsymbols, rules, and 

abstractions, reasoning about concepts and relationships. The real world, in contrast, is tangible, full of 

exceptions to the rules, and often stubbornly difficult to reduce to logical expressions. Robots must span 

that gap. They live in the real world, and must sense, move, and manipulate real objects. Yet to be 

intelligent, they must also reason symbolically. The gap is especially pronounced in the case of outdoor 

mobile robots. The outdoors is constantly changing, due to wind in trees, changing sun positions, even 

due to a robot’s own tracks from previous runs. And mobility means that a robot is always encountering 

new and unexpected events. So static models or preloaded maps are inadequate to represent the robot’s 

world. 

The tools a robot uses to bridge the chasm between the external world and its internal representation 

include sensors, image understanding to interpret sensed data, geometrical reasoning, and a concept of 

time and of the vehicle’s motion over time. We are studying those issues by building a mobile robot, the 

Camegie Mellon Navlab, and giving it methods of understanding the world. The Navlab has perception 

routines for understanding color video images and for interpreting range data. CODGER, our whiteboard, 

proposes a new paradigm for building intelligent robot systems. The CODGER tools, developed for the 

Navlab and its smaller cousin the Terregator, handle much of the modeling of time and geometry, and 

provide for synchronization of multiple processes. Our architecture coordinates control and information 

flow between the high-level symbolic processes running on general purpose computers, and the lower- 

level control running on dedicated real-time hardware. The system built from these tools is now capable 

of driving the Navlab along narrow asphalt paths near campus while avoiding trees and pausing for 

joggers that get in its way. 

This report describes the Navlab [Singh 861 and the software we have built over the past year: color 

vision, for finding and following roads [Thorpe 861; 3-D perception, for obstacle avoidance [Hebert 86); 

and the CODGER whiteboard [Shafer 861. 

2. Navlab: Navigation Laboratory 
The Navigation Laboratory, Navlab, is a self-contained laboratory for navigational vision system 

research (see figures 1 and 2). The motivation for building the Navlab came from our earlier experience 

with the Terregator, a six-wheeled vehicle teleoperated from a host computer through a radio link. The 
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Figure 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: The Navlab 

Terregator had been a reliable workhorse for small-scale experiments, such as the Campus Sidewalk 

navigation system [Goto 861. However, we have outgrown its capabilities. As we began to experiment 

with sensor fusion, the Terregator ran out of space and power for multiple sensors. When we wanted to 

expand our test areas, communications to a remote computer in the lab became more difficult. And as 

the experiments became more sophisticated, we found it more productive for the experimenters to test or 

debug new programs near or in the vehicle, instead of in a remotely located laboratory. All these factors 

culminated in the design and construction of the Navlab [Singh 861. 

Navlab is based on a commercial van chassis, with hydraulic drive and electric steering. Computers 

can steer and drive the van by electric and hydraulic servos, or a human driver can take control to drive to 

a test site or to override the computer. The Navlab has mom for researchers and computers on board, 

and has enough power and space for all our existing and planned sensors. This gets the researchers 

close to the experiments, and eliminates the need for video and digital communications with remote 

computers. 

Features of the Navlab include: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Onboard computers: We have five computer racks, one for low-level controllers and power 

smoothing, one for video distribution, VCRs, communications and miscellaneous equipment, 
two racks for general-purpose processors (currently Sun workstations), and one for a Warp 
processor. 

0 Onboard researchers: There is always a safety driver in the driver’s seat. There is room 
for four researchers in the back, with a terminal or workstation for each. An overhead shelf 
holds video monitors and additional terminals. The researchers can monitor both their 
programs and the vehicle’s motion. 

0 Onboard power: The Navlab carries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo 5500-W generators, plus power condaioning and 
battery backup for critical components. 

~Onboard sensors: Above the cab is a pan mount carrying our laser scanner and a 
mounting rail for a color TV camera. There will eventually be a separate pamilt mount for 
stereo cameras. 

Evolving controller: The first computer controller for the Navlab is adequate for our current 
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Figure 2: Navlab interior 
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needs. It steers the van along circular arcs, and has commands to set speed and 
acceleration, and to ask for the current dead reckoned position estimate. The controller will 
evolve to do smoother motion control, and to interface with an inertial guidance system 
possibly even with GPS satellite navigation. It will also eventually watch vital signs such as 
computer temperature and vehicle hydraulic pressure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3. Color Vision 
The Navlab uses color vision, specifically multiclass adaptive color classification, to find and follow 

roads. Image points are classified into "road" or "non-road" principally on the basis of their color. Since 

the road is not a uniform color, color classification must have more than one road model, or class, and 

more than one non-road class. Because conditions change from time to time and from place to place 

over the test course, the color models must be adaptive. Once the image is classified, the road is 

identified by means of an area-based voting technique that finds the most likely location for the road in 

the image. 

3.1. Vision Principles for the Real World 

We based the development of our vision system on the following principles: 

Assume variation and change. On sunny days there are shadowed areas, sunlit areas, and patches 

with dappled sunlight. On rainy days, there are dry patches and wet patches. Some days there are wet, 

dry, sunny and shadowed areas all in the same image. The road has clean spots and other places 

covered with leaves or with drips of our own hydraulic fluid. And as the sun goes behind a cloud or as the 

vehicle turns, lighting conditions change. We therefore need more than one road and non-road color 

model at any one time, those color models must adapt to changing conditions, and that we need to 

process images frequently so that the change from one image to the next will be moderate. 

Use few geometric parameters. A complete description of the road's shape in an image can be 

complex. The road can bend gently or turn abruptly, can vary in width, and can go up- or downhill. 

However, the more parameters there are, the greater the chance of error in finding those parameters. 

Small misclassifications in an image could give rise to fairly large errors in perceived road geometry. 

Furthermore, if all the road parameters can vary, there are ambiguous interpretations: Does the road 

actually rise, or does it instead get wider as it goes? We describe the road with only two free parameters: 

its orientation and its distance from the vehicle. Road width is fixed, we assume a flat world, and we 

decree that the road is straight. While none of these assumptions is true over a long stretch of the road, 

they are nearly tnre within any one image; and the errors in road position that originate in our 

oversimplifications are balanced by the smaller chance of bad interpretations. If our system classifies a 

few pixels incorrectly as road, the worst it will do is to find a slightly incorrect road. A method that tries to 

fit more parameters, on the other hand, may interpret parts of the road perfectly, but could find an abrupt 

turn or sudden slope near any bad pixels. 

Work in the Image. The road can be found either by projecting the road shape into the image and 

searching in image coordinates, or by back projecting the image onto the ground and searching in world 

coordinates. The problem with the latter approach comes in projecting the image onto an evenly spaced 

grid in the world. The points on the world grid close to the vehicle correspond to a big area in the lower 

part of the image; points farther away may correspond to one or a few pixels near the top. Unless one 
uses a complex weighting scheme, some image pixels (those at the top that project to distant world 
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points) will have more weight than other (lower) points. A few noisy pixels can then have a big zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor a small 

effect, depending on where in the image they lie. On the other hand, working directly in the image makes 
it much easier to weight all pixels evenly. We can directly search for the road shape that has the most 

road pixels and the fewest non-road pixels. Moreover, projecting a road shape is much more efficient 

than back projecting all the image pixels. 

Calibrate directly. A complete description of a camera must include its position and orientation in 

space, its focal length and aspect ratio, lens effects such as fisheye distortion, and nonlinearities in the 

optics or sensor. The general calibration problem of trying to measure each of these variables is difficult. 

It is much easier, and more accurate, to calibrate the whole system than to tease apart the individual 

parameters. The easiest method is to take a picture of a known object and build a lookup table that 

relates each world point to an image pixel and vice versa. Projecting road predictions into the image and 

back projecting detected road shapes onto the world are done by means of table lookup (or table lookup 

for close-by values with simple interpolations). Such a table is straightforward to build and provides good 

accuracy, and there are no instabilities in the calculations. 

Use outside constraints. Even without a map of our test course or an expensive inertial navigation 

system, we know, based on the previous image and on vehicle motion, approximately where the road 

should be. Our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhiteboatd, described in section 5, can predict where the road should appear if the road 

were straight and vehicle navigation were perfect. Adding a suitable margin for curved roads and sloppy 

navigation still gives useful limits on where in the image to look for the road. 

Test with real data. We ran our VCR nearly every time we took the vehicle out, to collect images 

under as many conditions as possible. We recorded sunny days, cloudy days, rainy days, leaves on 

trees, leaves turning color, leaves falling, early morning, noon, after dusk, even a partial solar eclipse. 

Strategies that worked well on one set of images did not always work on the others. We selected the 

toughest images, ran our best algorithms and printed the classification results, changed parameters or 

algorithms, reran the data set, and compared results. This gave us the best chance of being methodical 

and of not introducing new bugs as we went. When the image processing worked to our satisfaction, we 

ran simulations in the lab that included the whiteboard, range processing, path planning, and a vehicle 

simulator, with the vision component processing stored images and interacting with the rest of the system. 

When the simulations worked in the lab, we moved them to the vehicle. Only after the simulations worked 

on the vehicle’s computers, and we were sure that all necessary software was on the van, did we go into 

the field for real tests. Even then not everything worked, but there were many fewer bugs than there 

would have been without the simulations and tests. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARoad Following Algorithm 

We followed these principles in building and tuning adaptive color classification for following roads. 

Figure 3 shows a relatively simple scene to help explain our algorithm. As shown in figure 4, the 

algorithm involves three stages: 
1. Classify each pixel. 

2. Use the results of classification to vote for the best-fit road position. 

3. Collect new color statistics based on the detected road and non-road regions. 

Pixel classification is done by standard pattern classification. Each class is represented by the means, 

variances, and covariances of red, green, and blue values, and by its a priori likelihood based on 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: Original Image 

expected fraction of pixels in that class. For each pixel, calculating the class to which it most likely 

belongs involves finding how far the pixel’s values lie from the mean of each class, where distance is 

measured in standard deviations of that class. Figures 5 and 6 show how each pixel is classified and how 

well it matches. 

Once each point has been classified, we must find the most likely location of the road. We assume the 

road is locally flat, straight, and has parallel sides. The road geometry can then be described by two 

parameters as shown in figure 7: 

1. The intercept, which is the image column of the road’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvanishing point. This is where the 
road centerline intercepts the horizon (or more precisely the vanishing line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the locally flat 
plane of the road; since the camera is fixed to the vehicle this vanishing line is constant 
independent of the vehicle’s pitch, roll, and yaw). The intercept gives the road’s direction 
relative to the vehicle. 

2. The orientation of the road in the image, which tells how far the vehicle is to the right or left 
of the centerline. 

We set up a two-dimensional parameter space, with intercept as one dimension and orientation as the 

other. Each point classified as road votes for all road orientationlintercept combinations to which it could 

belong, while nonroad points cast negative votes, as shown in figure 9. The orientationhtercept pair that 

receives the most votes is the one that contains the most road points, and it is reported as the road. For 

the case of figure 3, the votes in orientationlintercept space look like figure 10. Figure 11 shows the 

detected position and orientation of the road. It is worth noting that since this method does not rely on the 

exact local geometry of the road, it is very robust. The road may actually curve or not have parallel 

edges, or the segmentation may not be completely correct. But since this method does not rely on exact 

geometry, the answer it produces is adequate to generate an appropriate steering command. 
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Figure 4: Color vision for road following, including color classification, Hough transform for road 

region detection, and updating multiple road and non-road models. 

Figure 5: Segmented image. Color and texture cues are used to label points below the horizon into 

two road and two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoff road classes 
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Figure6: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARoad probability image. The pixels that best match typical road colors are displayed 

Once the road'has been found in an image, the color statistics of the road and offroad models are 

modified for each class by resampling the detected regions (figure 12) and updating the color models. 

The updated color statistics will gradually change as the vehicle moves into a different road color, as 

lighting conditions change, or as the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcolors of the surrounding grass, dirt, and trees vary. As long as the 

processing time per image is low enough to provide a large overlap between images, the statistics adapt 

as the vehicle moves. The road is picked out by hand in the first image. Thereafter, the process is 

automatic, using the segmentation from each image to calculate color statistics for the next. 

brightest. 

There are several variations on this basic theme. One variation is to smooth the images first. This 

throws out outliers and tightens the road and non-road clusters. Another is to have more than one class 

for road and for non-road, for instance one for wet road and one for dry, or one for shadows and one for 

sun. Other variations change the voting for best road. Besides adding votes for road pixels, we subtract 

votes for non-road points. Votes are weighted according to how well each point matches road or non- 

road classes. Finally, an image contains clues other than color, such as visual texture. Roads tend to be 

smooth, with less high-frequency variation than grass or leaves, as shown in figure 13. We calculate a 

normalized texture measure, and use that in addition to color in the road classification. 

3.3. Implementation, Details, and Results 
The implementation of road following runs in a loop of six steps: image reduction, color classification, 

texture classification, combining color and texture results, voting for road position, and color update. 

These steps are shown in figure 14, and are explained in detail below. 

Image Reduction. We create a pyramid of reduced resolution R, G, and B images. Each smaller 

image is produced by simple 2 x 2 averaging of the next larger image. Other reduction methods, such as 

median filtering, are more expensive and produce no noticeable improvement in the system. We start 
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P: Road direction relative to vehicle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0: Vehicle position relative to road center 

Find a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgood combination of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P,@) 

Figure 7: Hough Transform that considers the geometry of road position and orientation. Geometry of 

locally flat, straight, and parallel road regions can be described by only P and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. Point A classified as road 

could be a part of the road with the shown combination of (P, e), and thus casts a positive vote for it. 

Point B classified as off-road, however, will cast a negative vote for that (P I  e) combination. 

with 480 x 512 pixel images, and typically use the images reduced to 30 x 32 for color classification. We 

use less reduced versions of the images for texture classification. Image reduction is used mainly to 

improve speed, but as a side effect the resulting smoothing reduces the effect of scene anomalies such 

as cracks in the pavement. 

Color Classification. Each pixel (in the 30 x 32 reduced image) is labeled as belonging to one of the 

road or non-road classes by standard maximum likelihood classification. We usually have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo road and 

two non-road classes. Each class is represented by the mean R, G, and B values of its pixels, by a 3 x 3 

covariance matrix, and by the fraction of pixels expected a priori to be in that class. The classification 

procedure calculates the probability that a pixel belongs to each of the classes, assigns the label of the 

most probable class, and records the maximum road and non-road probabilities for each pixel. 
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Figure 8: A road point could be a part of roads with different orientations and vanishing points. 

Figure 9: The point from figure 8 would vote for these orientation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ intercept values. 
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Figure 10: Votes for best road orientation and intercept, and point with most votes (dark square), for 

road in figure 3. 
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Figure 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Detected road, from the point with the most votes shown in figure 10. 

Figure 12: Updating road and nonroad model colors, leaving a safety zone around the detected mad 

region. 

Texture Calculation. This is composed of six substeps: 

Calculate texture at high resolution by running a Robert's operator over the 240 x 256 image. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Calculate a low resolution texture by applying a Robert's operator to the 60 x 64 image. 

0 Normalize the texture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby dividing the high resolution texture by a combination of the average 
pixel value for that area (to handle shadow interiors) and the low resolution texture (to 
remove the effect of shadow boundaries). The average pixel value is the value from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe 
corresponding pixel in the 120 x 128 reduced image. 
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Figure 13: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZoomed picture of road-nonroad boundary. The road (at left) is much less textured than 

the grass (at right). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 14: Processing cycle for color vision. 
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Figure 15: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALow resolution texture image, showing textures from figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. The brighter blocks are 

image areas with more visual texture. 

high-freq gradient 

ax low-freq gradient +px mean pixel value 
normalized gradient = 

Typical values for the coefficients are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 0.2 and p = 0.8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Threshold. Produce a binary image of "microedges" by thresholding the normalized gradient. 

A fairly low threshold, such as 1 , is usually adequate. 

0 Count Edges. Count the number of edges in each pixel block. This gives a 30 x 32 pixel 
texture magnitude image. Figure 15 shows the texture image derived from figure 3. Each 
texture pixel has a value between 0 and 256, which is the number of pixels in the 
corresponding area of the full-resolution image that are microedges. 

0 Texture Classification. Classify each pixel in the 30 x 32 image as road or non-road on the 
basis of texture, and calculate a confidence for each label. We found experimentally that a 
fixed mean and standard deviation for road and non-road textures were better than adaptive 
texture parameters. Our best results were with road mean and standard deviation of 0 and 
25, and non-road values of 175 and 100. Effectively, any pixel block of the image with more 
than 35 microedges above threshold is considered textured, and is therefore classified as 
nonroad. 

Combination of Color and Texture Results. Color is somewhat more reliable than texture, so the 

color probabilities are weighted somewhat more than the probabilities calculated by texture. The result of 

this step is a final classification into road or non-road, and a "confidence" calculated by 

Max(road confidence, non-road confidence) - Min(road confidence, non-road confidence) 

Vote for Best Road Position. This step uses a 2-D parameter space similar to a Hough transform. 

Parameter 1 is the column of the road's vanishing point, quantized into 32 buckets because the image on 

which the classification and voting are based has 32 columns. Parameter 2 is the road's angle from 

vertical in the image, ranging from -1 to 1 radian in 0.1 radian steps. A given mad point votes for all 

possible roads that would contain that point. The locus of possible roads whose centerlines go through 
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that point is an arctangent curve in the parameter space. Because the road has a finite width, the arctan 

curve has to be widened by the width of the road at that pixel's image row. Road width for a given row is 

not a constant over all possible road angles but is nearly constant enough that it doesn't justify the 

expense of the exact calculation. Each pixel's vote is weighted by its calculated confidence. Pixels 

classified as non-road cast negative votes (with their weights reduced by a factor of 0.2) while road pixels 

add votes. In pseudo C code, the voting for a pixel at (row, col) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(theta = -1; theta <= 1; theta+= 0 . 1 )  { 

center = co l  + arctan (theta); 
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c = center - width/2; c <= center + width/2; c++) { 

parameter-6pace [theta] IC] += confidence; 
1 

1 

At the end of voting, one road interceptlangle pair will have the most votes. That intercept and angle 

describe the best road shape in the scene. 

Color Update. The parameters of the road and non-road classes need to be recalculated to reflect 

changing colors. We divide the image into four regions plus a "safety zone": left off road, right off road, 

upper road, and lower road. We leave a 64-pixel wide "safety zone" along the road boundary, which 

allows for small errors in locating the road, or for limited road curvature. For each of the four regions, we 

calculate the means of red, green, and blue. We use the calculated parameters to form four classes, and 

reclassify the image using a limited classification scheme. The limited reclassification allows road pixels 

to be classified as either of the two road classes, but not as non-road, and allows non-road pixels to be 

reclassified only as one of the non-road classes. The reclassified pixels are used as masks to recalculate 

class statistics. The loop of classify pixelslrecalculate statistics is repeated, typically 3 times, or until no 

pixels switch classes. The final reclassified pixels are used to calculate the means, variances, and 

covariances of R, G, and B for each of the classes, to be used to classify the next image. Limited 

reclassification is based on distance from a pixel's values to the mean values of a class, rather than the 

full maximum likelihood scheme used in classifying a new image. This tends to give classes based on 

tight clusters of pixel values, rather than lumping all pixels into classes with such wide variance that any 

pixel value is considered likely. 

Callbratlon. There is no need for complete geometric calibration. The vision algorithms calculate the 

roads shape (road width and location of the horizon) from the first training image. We also take two 
calibration pictures, with a meter stick placed perpendicular to the vehicle, 8 and 12 m in front. Then 

during the run, given the centerfine of a detected road in image coordinates, it is easy to get the x position 

of the road at 8 and 12 m, and then to calculate the vehicle's position on the road. 

Performance. This algorithm is reliable. Running on the Navlab, with predictions of where the road 

should appear, our failure rate is close to 0. The occasional remaining problems come from one of three 

causes: 

The road is covered with leaves or snow, so one road color class and one non-road color 
class are indistinguishable. 

Drastic changes in illumination occur between pictures (e.g. the sun suddenly emerges from 
behind a cloud) so all the colors change dramatically from one image to the next. 

*The sunlight is so bright and shadows are so dark in the same scene that we hit the 
hardware limits of the camera. It is possible to have pixels so bright that all color is washed 
out, and other pixels in the same image so dark that all color is lost in the noise. 
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Not every image is classified perfectly, but almost all are good enough for navigation. We sometimes find 

the road rotated in the image from its correct location, so we report an intercept off to one side and an 

angle off to the other side. But since the path planner looks ahead about the same distance as the center 

of the image, the steering target is still in approximately the correct location, and the vehicle stays on the 

road. This algorithm runs in about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 s per image on a dedicated Sun 31160, using 480 x 512 pixel 

images reduced to 30 rows by 32 columns. We currently process a new image every 4 m, which gives 

about three fourths of an image overlap between images. Ten seconds is fast enough to balance the rest 

of the system but is slow enough that clouds can come and go and lighting conditions change between 

images. We are porting this algorithm to the Warp, Camegie Mellon’s experimental high-speed 

processor. On that machine, we hope to process an image per second and to use higher resolution. 

4. Perception in 3-D 
Our obstacle detection starts with direct range perception using an ERlM scanning laser rangefinder. 

Our ERlM produces, every half second, an image containing 64 rows by 256 columns of range values; an 

example is shown in figure 16. The scanner measures the phase difference between an amplitude- 

modulated laser and its reflection from a target object, which in turn provides the distance between the 

target object and the scanner. The scanner produces a dense range image by using two deflecting 

mirrors, one for the horizontal scan lines and one for vertical motion between scans. The volume 

scanned is 80 degrees wide and 30 high. The range at each pixel is discretized over 256 levels from zero 

to 64 feet. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Flgure 16: Range image of two trees on flat terrain. Gray levels encode distance; nearer points are 

painted darker. 

Our range processing begins by smoothing the data and undoing the peculiarities of the ranging 

geometry. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAambiguity intervals, where range values wrap around from 255 to 0, are detected and 

unfolded. Two other undesirable effects are removed by the same algorithm. The first is the presence of 

mixed points at the edge of an object. The second is the meaninglessness of a measurement from a 

surface such as water, glass, or glossy pigments. In both cases, the resulting points are in regions limited 

by considerable jumps in range. We then transform the values from angle-angle-range, in scanner 

coordinates, to x-y-z locations. These 3-D points are the basis for all further processing. 

We have two main processing modes: obstacle detection and terrain analysis. Obstacle detection 

starts by calculating surface normals from the x-y-z points. Flat, traversable surfaces will have vertical 

surface normals. Obstacles will have surface patches with normals pointed in other directions. This 
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analysis is relatively fast, running in about 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs on a Sun 3/75, 
discrete obstacles. 

Simple obstacle maps are not sufficient for detailed analysis. 

and is adequate for smooth terrain with 

For greater accuracy we do more careful 

terrain analysis and combine sequences of images corresponding to overlapping parts of the environment 

into an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAextended obstacle map. The terrain analysis algorithm first attempts to find groups of points that 
belong to the same surface and then uses these groups as seeds for the region growing phase. Each 

group is expanded into a smooth connected surface patch. The smoothness of a patch is evaluated by 

fitting a surface (plane or quadric). In addition, surface discontinuities are used to limit the region growing 

phase. The complete algorithm is: 

1. Edges: Extract surface discontinuities, pixels with high jumps in x-y-z. 

2. Clustering: Find clusters in the space of surface normals and identify the corresponding 
regions in the original image. 

3. Region growing: Expand each region until the fitting error is larger than a given threshold. 
The expansion proceeds by iteratively adding the point of the region boundary that adds the 
minimum fitting error. 

The clustering step is designed so that other attributes such as color or curvature can also be used to 

find potential regions on the object. The primitive surface used to compute the fitting e m r  can be either a 

plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor a quadric surface. The decision is based on the size of the region. Figure 17 shows the 

resultant description of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-D terrain and obstacles for the image of figure 16. The flat, smooth, navigable 

region is the meshed area, and the detected 3-0 objects (the two trees) are shown as polyhedra. 

Obstacle detection works at longer range than terrain analysis. When the scanner is looking at distant 

objects, it has a very shallow depression angle. Adjacent scanlines, separated by 0.5 degree in the range 

image, can strike the ground at widely different points. Because the grazing angle is shallow, little of the 

emitted laser energy returns to the sensor, producing noisy pixels. Noisy range values, widely spaced, 

make it difficult to do detailed analysis of flat terrain. A vertical obstacle, such as a tree, shows up much 

better in the range data. Pixels from neighboring scanlines fall more closely together, and with a more 

nearly perpendicular sulface the returned signal is stronger and the data cleaner. It is thus much easier 

for obstacle detection to find obstacles than for terrain analysis to certify a patch of ground as smooth and 

level. 

When neither video nor range information alone suffices, we must fuse data to determine mobility or 
recognize an object. One such case occurs in navigating the smaller Terregator vehicle around.campus 

sidewalks. At one spot, a sidewalk goes up a flight of stairs and a bicycle path curves around. Video 

alone has a tough time distinguishing between the cement stairs and the cement bicycle path. Range 
data cannot tell the difference between the smooth rise of the grassy hill and the smooth bicycle ramp. 

The only way to identify the safe vehicle path is to use both kinds of data. 

We start by fusing the data at the pixel level. For each range point, we find the corresponding pixel in 

the video image. We produce a painted range image in which each pixel is a {red, green, blue, x, y, z} 

6-vector. Figure 18 shows the painted range image, rotated and projected from a dmerent angle. We 
can then run our standard range segmentation and color segmentation programs, producing regions of 

smooth range or constant color. For the stairs in particular, we have a special-purpose step detection 

program that knows about vertical and horizontal planes and how they are related in typical stairs. It is 
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Figure 17: The resultant description of 3D terrain and obstacles from the image in figure 16. The 

navigable area is shown as a mesh, and the two trees are detected as "textured obstacles" and shown as 

black polygons 

easy to combine the regions from these separate processes, since they are all in the same coordinates of 

the painted range image. The final result is a smooth concrete region in which it is safe to drive, and a 

positive identification and 3-D location of the stairs, for updating the vehicle position. 
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Figure 18: Painted range image of campus stairs. Each point is a (red, green, blue, x, y, z} 6-vector. 

This image has been rotated and projected from a different viewpoint. The color and range images are 

registered, so the color edges and regions line up with range edges and regions. 
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5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASystem Building 

5.1. Artificial Intelligence for Real World Robots zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We have developed a new paradigm for intelligent robot system building. Artificial Intelligence 

systems, including intelligent mobile robots, are symbol manipulators. Indeed, the very definition of 

intelligence, artificial or otherwise, includes symbol manipulation. But the manipulation used by most AI 

systems is based on inference, either by the logic of predicate calculus or by probabilities. The bulk of the 

work of a mobile robot, in contrast, is based on geometry and on modeling time. Inference may be a part 

of a mobile robot system, but geometry and time are pervasive. Consequently, intelligent mobile robots 

need a new kind of expert system shell, one that provides tools for handling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-D locations and motion. 

This fits into the context of changes in the field of AI as a whole. Early systems, such as the Logic 

Theorist or GPS [Cohen 821, were search engines that had no domain knowledge. They could solve 

problems such as the Towers of Hanoi or Missionaries and Cannibals that are essentially logic puzzles. 

"Expert systems" brought lots of knowledge to bear on a problem. A system such as R1 or MYCIN (Cohen 

821 has thousands of rules of the form "if P then try Q" or "if X is true then Y is true with confidence 0.7". 

This type of knowledge allows these programs to deal with many real world problems. However, it is 

"shallow" knowledge in the sense that it deals with externally visible input-output behavior, with no 

knowledge of internal structure or mechanisms. MYCIN is like a doctor who has never taken Anatomy or 

Physiology, but has seen a lot of cases. Its knowledge is adequate for handling things it has already 

seen, but, because it does not understand the underlying mechanisms and structures of its domain, there 

is a limit to its competence in reasoning about new or unexpected behavior. The newest generation of 

expert systems is beginning to embed more "deep knowledge." For instance, the AIADIN aluminum alloy 

design system [Rychener 861 includes both shallow knowledge rules ("If the alloy is too heavy, try adding 

lithium") and deep knowledge of crystal structure and chemical interactions. 

The evolution of mobile robot systems is following an analogous course. Early systems such as SRl's 

Shakey were based on deduction. Shakey could decide which light switch to flip and in what order to 

traverse a sequence of moms; it was a success with respect to logical action, but it lacked the deep 

knowledge needed to move and live in a complicated environment. Its home was a series of empty 

rooms with flat floors and uniform walls that allowed Shakey to function with very simple perception and 

motion capabilities. In contrast, a robot that must move through the real outdoor world, needs a vast 

reservoir of deep knowledge of perception, object models, motion, path planning, terrain models, 

navigation, vehicle dynamics, and so forth. 

The deep knowledge needed by a mobile robot must be supported by the system architecture and by 

the system building tools. We have developed and followed the following tenets of mobile robot system 

design in building our system: 

Use separate modules. Much of the deep knowledge can be limited to particular specialist modules. 

The effects of lighting conditions and viewing angle on the appearance of an object, for instance, are 

important data for color vision but are not needed by path planning. So one principle of mobile robot 

system design is to break the system into modules and minimize the overlap of knowledge between 

modules. 

Provide tools for geometry and time. Much of the knowledge that needs to be shared between 



modules has to do with geometry, time, and motion. An object may be predicted by one module (the 

lookout), seen separately by two others (color vision and 3-D perception), and used by two more (path 

planner and position update). During the predictions, sensing, and reasoning, the vehicle will be moving, 

new position updates may come in, and the geometrical relationship between the vehicle and the object 

will be constantly changing. Moreover, there may be many different frames of reference: one for each 

sensor, one for the vehicle, one for the world map, and others for individual objects. Each module should 

be able to work in the coordinate frame that is most natural; for instance, a vision module should work in 

camera coordinates and should not have to worry about conversion to the vehicle reference frame. The 

system should provide tools that handle as many as possible of the details of keeping track of coordinate 

frames, motion, and changing geometry. 

Provide tools zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor synchronization. A system that has separate modules communicating at a fairly 

coarse grain will be loosely coupled. Lock-step interactions are neither necessary nor appropriate. 

However, there are times when one module needs to wait for another to finish, or when a demon module 

needs to fire whenever certain data appear. The system should provide tools for several different kinds of 

interaction and for modules to synchronize themselves as needed. 

Handle real-time vs symbolic Interface. At one level, a mobile robot reasons symbolically about 

perceived objects and planned paths, probably on a slow time scale. At the same time, the vehicle is 

constantly moving, and low-level servo processes are controlling steering and motion. The top level 

processes need to be free to take varying amounts of time to process scenes of varying difficulty. They 

are often event driven, running when a particular object is seen or a particular event occurs. The servo 

processes, though, must run continuously and in real time (not "simulated real time" or "real time not 

counting garbage collection"). The system should provide for both real-time and asynchronous symbolic 

processes, and for communications between them. 

Provide a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvidual vehicle. As many as possible of the details of the vehicle should be hidden. At 

Carnegie Mellon, we have one robot (the Terregator) that has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsix wheels, steers by driving the wheels on 

one side faster than those on the other side, and carries a camera mount approximately 6 ft high. A 

second robot (the Navlab) is based on a commercial van, steers and drives conventionally, and mounts 

its camera 2 ft higher. We need to be able to use one system to drive either of the vehicles, with only 

minor modifications. This requires hiding the details of sensing and motion in a "virtual vehicle" interface, 

so a single "move" command, for instance, will use the different mechanisms of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo vehicles but will 

produce identical behavior. 

Plan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor big systems. It takes good software engineering to build a mobile robot. The system may be 

written in a mixture of programming languages, will probably run on multiple processors, and may use 

different types of processors including specialized perception machines. System tools must bridge the 

gaps between languages, data formats, and communications protocols. 

In addition to these tenets of good design, we have identified certain approaches that are 

inappropriate. Many good ideas in other areas of AI present difficulties for mobile robots. Specifically, we 

avoid the following. 

Do not throw away geometric precision. Mobile robots need all the information they can get. It is 

often important to know as precisely as possible where an object is located, either for planning efficient 

paths or for updating vehicle location. There is no need to turn a measured distance of 3.1 m into fairly 
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close. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGiven the relative costs and speeds of computers and vehicles, it is more efficient to spend extra 

computing effort (if any) to handle precise data than to plan fuzzy paths that take the vehicle 

unnecessarily far out of its way. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Do not concentrate on explanations. It is important to have hooks inside the vehicle's reasoning, for 

debugging and for learning about the system behavior. However, the prime output of the vehicle is its 

externally observable behavior. Producing explanations is nice, but is not the primary product as it is in 

expert systems for diagnosis or in intelligent assistants. 

Do not build an omniscient master process. In some systems (notably early blackboards) a single 

master process "knows" everything. The master process may not know the internal working of each 

module, but it knows what each module is capable of doing. The master controls who gets to run when. 

The master itself becomes a major AI module and can be a system bottleneck. In contrast, the individual 

modules in a mobile robot system should be autonomous, and the system tools should be slaves to the 

modules. The module writers should decide when and how to communicate and when to execute. The 

system support should be as unobtrusive as possible. 

We have followed these tenets in building the Navlab system. At the bottom level, we have built the 

CODGER "whiteboard" to provide system tools and services. On top of CODGER we have built an 

architecture that sets conventions for control and data flow. CODGER and our architecture are explained 

below. 

5.2. Blackboards and WhIteboards 

The program organization of the NAVLAB software is shown zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin figure 19. Each of the major boxes 

represents a separately running program. The central database, called the Local Map, is managed by a 

program known as the Local Map Builder (LMB). Each module stores and retrieves information in the 

database through a set of subroutines called the LMB lntedace which handle all communication and 

synchronization with the LMB. If a module resides on a different processor than the LMB, the LMB and 

LMB Interface will transparently handle the network communication. The Local Map, LMB, and LMB 

Interface together comprise the CODGER (COmmunications Database with GEometric Reasoning) system. 

The overall system structure-a central database, a pool of knowledge-intensive modules, and a 

database manager that synchronizes the modules-is characteristic of a traditional blackboard system. 

Such a system is called "heterarchical" because the knowledge is scattered among a set of modules that 

have access to data at all levels of the database (Le. low-level perceptual processing ranging up to 

high-level mission plans) and may post their findings on any level of the database; in general, 

heterarchical systems impose de facto structuring of the information flow among the modules of the 

system. In a traditional blackboard, there is a single flow of control managed by the database (or 

blackboard) manager. The modules are subroutines, each with a predetermined precondition (pattern of 

data) that must be satisfied before that module can be executed. The manager keeps a list of which 

modules are ready to execute. In its central loop it selects one module, executes it, and adds to its 

ready-list any new modules whose preconditions become satisfied by the currently executing module. 

The system is thus synchronous and the manager's function is to focus the attention of the system by 

selecting the "best" module from the ready-list on each cycle. 

We call CODGER a whiteboard because although it implements a heterarchical system structure, it 
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Figure 19: Navlab software architecture 

differs from a blackboard in several key respects. In CODGER, each module is a separate, continuously 

running program; the modules communicate by storing and retrieving data in the central database. 

Synchronization is achieved by primitives in the data retrieval facilities that allow, for example, for a 

module to request data and suspend execution until the specified data appears. When some other 

module stores the desired data, the first module will be reactivated and the data will be sent to it. With 

CODGER a module programmer thus has control over the flow of execution within his module and may 

implement real-time loops, demons, data flows among cooperating modules, etc. CODGER also has no 

precompiled list of data retrieval specifications; each time a module requests data, it provides a pattern for 

the data desired at that time. A whiteboard is heterarchical like a blackboard, but each module runs in 

parallel, with the module programmer controlling the synchronization and data retrieval requests as best 

suited for each module. Like other recent distributed AI architectures, whiteboards are suited to execution 

on multiple processors. 

5.3. Data Storage and Retrieval 
Data in the CODGER database (Local Map) is represented in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtokens consisting of classical 

attribute-value pairs. The types of tokens are described in a ternplate file that tells the name and type of 

each attribute in tokens of each type. The attributes themselves may be the usual scalars (integers, 

floating-point values, strings, enumerated types), arrays (or sets) of these types (including arrays of 

arrays), or geometric locations (as described below). CODGER automatically maintains certain attributes 

for each token: the token type and id number, the generation number as the token is modified, the time at 

which the token was created and inserted into the database, and the time at which the sensor data was 

acquired that led to the creation of this token. The LMB Interface provides facilities for building and 

dissecting tokens and attributes within a module. Rapid execution is supported by mapping the module 

programmer's names for tokens and attributes onto globally used index values at system startup time. 

A module can store a token by calling a subroutine to send it to the LMB. Tokens can be retrieved by 

constructing a pattern called a specification and calling a routine to request that the LMB send back 

tokens matching that specification. The specification is simply a Boolean expression in which the 
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attributes of each token may be substituted; if a token's attributes satisfy the Boolean expression, then 

the token is sent to the module that made the request. For example, a module may specify: 

This would retrieve all tokens whose type and trafficcontrol attributes satisfy the above conditions. The 

specification may include computations such as mathematical expressions, finding the minimum value 

within an array attribute, comparisons among attributes, etc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACODGER thus implements a general 

database. The module programmer constructs a specification with a set of subroutines in the CODGER 

system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tokens with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtype q u a /  to "intersWion" andtrafflc-control equal to "stop-sign" 

One of the key features of CODGER is the ability to manipulate geometric information. One of the 

attribute types provided by CODGER is the location, which is a 2-D or 3-D polygon and a reference to a 

coordinate frame in which that polygon is described. Every token has a specific attribute that tells the 

location of that object in the Local Map, if applicable, and a specification can include geometric 

calculations and expressions. For example, a specification might be: 

or 

where X is a description of a rectangle on the ground in front of the vehicle. The geometric primitives 

currently provided by CODGER include calculation of centroid, area, diameter, convex hull, orientation, and 

minimum bounding rectangle of a location, and distance and intersection calculations between a pair of 

locations. We believe that this kind of geometric data retrieval capability is essential for supporting spatial 

reasoning in mobile robots with multiple sensors. We expect geometric specifications to be the most 

common type of data retrieval request used in the NAVLAB. 

tokens with location within 5 units of (4532) bn world ooordinates] 

tokens with location over/apping X 

CODGER also provides for automatic coordinate System maintenance and transformation for these 

geometric operations. In the Local Map, all coordinates of location attributes are defined relative to 

WORLD or VEHICLE coordinates; VEHICLE coordinates are parameterized by time, and the LMB 

maintains a time-varying transformation between WORLD and VEHICLE coordinates. Whenever new 

information (i.e. a new VEHICLE-to-WORLD transform) becomes available, it is added to the "history" 

maintained in the LMB; the LMB will interpolate to provide intermediate transformations as needed. In 

addition to these basic coordinate systems, the LMB Interface allows a module programmer to define 

local coordinates relative to the basic coordinates or relative to some other local coordinates. Location 

attributes defined in a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal coordinate system are automatically converted to the appropriate basic 

coordinate system when a token is stored in the database. CODGER provides the module programmer 

with a conversion routine to convert any location to any specified coordinate system. 

All of the above facilities need to work together to support asynchronous sensor fusion. For example, 

suppose we have a vision module A and a rangefinder module B whose results are to be merged by 

some module C. The following sequence of actions might occur: 
1. A receives an image at time 10 and posts results on the database at time 15. Although the 

calculations were carried out in the camera coordinate system for time 10, the results are 
automatically converted to the VEHICLE system at time 10 when the token is stored in the 
database. 

2. Meanwhile, B receives data at time 12 and posts results at time 17 in a similar way. 

3. At time 18, C receives A's and E's results. As described above, each such token will be 
tagged with the time at which the sensor data was gathered. C decides to use the vehicle 
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coordinate system at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 (B's time) for merging the data. 

4. C requests that A s  result, which was stored in VEHICLE time 10 coordinates, be 
transformed into VEHICLE time 12 coordinates. If necessary, the LMB will automatically 
interpolate coordinate transformation data to accomplish this. C can now merge As and B's 
results since they are in the same coordinate system. At time 23, C stores results in the 
database, with an indication that they are stored in the coordinate system of time 12. 

5.4. Synchronlzatlon Primitives 
CODGER provides module synchronization through options specified for each data retrieval request. 

Every time a module sends a specification to the LMB to retrieve tokens, it also specifies options that tell 

how the LMB should respond with the matching tokens: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Immediate Request. The module requests all tokens currently in the database that match this 

specification. The module will block (i.e. the "request" subroutine in the LMB Interface will 
not return control) until the LMB has responded. If there are no tokens that match the 
specification, the action taken is determined by an option in the module's request: 

Non-B/ockin~. The LMB will answer that there are no matching tokens, and the module 
can then proceed. This would be used for time-critical modules such as vehicle 
control. Example: "Is there a stop sign?" 

B/ocMng. The LMB will record this specification and compare it against all incoming 
tokens. When a neHS token matches the specification, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAit will be sent to the module and 
the request will be satisfied. Meanwhile, the module will remain blocked until the LMB 
has responded with a token. This is the type of request used for setting up 
synchronized sets of communicating modules: each one waits for the results from the 
previous module to be posted to the database. Example: "Wake me up when you see 
a stop sign." 

0 Standing Request. This provides a mechanism for the LMB to generate an interrupt for a 
running mgdule. The module gives a specification along with the name of a subroutine. The 
module then continues running; the LMB will record the specification and compare it with all 
incoming tokens. Whenever a token matches, it will be sent to the module. The LMB 
Interface will intercept the token and execute the specified subroutine, passing the token as 
an argument. This has the effect of invoking the given subroutine whenever a token appears 
in the database that matches the given specification. It can be used at system startup time 
for a module programmer to set up "demon" routines within the module. Example: "Execute 
that routine whenever you see a stop sign." 

5.5. Architecture 
Several modules use the CODGER tools and fit into a higher level architecture. The modules are: 

0 Pilot: Looks at the map and at current vehicle position to predict road location for Vision. 
Plans paths. 

0 Map Navigator: Maintains a world map, does global path planning, provides long-term 
direction to the Pilot. The world map may start out empty, or may include any level of detail 
up to exact locations and shapes of objects. 

0 Color Vision: Waits for a prediction from the Pilot, waits until the vehicle is in the best 
position to take an image of that section of the road, returns road location. 

Obstacle Detection: Gets a request from the Pilot to check a part of the road for obstacles. 
Returns a list of obstacles on or near that chunk of the road. 

0 Helm: Gets planned path from Pilot, converts polyline path into smooth arcs, steers vehicle. 

Graphics and Monitor: Draws or prints position of vehicle, obstacles, predicted and 
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perceived road. 

There are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo other modules in our architecture. These have not yet been implemented: 

Captain: Talks to the user and provides high-level route and mission constraints such as 

Lookout: Looks for landmarks and objects of importance to the mission. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAavoid area A or go by road B. 

These modules use CODGER to pass information about driving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunits. A driving unit is a short chunk of 

the road or terrain (in our case 4 m long) treated as a unit for perception and path planning. The Pilot 

gives driving unit predictions to Color Vision, which retums an updated driving unit location. Obstacle 

Detection then sweeps a driving unit for obstacles. The Pilot takes the driving unit and obstacles, plans a 

path, and hands the path off to the Helm. The whole process is set up as a pipeline, in which Color 

Vision is looking ahead 3 driving units, Obstacle Detection is looking 2 driving units ahead, and path 

planning at the next unit. If for any reason some stage slows down, all following stages of the pipeline 

must wait. So, for instance, if Color Vision is waiting for the vehicle to come around a bend so it can see 

down the road, Obstacle Detection will finish its current unit and will then have to wait for Color Vision to 

proceed. In an extreme case, the vehicle may have to come to a halt until everything clears up. All 

planned paths include a deceleration to a stop at the end, so if no new path comes along to overwrite the 

current path the vehicle will stop before driving into an area that has not been seen or cleared of 

obstacles. 

In our current system and test area, 3 driving units is too far ahead for Color Vision to look, so both 

Color Vision and Obstacle Detection are looking at the same driving unit. Obstacle Detection looks at an 

area sufficiently larger than the Pilot's predicted driving unit location to guarantee that the actual road is 

covered. Another practical modification is to have Obstacle Detection look at the closest driving unit also, 

so a person walking onto the road immediately in front of the vehicle will be noticed. Our system will try to 

plan a path around obstacles while remaining on the road. If that is not possible, it will come to a halt and 

wait for the obstacle to move before continuing. 

6. Conclusions and Future Work 
The system described here works. It has successfully driven the Navlab many tens of times, 

processing thousands of color and range images without running off the road or hitting any obstacles. 

CODGER has proved to be a useful tool, handling many of the details of communications and geometry. 

Module developers have been able to build and test their routines in isolation, with relatively little 

integration overhead. Yet there are several areas that need much more work. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Speed. We drive the Navlab at 10 cwsec, a slow shuffle. Our slow speed is because our test road is 

narrow and winding, and because we deliberately concentrate on competence rather than on speed. But 

faster motion is always more interesting, so we are pursuing several ways of increasing speed. One 

bottleneck is the computing hardware. We are mounting a Warp, Carnegie Mellon's experimental high- 

speed processor, on the Navlab. The Warp will give us a factor of 100 more processing power than a 

Sun for color and range image processing. At the same time, we are looking at improvements in the 

software architecture. We need a more sophisticated path planner, and we need to process images that 

are more closely spaced than the length of a driving unit. Also, as the vehicle moves more quickly, our 

simplifying assumption that steering is instantaneous and that the vehicle moves along circular arcs 

becomes more seriously flawed. We are looking at other kinds of smooth arcs, such as clothoids. More 
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important, the controller is evolving to handle more of the low-level path smoothing and following. 

Map. One reason for the slow speed is that the Pilot assumes straight roads. We need to have a 

description that allows for curved roads, with some constraints on maximum curvature. The next steps 

will include building maps as we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgo, so that subsequent runs over the same course can be faster and 

easier. 

Cross-country travel. Travel on roads is only half the challenge. The Navlab should be able to leave 

roads and venture cross-country. Our plans call for a fully integrated on-road/off-road capability. 

Intersections. Current vision routines have a built-in assumption that there is one road in the scene. 

When the Navlab comes to a fork in the road, vision will report one or the other of the forks as the true 

road depending on which looks bigger. It will be important to extend the vision geometry to handle 

intersections as well as straight roads. We already have this ability on our sidewalk system and will bring 

that over to the Navlab. Vision must also be able to find the road from offroad. 

Landmarks. Especially as we venture off roads, it will become increasingly important to be able to 

update our position based on sighting landmarks. This involves map and perception enhancements, plus 

understanding how to share limited resources, such as the camera, between path finding and landmark 

searches. 

Software Development. Our current blackboard system can manipulate primitive data elements but 

has no concept of data structures made up of tokens on the blackboard. We need aggregate data types 

for representing complex 3-D geometric descriptions of objects for recognition. We will also be 

implementing a Lisp interface to our blackboard. All current modules are written in C, but we will soon 

want to write higher-level modules in Lisp. 

Integration with Work from Other Sites. Other universities and research groups cooperating with 

Carnegie Mellon through DARPA Strategic Computing Vision program. We plan to incorporate some of 

their programs into the Navlab system in the coming years as it evolves into the "new generation vision 

system" that is the goal of that program. 
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Abstract 

This paper describes the current status of the Autonomous Land Vehicle research at Camegie Mellon 

University's Robotics Institute, focusing primarily on the system architecture. We begin with a discussion 

of the issues concerning outdoor navigation, then describe the various perception, planning, and control 

components of our system that address these issues. We describe the CODGER software system for 

integrating these components into a single system, synchronizing the data fbw between them in order to 

maximize parallelism. Our system is able to drive a robot vehicle continuously with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo sensors, a color 

camera and a laser rangefinder, on a network of sidewalks, up a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbicycle slope, and through a cuwed road 

through an area populated with trees. Finally, we discuss the results of our experiments, as well as 

problems uncovered in the process and our plans for addressing them.' 

1. Introduction 
The goal of the Autonomous Land Vehicle group at Camegie Mellon University is to create an 

autonomous mobile robot system capable of operating in outdoor environments. Because of the 

complexity of real-world domains and the requirement for continuous and real-time motion, such a robot 

system needs system architectural support for multiple sensors and parallel processing. These 

capabilities are not found in simpler robot systems. At CMU, we are studying mobile robot system 

architecture and have devebped the navigation system working at two test sites and on two experimental 

vehicles [2,3,4,8,10,11]. This paper describes the current status of our system and some problems 

uncovered through real experiments. 

1 .l. The Test Sltes and Vehlcles 
We have two test sites, the Camegie Mellon campus and an adjoining park, Schenley Park. The CMU 

campus test site has a sidewalk network including intersections, stairs and bwcle sbpes (figure 1). The 

Schenley Park test site has cuwed sidewalks in an area well populated with trees (figure 2). 

Figure 3 shows our two experimental vehicles, the Navigation Laboratory (Navlab) used in the 

'This mearch was supported by the Strategic Computing Initiative of the Defense zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAdvmoed Research Projects Agency, DoD, 
through ARPA Order 5351, and monitored by the US. Army Engineer Topographic Leborapories under antract DACA7685- 
cooO3. V i  and conclusions contained in this document am those of the authors and should not be hterprebd as representing 
offtcial poliaes. either expresed or implied, of the Defense zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAdvanced hearch Projects Agency w the United State Government. 
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Figure 1: Map of the CMU Campus Test Site 

Figure 2: Map of the Schenley Park Test Site 
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Schenley Park test site, and the Terregator used in the CMU campus test site. Both of them are 

equipped with a color zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN camera and a laser rangefinder made by ERtM. The Navlab carries four 

general purpose computers (SUN-3s) on board. The Terregator is linked to SUN-3s in the laboratory with 

radio communication. All of the SUN-3s are interconnected with a EtherNet. Our navigation system works 

on both vehicles in each test site. 

Flgure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: The Navlab and Terregator 

1.2. Current System Capabillties 
Currently, the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas the capability. 

to execute a prespecified user mission over a mapped network of sidewalks, including 

to recognize landmarks, stairs and intersections: 

to drive on unmapped, curved, ill-defined roads using assumptions about local mad linearity; 

to detect obstacles and stop until they move away; 

to avoid obstacles; and 

to drive continuously at 200mm/sec. 

turning at the intersections and driving up the bicycle slope; 

2. Design of the System Architecture 
In this section we describe the goals of our outdoor navigation system and the design principles, 

followed by an analysis of the outdoor navigation task itself. We describe our system architecture as it is 

shaped by these principles and analyses. 
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2.1. Design Goals and Principles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The goals of our outdoor navigation system are: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 map-drlven mission execution: The system drives the vehicle to reach a given goal 
position. 

on- and off-road navigation: Navigation environments include not only roads but also open 
terrain. 

landmark recognition: Landmark sightings are essential in order to correct for drift in the 
vehicle’s dead-reckoning system. 

0 obstacle avoldance 

0 continuous motion In real time: Stop and go motion is unacceptable for our purposes. 
Perception, planning, and control should be carried out while the vehicle is moving at a 
reasonable speed. 

In order to satisfy these goals, we have adopted the following design principles. 

sensor fusion: A single sensor is not enough to analyze complex outdoor environments. 
Sensors include not only a Tv camera and a range sensor but also an inertial navigation 
sensor, a wheel rotation counter, etc. 

0 parallel execution: In order to process data from a number of sensors, make global and 
local plans , and drive the vehicle in real-time, parallelism is essential. 

0 flexibility and extenslbllity: This principle is essential because the whole system is quite 
large, requiring the integration of a wide range of modules. 

2.2. Outdoor Navigation Tasks 
Outdoor navigation includes several different navigation modes. Figure 4 illustrates several examples. 

On-road vs. off -road is just one example. Even in on-road navigation, turning at the intersection requires 

more sophisticated driving skill than following the road. In road following, the assumption that the ground 

is flat makes perception easier, but driving through the forest does not satisfy this assumption and 

requires more complex perception processing. 

According to this analysis we decompose outdoor navigation into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo navigation levels: global and 

local. At the global level, the system tasks are to select the best navigation route to reach the destination 

given by a user mission, and to divide the whole route into a sequence of mute segments, each 

corresponding to a uniform driving mode. The current system supports the following navigation modes: 

following the road, turning at the intersection, driving up the slope. 

Local navigation involves driving within a single route segment. The navigation mode is uniform and 

the system drives the vehicle along the route segment continuously, perceiving objects, planning path 

plans, and controlling the vehicle. The important thing is that these tasks, perception, planning, and 

control, form a cycle and can be executed concurrently. 

2.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASystem Architecture 

and a communications database which links the modules together. 

Figure 5 is a block diagram of our system architecture. The architecture consists of several modules 
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Flgure 4: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOutdoor navigation 

2.3.1. Module Structure 

In order to support the tasks described in the previous section, we first decomposed the whole system 

into the following modules: 

CAPTAIN executes user mission commands and sends the destination and the constraints 
of each mission step to the MAP NAVIGATOR one step at a time, and gets the result of each 
mission step. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 MAP NAVIGATOR selects the best route by searching the Map Database, decomposes it 
into a sequence of route segments, generates a route segment description which includes 
objects from the Map visible from the route segment, and sends it to the PILOT. 

PILOT coordinates the activities of PERCEPTION and the HELM to perform local navigation 
continuously within a single route segment. 

PERCEPTION uses sensors to find objects predicted to lie within the vehicle's field of view. 
It estimates the vehicle's position if possible. 

HELM gets the local path plan generated by the PILOT and drives the vehicle. 

The PILOT is decomposed into several submodules which tun concurrently (figure 6). 

DRIVING MONITOR decomposes the route segment into small pieces called driving units. A 
driving unit is the basic unit for perception, planning, and control processing at the local 
navigation level. For example, PERCEPTION must be able to process a whole driving unit 
with a single image. The DRIVING MONITOR creates a driving unit description , which 
describes objects in the driving unit, and sends it to the following submodules. 

0 DRIVING UNIT FINDER functions as an interface to PERCEPTION, sending the driving unit 
description to it and getting the result from it. 
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Figure 6: Submodule structure of the PILOT 
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0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPOSITION ESTIMATOR estimates the vehicle position using both the result of 

0DRlVlNG UNIT NAVIGATOR determines the admissible passage in which to drive the 

0 LOCAL PATH PLANNER generates the path plan within the driving unit, avoids obstacles 

PERCEPTION and dead-reckoning. 

vehicle. 

and keeps the vehicle in the admissible passage. The path plan is sent to the HELM. 

2.3.2.CODGER 

It is important zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot only to build the modules, but also to connect them into a coherent system. Based 

on our design principles, we have created a software system called CODGER (COmmunications 

Database with GEometric Reasoning) which supports parallel asynchronous execution and 

communication between the modules. We describe CODGER in detail in the next section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAParallelism 

3.1. The CODGER System for Parallel Processlng 
In order to navigate in real-time, we have employed parallelism in our perception, planning, and control 

subsystems. Our computing resources consist of several SUN9 microcomputers, VAX minicomputers, 

and a high-speed, parallel processor known as the WARP interconnected with an EtherNet. We have 

designed and implemented a software system called CODGER (COmmunications Database with 

GEometric Reasoning) [9] to effectively utilize this parallelism. 

The CODGER system consists of a central database (Local Map), a process that manages this 

database (Local Map Builder of LMB), and a library of functions for accessing the data (LMB interface) 
(see Figure 7). The various perceptual, planning, and control modules in the system are compiled with 

the LMB interface and invoke functions to store and retrieve data from the central database. The 

CODGER system can be run on any mix of SUN-3s and VAXes and handles data type conversions 

automatically. This system permits highly modular development requiring recompilation only for modules 

directly affected by a change. 

3.1 .l. Data Representation 

Data in the Local Map is represented in tokens consisting of lists of attribute-value pairs. Tokens can 

be used to represent any information including physical objects, hypotheses, plans, commands, and 

reports. The token types are defined in a template file which is read by the LMB at system startup time. 

Attribute types may be the usual scalars (e.g., floats, integers), sets of scalars, or geometric locations. 

Geometric locations consist of a two- dimensional, polygonal shape and a reference coordinate frame. 
The CODGER system provides mechanisms for defining coordinate frames and for automatically 

converting geometric data from one frame to another, thereby allowing modules to retrieve data from the 

database and representing it in a form meaningful to them. Geometric data is the only data interpreted by 

the CODGER system; the interpretation of all other data types is delegated to the modules that use them. 
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Figure 7: The CODGER software system 

3.1.2. Synchronizatlon 

The LMB interface provides functions for storing and retrieving data from the central database. Tokens 

can be retrieved using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecifications. Specifications are simply boolean expressions evaluated across 

token attribute values. A specification may include computations such as mathematical expressions, 

boolean relations, and comparisons between attribute values. Geometric indexing is of particular 

importance for a mobile robot system. For example, the planner needs to search a database of map 

objects to locate suitable landmarks or to find the shortest path to the goal. The CODGER system 

provides a host of functions including those for computing the distance and intersection of locations. 

These functions can be embedded in specifications and matched to the database. 

The CODGER system has a set of primitives to ensure that data transfer between system modules is 

synchronized and runs smoothly. The synchronization is implemented in the data retrieval mechanism. 

Specifications are sent to the LMB as either one-shot or standing requests. For one-shot specs, the 

calling module blocks while the LMB matches the spec to the tokens. Tokens that match are retrieved 

and the module resumes execution. If no tokens match, either the module stays blocked until a matching 

token appears in the database or an error is returned and the module resumes execution, depending on 

an option specified in the request. For example, the PATH PLANNER may use a one-shot to find 

obstacles stored in the database before it can plan a path. In contrast, the HELM, which controls the 

vehicle, uses a standing spec to retrieve tokens supplying steering commands whenever they appear. 
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3.2. Parallel Asynchronous Execution of Modules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Thus far we have run our scenarios with four SUN-3s interconnected with an EtherNet. The CAPTAIN, 

MAP NAVIGATOR, PILOT, and HELM are separate modules in the system, and PERCEPTION is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo 
modules (range and camera image processing). All of the modules run in parallel; they synchronize 

themselves through the LMB database. 

3.2.1. Global and Local Navlgatlon 

A good example of parallelism in the system is the interaction between the CAPTAIN, MAP 

NAVIGATOR, and PILOT. The CAPTAIN and MAP NAVIGATOR search the map database to plan a 

global path for the vehicle in accordance with the mission specification. The PILOT coordinates 

PERCEPTION, PATH PLANNING, and control through the HELM to navigate locally. The global and 

local navigation operations run in parallel. The MAP NAVIGATOR monitors the progress of the PILOT to 

ensure that the PILOT'S transition from one route segment to the next occurs smoothly. 

3.2.2. Drivlng Pipeline 

Another good example of parallelism is within the PILOT itself. As described earlier, the PILOT 

monitors local navigation. For each driving unit, the PILOT performs four operations in the following 

order: predict it, recognize with the camera and scan it for obstacles with the rangefinder, establish driving 

constraints and plan a path through it, and oversee the vehicle's execution of it. In the PILOT, these four 

operations are separate modules linked together in a pipeline (see Figure 8). While in steady state, the 

PILOT is predicting a driving unit 12 to 16 meters in front of the vehicle, recognizing a driving unit and 

scanning it for obstacles (in parallel) 8 to 12 meters in front, planning a path 4 to 8 meters in front, and 

driving to a point 4 meters in front. The stages of the pipeline synchronize themselves through the 

CODGER database. 

The processing times for each stage vary as a function of the navigation task. In navigation on 

uncluttered roads, the vision subsystem requires about 10 seconds of real-time per image, the range 

subsystem requires about 6 seconds, and the local path planner requires less than a second. In this 

case, the stage time of the pipeline is that of the vision subsystem: 10 seconds. In cluttered 

environments, the local path planner may require 10 to 20 seconds or more, thereby becoming the 

bottleneck. In either case, the vehicle is not permitted to drive on to a driving unit until it has propagated 

through all stages of the pipeline (Le., all operations have been performed on it). For example, when 

driving around the comer of a building, the vision stage must wait until the vehicle reaches the corner in 

order to see the next driving unit. Once the vehicle reaches the comer, it must stop while waiting for the 

vision, scanning, and planning stages to process the driving unit before driving again. 

4. Sensor Fusion 

4.1. Types of Sensor Fusion 
The Navlab and Terregator vehicles are equipped with a host of sensors including color cameras, a 

laser rangefinder, and motion sensors such as a gyro and shaft-encoder counter. In order to obtain a 
single, consistent interpretation of the vehicle's environment, the results of these sensors must be fused. 

We have identified three types of sensor fusion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8]: 

Competitive: Sensors provide data that either agrees or conflicts. This case arises when 
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Figure 8: Driving pipeline 

sensors provide data of the same modality. In the CMU systems, the task of determining the 
vehicle’s position best characterizes this type of fusion. Readings from the vehicle’s dead- 
reckoning system as well as landmark sightings provide estimates of the vehicle’s position. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Complementary: Sensors provide data of different modalities. The task of recognizing 
three-dimensional objects illustrates this kind of fusion. In the CMU systems, a set of stairs is 
recognized using a color camera and laser rangefinder. The color camera provides image 
information (e.g., color and texture) while the laser rangefinder provides three-dimensional 
information. 

Independent: A single sensor is used for each task. An example of a task requiring a single 
sensor is distant landmark recognition. In this case, only the camera is used for landmarks 
beyond the range of the laser rangefinder. 

4.2. Examples of Sensor Fusion Tasks 

4.2.1. Vehicle Position Estlmatlon 

In our road following scenarios, vehicle position estimation has been the most important sensor fusion 

task. By vehicle position, we mean the position and orientation of the vehicle in the ground plane (3 
degrees of freedom) relative to the world coordinate frame. In the current system, there are two sources 

of position information. First, dead-reckoning provides vehicle-based position information. The CODGER 

system maintains a history of the steering commands issued to the vehicle, effectively recording the 

trajectory of the vehicle from its starting point. 

Second, landmark sightings directly pinpoint the position of the vehicle with respect to the world at a 

point in time. In the campus test site, the system has access to a complete topographical map of the 
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sidewalks and intersections on which it drives. The system uses a color camera to sight the intersections 

and sidewalks and uses these sightings to correct the estimate of the vehicle's position. The intersections 

are of rank three, meaning that the position and orientation of the vehicle with respect to the intersection 

can be determined fully (to three degrees of freedom) from the sighting. Our tests have shown that such 

landmark sightings are far more accurate but less reliable than the current dead-reckoning system, that is, 

landmark sightings provide more accurate vehicle position estimates; however, the sightings occasionally 

fail. If the vehicle position estimates from the sighting and dead-reckoning disagree drastically, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
conflict is settled in favor of the dead-reckoning system; othenvise, the result from the landmark sighting 

is used. In this case, the CODGER system adjusts its record of the vehicle's trajectory so that it agrees 

with the most recent landmark sighting, and discards all previous sightings. 

The CODGER system is able to handle landmark sightings of rank less than three. The most common 

"landmark" in our scenarios is the sidewalk on which the vehicle drives. Since a sidewalk sighting 

provides only the orientation and perpendicular distance of the vehicle with respect to the sidewalk, the 

correction is of rank two. Therefore, the position of the vehicle is constrained to lie on a straight line. The 

CODGER system projects the position of the vehicle from dead-reckoning onto this line and uses the 

projected point as a full (rank three) correction. Since most of the error in the vehicle's motion is lateral 

drift from the road, this approximation works well. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2.2. Pilot Control 

Complementary fusion is grounded in the Pilot's control functions. The Pilot ensures that the vehicle 

travels only where it is permitted and where it can. For example, the color camera is used to segment 

road from nonroad surfaces. The laser rangefinder scans the area in front of the vehicle for obstacles or 

unnavigable (i.e., rough or steep) terrain. The road surface is fused with the free space and is passed to 

the local path planner. Since the two sensor operations do not necessarily occur at the same time, the 

vehicle's dead-reckoning system also comes into play. 

4.2.3. Colored Range Image 

Another example of complementary fusion of camera and range data is the colored range image. A 

colored range image is created by "painting" a color image onto the depth map of a range image. The 

resultant image is used in our systems to recognize complicated three dimensional objects such as a set 

of stairs. In order to avoid the relatively large error in the vehicle's dead-reckoning system, the vehicle 

remains motionless while digitizing a corresponding pair of camera and range images [2]. 

4.3. Problems and Future Work 

We have plans for improving our sensor fusion mechanisms. Currently, the CODGER system handles 

competing sensor data by retaining the most recent measurement and discarding all others. This is 

undesirable for the following reasons. First, a single bad measurement (e.g., landmark sighting) can 

easily throw the vehicle off track. Second, measurements can reinforce each other. By discarding old 

measurements, useful information is lost. A weighting scheme is needed for combining competing sensor 

data. In many cases, it is useful to model error in sensor data as gaussian noise. For example, error in 

dead-reckoning may arise from random emr  in the wheel velocities. Likewise, quantization error in range 

and camera images can be modeled as gaussian noise. A number of schemes exist for fusing such data 

ranging from simple Kalman filtering techniques to full-blown Bayesian observation networks 111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7l. 



5. Local zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAControl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this section we discuss some of the control problems in local navigation. 

5.1. Adaptive Driving Units and Sensor View Frames 
Management of driving units and sensor view frames is essential in local control. As described in 

section 2, the driving unit is a minimum control unit, a unit to perceive objects, generate a path plan, and 

drive the vehicle. The PERCEPTION module digitizes an image in each driving unit, and the vehicle’s 

position is estimated and its trajectory is planned once in each driving unit. Therefore, an appropriate 

driving unit size is essential for stable control. For example, the sensor view frame cannot cover a very 

large driving unit. Conversely, small driving units place rigid constraints on the LOCAL PATH PLANNER, 

because of the short distance between the starting point and the goal point. The aiming of the sensor 

view frame determines the point at which to digitize an image and to update the vehicle position and path 

plan. 

In the current system, the sensor view frame is always fixed with respect to the vehicle. The size of the 

driving unit is fixed for driving on roads (4-6 meters length), and is changed for turning at intersections so 

that the entire intersection can be see in a single image and to increase driving stability (see Figure 9). 

This method works well in almost all situations in our current test site. 

Figure 9: Intersection driving unit 

For intersections requiring sharp turns (about 135 degrees), the current method does not suffice. 

Because there is only one driving unit at the intersection, the system digitizes an image, estimates the 

vehicle’s position, and generates a path plan only once for a large turn. Furthermore, since the camera’s 

field of view is fixed straight ahead, the system cannot see the driving unit after the intersection until the 



55 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
vehicle has turned through the intersection. Though the actual path generated is not so bad, it is 

potentially unstable. 

This experimental result indicates that the system should scan for an admissible passage, and update 

vehicle position estimation and local path plan more frequently when the vehicle changes its course 

faster. We plan to improve our method for managing driving units. Our new idea is: 

length of the driving unit: The length of the driving unit is bounded at the low end by the 
LOCAL PATH PLANNER'S requirements for generating a reasonable path plan, and at the 
high end by the view frame required by PERCEPTION for recognizing a given object. 

Driving unit interval: The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdriving unit interval is the distance between the centers of 
adjacent driving units. Adjacent driving units can be overlapped, that is, they can be placed 
such that their interval is shorter than their length. Figure 10 illustrates this situation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L : dr i v ing  u n i t  leng th  

I : driving u n i t  interval 

Figure 10: Adaptive Driving Units 

*Adjusting size and intewal of drivlng unit: If the passage is simple, the length and 
interval of the driving unit is long. If the passage is complex, for example, in the case of 
highly curved roads or intersections, or in the presence of obstacles, the length and interval 
of driving unit are shorter. And if the required driving unit interval must be shorter than the 
length of driving unit, the driving units are overlapped. Therefore, the vehicle's position is 
estimated and a local path is planned more frequently so that the vehicle drives stably (figure 
10). 

Adjusting sensor view frame: The sensor view frame with respect to the vehicle, the 
distance and the direction to the driving unit from the vehicle, is adjusted using the pan and 
tilt mechanism of the sensor. In most cases, a longer distance to the next driving unit allows 
a higher vehicle speed. If the processing time of the PERCEPTION and the PILOT is 
constant, the longer distance means a higher vehicle speed. But the longer distance 
produces less accuracy in perception and vehicle position estimation. Therefore, the 
distance is determined for the required accuracy, which depends on the complexity of 
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passage. Using the pan and tilt mechanism, PERCEPTION can digitize an image at the best 
distance from the driving unit, since the sensor’s view frame is less rigidly tied to the 
orientation and position of the vehicle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.2. Vehicle Speed 
It is an important capability of an autonomous mobile robot to adjust the vehicle’s speed automatically 

so that the vehicle drives safely at the highest possible speed. The current system slows the vehicle 

down in turning to reduce driving error. 

The delay in processing in the LOCAL PATH PLANNER and in communication between the HELM and 

the actual vehicle mechanism gives rise to errors in vehicle position estimation. For example, because of 

continuous motion and non-zero processing time, the vehicle position used by the LOCAL PATH 

PLANNER as a starting point differs slightly from the vehicle position when the vehicle starts executing 

the plan. Because the smaller tuming radii give rise to larger errors in the vehicle’s heading, which are 

more serious than displacement errors, the HELM slows the vehicle for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAturns with smaller radii. This 

method is useful for making the vehicle motion stable. 

We will add to the system the capability for adjusting the vehicle speed to the highest possible value 

automatically. Our idea is the following: 

schedule token: The modules and the submodules working at the local navigation level 
store their predicted processing times in a schedule token in each cycle. PERCEPTION is 
the most time consuming module, and its processing time varies drastically from task to task. 

0 adjusting vehicle speed: Using the path plan and the predicted processing time stored in 
the schedule token, the HELM calculates and adjusts vehicle speed so that the speed is 
maximum and the modules can finish processing the driving unit before the vehicle reaches 
the end of the current planned trajectory. 

5.3. Local Path Planning and Obstacle Avoidance 
Local path planning is the task of finding a trajectory for the vehicle through admissible space to a goal 

point. in our system, the vehicle is constrained to move in the ground plane around obstacles 

(represented by polygons) while remaining within the driving unit (also a polygon). We have employed a 

configuration space approach [5] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI. This algorithm, however, assumes that the vehicle is 

omnidirectional. Since our vehicles are not, we smooth the resultant path to ensure that the vehicle can 

execute it. The smoothed path is not guaranteed to miss obstacles. We plan to overcome this problem 

by developing a path planner that reasons about constraints on the vehicle’s motion. 

6. Navigation Map 
Some information about the vehicle’s environment must be supplied to the system a priori, even if it is 

incomplete, and even if it is nothing more than a data format for storing explored terrain. The user 
mission, for example, ”turn at the second cross intersection and stop in front of the three oak trees” does 

not make sense to the system without a description of the environment. The Navgation Map is a data 
base to store the environment description needed for navigation. 
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6.1. Map Structure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The navigation map is a set of descriptions of physical objects in the navigation world. It is composed 
of two parts, the geographical map and the object data base. The geographical map stores object 

locations with their contour polylines. The object data base stores object geometrical shapes and other 

attributes, for example, the navigation cost of objects. Though, in the current system, all objects are 

described with both the geographical map and the object data base, in general, either of them can be 

unused. For example, the location of stairs A is known, but its shape is unknown. 

The shape description is composed of two layers. The first layer stores shape attributes. For example, 

the width of the road, the length of the road, the height of the stairs , the number of steps, etc. The 

second layer stores actual geometrical shapes represented by the surface description. It is easy to 

describe incomplete shape information with only the first layer. 

6.2. Data retrieval 
The map data is stored in the CODGER data base as a set of tokens forming a tree structure. In order 

to retrieve map data, parent tokens have indexes to child tokens. Because the current CODGER system 

provides modules with a token retrieval mechanism that can pick up only one token at a time, retrieving 

large portions of the map is cumbersome. We plan to extend CODGER so that it can match and retrieve 

larger structures, possibly combined with an inheritance mechanism. 

7. Other Tasks of the System 
Navigation is just one goal of a mobile robot system. Generally speaking, however, navigation itself is 

not an end, but actually a means to achieve the final goals of the autonomous mobile robot system, such 

as carrying baggage, exploration, or refueling. Therefore, the system architecture must be able to 

accommodate tasks other than navigation. 

Figure 11 illustrates one example of an extended system architecture which loads, carries and unloads 

baggage. The whole system is comprised of four layers, mission control, vehicle resource management, 
signalpmcessing, and physical hardware. The CAPTAIN, only one module in the mission control layer, 

stores the user mission steps, sends them to the vehicle resource management layer one by one, and 

oversees their execution. 

In the vehicle resource management layer, there are different modules working for different tasks. 

Although their tasks are different, they all work in a symbolic domain and do not handle the physical world 

directly. These modules oversee mission execution, generate plans, and pass information to modules in 

the signal processing layer. Through CODGER, they can communicate with each other, if necessary. 

The MAP NAVIGATOR and the PILOT, parts of the navigation system, are included in the vehicle 

resource management layer. The MANIPULATOR makes a plan (e.g., how to load and unload baggage 

with the arm) and sends it to the ARM CONTROLLER. 

The modules in the signal processing layer interact with the physical world using senors and actuators. 

For example, PERCEPTION processes signals from sensors, the HELM drives the physical vehicle, and 

the ARM CONTROLLER operates the robot arm. The bottom level contains the real hardware, even if it 

includes some primitive controller. The sensors, the physical vehicle, and the robot arm are included in 

this layer. 
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Figure 11 : Extended system architecture 

Because our current system architecture is built on the CODGER system it will be easy to expand to 

include these additional capabilities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8. Conclusions 

In this paper, we have described the CMU architecture for autonomous outdoor navigation. The 

system is highly modular and includes components for both global and local navigation. Global 

navigation is carried out by a route planner that searches a map database to find the best path satisfying 

a mission and oversees its execution. Local navigation is carried out by modules that use a color camera 

and a laser rangefinder to recognize roads and landmarks, scan for obstacles, reason about geometry to 

plan paths, and oversee the vehicle's execution of a planned trajectory. 

The perception, planning, and control components are integrated into a single system through the 

CODGER software system. CODGER provides a common data representation scheme for all modules in 

the system with special attention paid to geometry. CODGER also provides primitives for synchronizing 

the modules in a way that maximizes parallelism at both the local and global levels. 

We have demonstrated our system's ability to drive around a network of sidewalks and along a curved 

road, recognize complicated landmarks, and avoid obstacles. Future work will focus on improving 

CODGER for handling more difficult sensor fusion problems. We will also work on better schemes for 

local navigation and will strive to reduce our dependence on map data. 
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