
1986 Year End Report for Road Following

at Carnegie Mellon

Charles Thorpe and Takeo Kanade
Principal Investigators

CMU-RI-TRS7-11

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

May 1987

Copyright Q 1987 Carnegie Mellon University

This research was supported by the Strategic Computing Initiative of the Defense Advanced Research
Projects Agency, DoD, through ARPA Order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5351, and monitored by the U.S. Army Engineer
Topographic Laboratories under contract DACA76-85-C-0003.

I

Abstract:

-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table of Contents

1

1. Introduction and Overview
Introduction
Overview
Chronology
Personnel
Publications
Ref ere nces

II. Sidewalk II: Perception and System Capabilities
Perception unsing colored-range image
System capabilites
Appendix: A method for calibrating a color camera and a range scanner

111. Vision and Navigation for the Carnegie Mellon Navlab
Introduction
Navlab: Navigation Laboratory
Color vision
Perception In 3-D
System building
Conclusions and future work
References

IV. The CMU System for Mobile Robot Navigation
lntroduct ion
Design of the system architecture
Paralieilsm
Sensor fusion
Local control
Navigation map
Other tasks of the system
Conclusions
Acknowledgements
References

7
7

11
11

16
16
16
19
30
34
40
42

43
43
45
49
51 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
54 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
56
57
58
59
60

1

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This report describes progress in vision and navigation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoutdoor mobile robots at the Carnegie

Melbn Robotics Institute during 1986. This research was sponsored by DARPA as part of the Strategic

Computing Initiative.

Our work during 1986 culminated in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo demonstration systems. The first system drives the

Terregator, a desk-sized robot with six wheels, around the network of campus sidewalks. This system,

named Sidewalk 11, uses a video camera to follow sidewalks and a laser rangefinder to detect and avoid

stairs. Sidewalk II makes extensive use of map data, for visual predictions and for path planning.

The second system, Park Navigation, uses the Navlab, our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnew Chemlet Van robot. The Park system

concentrated on vision for following d m i i l t roads, including curves, dirt and leaves, shadows, puddles,

and both moving and fixed obstacles. We developed vision techniques for handling difficult roads, and

built range finder programs for detecting and avoiding obstacles.

Both the Sidewalk II and Park experiments were built into complete systems using CODGER, a novel

whiteboard developed as part of the project. CODGER provides tools for handling geometry, motion over

time, multiple processes, multiple processors, and multiple languages.

This report is divided into four main sections. Section 1 is an introduction and overview, including a

chronology for the project and a list of 1986 publications. Section 2 describes the Sidewalk I1 system;

section 3 describes the Park experiments, and section 4 is about CODGER.

2

Section I

Introduction and Overview

1. Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
This report reviews progress at Camegie Mellon from January 15, 1986 to January 14, 1987 on

research sponsored by the Strategic Computing Initiative of DARPA, DoD, through ARPA Order 5351, and

monitored by the US Army Engineer Topographic Laboratories under contract DACA76-85-(2-0003, titled

"Road Following". This report zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconsists of an introduction and overview, and three detailed reports on

specific areas of research.

2. Overview
During this contract year we have built zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo complete systems, Sidewalk I1 and Park Navigation; used

two robot vehicles, Terregator and Navlab; built a single underlying software system, the CODGER

"whiteboard"; and transferred technology to Martin Marietta. Each of these are explained below.

A key concept in our work is integration. We have Integrated data from various sensors, such as video

and range, in our sensor modules. We integrate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmap data with perceived objects to update the vehicle's

position. The whiteboard integrates separate modules into a coherent software package. And our

systems integrate software, computing hardware, and mobile chassis into robots. In short, we have

integrated all the separate conponents necessary to produce functioning mobile robots, capable of

moving through difficult, realistic, outdoor scenes.

2.1. Sldewalk II
The Sidewalk II system uses information from a map, from video and range sensors, and from the

Terregator's dead reckoning, to drive around the Camegie Mellon campus sidewalks. Sidewalk II

demonstrated the Terregator in continuous motion down straight paths and through intersections, and

was the first actual testbed for the CMU whiteboard and system architecture. Sidewalk II perception

includes bw-level data fusion, building a colored range image, to recognize and kcate stairs on the

campus sidewalk network. The stairs are then used both as obstacles to be avoided and as landmarks

for position update. Further information on Sidewalk II can be found in section II, "Sidewalk II: Perception

and Capabilities." The use of the whiteboard by Sidewalk II is described in section IV, "The CMU System

for Mobile Robot Navigation."

2.2. Park Navlgatlon
The Park system drives the Navlab robot van along a winding, nanow, asphalt path through Schenley

Park adjacent to the CMU campus. The focus of Park work was real world perception, both video for road

following and range for obstade avoidance. Park perception copes with difficult circumstances, including

changing lighting, limited a priori models, and irregularly shaped natural objects. When the system

detects an obstacle, it drives around it if possible, or if there is no clear path on the road, stops and waits

for the object to move or be moved. Park navigation uses the whiteboard for system coordination. The

Park navigation system is explained in detail in Section 111 of this report, "Vision and Navigation for the

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Carnegie Melbn Navlab." zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.3. Terregator

The Terregator is the vehicle we used for all our experiments during 1985, and continues to be used for

our sidewalk experiments. It is about the sue of a desk, carries power and communications gear, and

provides built-in motion commands. This year we have added a platform for more room, and have

replaced the microwave link with two VHF video transmitters. Details of the Terregator were reported by

Whiiaker 121.

2.4. Navlab
The Navlab (named from "Navigation Laboratory") is a selfcontained laboratory for navigational vision

system research. The Navlab was based on a commercial van chassis, and is large enough to carry

power, computers and researchers on board. It has been a great asset to our work to have processing

and experimenters dose to the action. We no bnger have problems with video communications to

remote computers, and researchers can quiddy see the actions of their programs, and greatly speed up

the debuglreprogramhest zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcycle. The Navhb was built under separate DARPA funding, and has been used

for our Park experiments since fall 1986. The design and construction of the Navlab are chronicled by

Singh [l].

2.5. Whlteboard
Intelligent mobile robots need to reason zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAabout geometrical relationships and how they change with

time. A mobile robot system is built of many cooperating processes which need to communicate and to

synchronize themselves. During the last year we have developed CODGER, a whiteboard, which provides

tools for handling geometry, time, synchronization, and communication. On top of the CODGER tools we

have built an architecture that sets conventions for control and data flow. This system structure is the

basis of both the Sidewalk II and Park Navigation systems. CODGER and the associated architecture are

described in Section IV of this report, "The CMU System for Mobile Robot Navigation."

2.6. Technology Transfer
Part of our charter is to cooperate with Martin Marietta in the development of the ALV (Autonomous

Land Vehicle). Accordingly we have during the last year participated in the ALV quarterly meetings, in

several Critical and Preliminary Design Reviews, and in a variety of less formal contacts with Martin

Marietta. We have hosted a visitor from Martin for most of a year, first as a visiting scientist and since

September as a graduate student. We have influenced the design of the ALV software and hardware

architecture. The current combination of Suns and specialized processors on the ALV should make it

relatively easy in the future to run CMU software on the ALV.

We have also contributed several stand abne modules to the ALV. Early in the year, they received a

path planner that uses a terrain database of the Martin Denver site to plan paths for the ALV. In March

they received code for obstacle detection using the ERlM scanner. And in October they acquired our

code for terrain analysis, again using ERlM data. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i

4

3. Chronology zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
January:

February:

February:

February:

March:

March:

April:

June:

August:

August:

October:

October:

October:

October:

November:

November:

November:

December:

Adaptive color runs

Color cone finding

First prototype whiteboard system runs

Color-ERIM registration

Terregator using ERIM runs in coal mine

Navlab runs under joystick control

First color segmentation run using Navlab with remote computers

Hosted Blackboard workshop

Navlab runs for the first time with on board computing, using ERlM

FlDO stereo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAruns on Warp

€RIM terrain analysis software exported to Martin Marietta

Sidewalk II navigates complete course, including 90 and 135 degree turns, with
continuous motion

Whiteboard runs on Navlab

First Navlab run with on board vision

First vision nrns using texture

Successful runs stopping for obstacles and restarting

Sidewalk II drives Terregator successfully around stairs

DARPA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdem0 Of Navlab Pa& System

4. Personnel

William Whittaker.

Faculty: Martial Hebert, Katsushi Ikeuchi, Takeo Kanade, Steve Shafer, Chuck Thorpe, Jon Webb,

Staff: Paul Allen, Mike Blackwell, Tom Chen, Jill Crisman, Kevin Dowling, Ralph Hyre, Jim Moody,
Tom Palmeri, Eddie Wyatt.

Visiting scientists: Arun Agatwal, Yoshi Goto, Take Fujimori, Kchie Matsuzaki, Taka Obatake

Graduate students: Keith Gremban, Karl Kluge, InSo Kweon, Doug Reece, Bruno Serey, Tony Stentz,

Rich Wallace

5. Publications

Machine Perception. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Unix Review 4(9), 1986.

Crisman, J.

Elfes, A.

A Sonar-Based Mapping and Navigation System.

In IEEE International Conference on Robotics and Automation. 3986.

Goto, Y., Matsuzaki, K., Kweon, I., and Obatake, T.

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CMU Sidewalk Navigation System.

In Fall Joint Computer Conference. ACMAEEE, November, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1986.

Hebert, M., and Kanade, T.

Outdoor Scene Analysis Using Range Data.

In IEEE International Conference on Robotics and Automation. 1986.

Kanade, T., Thorpe, C., and Whittaker, W.

Autonomous Land Vehicle Project at CMU.

In ACM Conputer Conference. February, 1986.

Kanade, T. and Thotpe, C.

CMU Strategic Convuting Vision Reject Report: 1984 to 1985.
Technical Report, The Robotics Institute, Carnegie Melbn University, 1985.

Krogh, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB., and Thorpe, C.

Integrated Path Planning and Dynamic Steering Control for Autonomous Vehicles.

In IEEE International Conferem on R0botk.s and Automation. 1986.

Matthies, L.H., and Shafer, S.A.

Error modelling in stereo navigation.

In Fall Joint Computer Conference. ACMAEEE, November, 1986.

Serey, B. and Matthies, L.

W a d e avoidance using 1-0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstereo vision.
Technical Report, Carnegie Melbn Robotics Institute, 1987.

Shafer, S., Stentz, A., Thorpe, C.

An Architecture for Sensor Fusion in a Mobile Robot.

In IEEE International Conference on Robotics and Automation. 1986.

Singh, J. et at.

NavLab: An Autonomous VehM8.
Technical Report, Camegie Melbn Robotics Institute, 1986.

Thorpe, C.

Vision and Navigation for the CMU Navlab.

In SPIE. Socity of Photo-Optical Instrumentation Engineers, October, 1986.

Wallace, R., Matsuzaki, K., Goto, Y., Crisrnan, J., Webb, J., and Kanade, T.

Progress in Robot Road-Following.

In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI€€€ lnternational Conference on Robotics and Automation. 1986.

6

References

Singh, J. et ai. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NavLab: An Autonomous Vehicle.
Technical Report, Camegie Melbn Robotics Institute, 1986.

Terregator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Terrestrial Navigator.
Technical Report, Camegie-Melbn Robotics Institute, 1984.

[2] Whittaker, W.

Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I

Sidewalk II zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Perception and System Capabilities

Y. Goto, T. Obatake

1. Kweon, K. Matsuzaki

This section describes the perception and system capabilities of the Sidewalk Navigation System II.

The Sidewalk II system architecture is described in section IV.

1. Perception Using Colored-Range Image

1 .l. PERCEPTION Module Architecture for Sensor Fusion
The main effort in designing the PERCEPTION module is deciding how to combine several types of

sensors and sensor data processing modules into one system, and how to make them work efficiently.

We designed a hierarchical structure and a monitor module which manages all parts of the hierarchy (see

figure 1).

cop01
'arameters

Vehicle-
Pomon Objects

I
predicted Object zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPosition

POSITION CALIBRATOR

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I PATCH MAKER I I

Figure 1 : Structure of PERCEPTION module

8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.1 .l. PERCEPTION MONITOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The PERCEPTION MONITOR has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo major roles: communication with other modules (the PILOT)

and control of internal submodules. The design principle of this system is to provide a common structure

for different sensors and algorithms. This tends to make the module interface rather high level. For
example, a desired vehicle position for image input is usually decided by an external module using sensor

parameters. However, if there are several types of sensors with different view angles, the common

interface for those modules will be where PERCEPTlON should see instead of whem PERCEPTION
should look from. This means the perception module itself must decide the best position from which to

see the requested place. Communication with other modules means interpretation between the high level

module interface commands and actual commands to internal submodules.

The control flow of the perception process is rather simple: it progresses from segmentation to position

update. The PERCEPTION MONITOR activates the PATCH MAKER and the POSITION CALIBRATOR

in this sequence. The functions for the interpretation of the high level commands from the other planning

module (the PILOT) are described in the following paragraphs.

The PILOT requests what Wjects to see, but does not say which sensor should be used. The

PERCEPTION MONITOR decides which sensor and segmentation module is the best for the requested

objects. The current system has two sensors and segmentation modules. If all requested objects are

sidewalks or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAintersections on a flat plane, the PERCEPTION MONITOR selects the color segmentation

module as a PATCH MAKER. If threegimensional objects such as stairs and slopes are included in the

requested objects, the PERCEPTION MONITOR selects the cobred-range segmentation module.

The PILOT module does not say when PERCEPTION should see an object because the view frame of

PERCEPTION depends on the sensor used, and the PILOT does not know which sensor will be used.

Instead, the PERCEPTION MONITOR uses its internal position decision algorithm.

The position decision algorithm has two steps. First, this module simulates the view frame and the

vehicle’s future path which is posted in the BLACKBOARD by LOCAL PATH PLANNER. When the

simulated view frame covers the region which the PILOT has requested PERCEPTION to see, this

vehicle position is defined as the image input position. Second, this module monitors current vehicle

position by watching the moving vehicle position on the BLACKBOARD. When the moving vehicle

position reaches the image input position, this module controls sensors to input an image.

1.1.2. PATCH MAKER

segmentation module, and a colored-range segmentation module. They are described in section 1.2.

The PATCH MAKER, the region segmentation sub module, has a color segmentation module, a range

The data structure which holds Patch data segments is common to all three segmentation modules.

This data includes cobr fype, sudace fype and notmal, powgons for boundary shape, and relation to

neighbor segments.

1.1.3. POSITION CALIBRATOR

The predicted objects are described in the current coordinate system, but the vehicle coordinate

system is used to describe the detected objects. The POSITION CALIBRATOR then computes the

vehicle position in the current coordinate system, by applying the transformation matrix between the two

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
coordinate systems. The problem for this computation is that the predicted object shape and the detected

object shape are not the same because of imperfections in the MAP and in perception. Therefore, the

POSITION CALIBRATOR must find the most appropriate match for these two shapes.

To get the best matching point, the POSITION CALIBRATOR calculates the distance between the

predicted lines and the detected lines of object polygons, and finds the position which minimizes the

distance. Sometimes a scene is composed of only parallel lines (for example sidewalk), which are

insufficient to decide a matching point. In this case, the POSITION CALIBRATOR derives a line equation

on which the vehicle is located instead of a point for vehicle position. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.2. Colored-Range Image Analysls

It is very difficult to recognize complex objects in outdoor scenes using only one kind of sensor, but

several different sensors can provide many clues about the environment. For example, use of both range

data and color images provides a very powerful vision system for outdoor scene analysis: range data

provide information about the geometry of the scene, and color images provide information on the

physical properties of objects. In order to use these different zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtypes of sensor data, we must integrate them

using sensor fusion techniques. The registration between range data and color images can be a first step

of sensor fusion. We call the image which has both color information and depth values a colored-range

image. Next we describe the registration algorithm for color and range image, the segmentation

procedure for range data, color segmentation algorithm, and how to use a colored-range image.

1.2.1. Reglstratlon

Colored-range images are created by registering color data onto range data. In order to register them,

we need to know the camera parameters: the position and the orientation of the color camera relative to

the range scanner. We developed a method to obtain these camera parameters, which consists of two

steps: the initial value estimation and the optimum value estimation. The parameters calculated by the

first step can be used for some simple objects. However, they are not accurate enough for our test site.

The second step can give more accurate camera parameters by an iterative numerical method using the

result of the first step as starting values. The details of these methods are described in the Appendix to

this section.

1.2.2. Range Image Segmentation

We have two main processing modes in range segmentation: rough region segmentation and the

extraction of vertical surfaces. Rough segmentation uses three basic attributes: jump edges, surface

normals, and surface curvatures. Flat, horizontal surfaces can be extracted by using the surface normals,

and large obstacles will be detected with surface normals pointed in other directions. This process,

however, cannot provide a detailed description of a scene with small objects. In order to obtain a detailed

description of a scene we need to use special purpose processing. For a scene containing stairs, we

extract vertical surfaces using the fact that pixels along the column in the range image will have constant

depth value. We produce the final range segmentation by combining the regions from these processes.

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a)Range image

(b)Original color image (blue intensity)

--

(c)Co/ored-range image

Figure 2: Color and range image registration

1.2.3. Color Segmentatlon

Our test zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsite includes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfive types of objects to be distinguished: sidewalks, intersections, a slope, stairs,

and grass. The surface color of the first four objects are almost the same shade of gray, and the grass is

green. Therefore, we tried to segment the image into gray regions and nongray regions.

The difficulties in color segmentation are caused by shadows of trees, of buildings, and of the vehicle

itself, and by changing color values depending on weather conditions. In order to obtain reliable

segmentation results, the program creates a 4B-G image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(B: brightness of blue, G: brightness of green),

which is segmented by thresholding. Subtracting green from blue reduces the effect of shadows. There

are two methods for finding the threshold: When the histogram of the 4B-G image has one clear valley,

the program sets the intensity value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat the valley as the threshold. When it does not have a clear valley,

the program selects a threshold which is close to the previous threshold value, and at which the

histogram has a local minimum value.

Our color segmentation method can separate the sidewalks, the intersections, the stairs, the slope, and

the grass under different weather conditions: cloudy days, rainy days, and sunny days. It also works well

even if scenes include pretty sharp shadows.

11

1.2.4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASegmentation of Colored Range Image

The segmentation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcolored range images is executed using both color segmentation and range

image segmentation. Color segmentation assigns a color label to each pixel. Range image segmentation

assigns a surface label to each pixel. Therefore, each pixel in a colored range image has both a color

label and a surface label. Our method creates segments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that in each segment all pixels have the

same color label and the same surface label.

1.25. Result of Real Scene Analysls
One good example to show the effectiveness of the colored-range segmentation module is a slope and

stairs scene on the CMU campus sidewalk. The slope and the stairs are made of concrete and have the

same gray color. The slope and roadside grass are almost on the same plane. Therefore, segmentation

using only color can not separate the slope and the stairs, and segmentation using only range can not

separate the slope and the road side grass. Overlap segmentation using a colored-range image can

extract the concrete slope which is the only navigable region in this scene. Figure 3 shows the results of

color segmentation, range segmentation, and final overlap segmentation.

2. System Capabilities

Navigation System can drive the vehicle, Terregator, on the CMU campus. It has capability

Using perception as described above and the system architecture described in section IV, the Sidewalk

0 to execute a prespecified user mission over a mapped network of sidewalks, including

to recognize landmarks, stairs and intersections under different weather conditions including

to drive continuously zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat 100 mmlsec, slowing down in turning to keep turns stable.

tuming at the intersections and driving up the bicycle slope,

sunny days, rainy days, and even if scenes include fairly sharp shadows, and

Figure 4 illustrates the vehicle trajectories in the real runs. The vehicle navigated along the square and

diagonal test course (a), and drove up the bicycle slope, avoiding the stairs (b).

1. APPENDIX: A method for calibrating a color camera and a range scanner.
In this appendix, we describe the details of the calibration method for a color camera and a laser range

scanner. The calibration consists of two steps: the initial value estimation and the optimum value

estimation. We used a conventional lens calibration method to obtain a nonlinear transformation (a third

order polynomial was adopted in our experiment) between the real image plane and the ideal image

plane. The focal length of the camera was assumed to be unity in this experiment. Then, if we transform

real image points to ideal ones using the result of the lens calibration, we can use the linear perspective

projection model.

1.1. Initial estimation by a least-squares criterion
In the initial value estimation step, the measured tilt angle of the color camera is used to simplify the

problem. Thus the position of the camera relative to the range scanner and its focal length are the only

unknown parameters. The unknown parameters are computed by solving a least-squares criterion.

A pair of range/color images is first measured, then a set of of points <=(+ yi., ti) is selected in the

range image along with the corresponding set of pixels zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(r,.. ci). From the homogeneous transformation, the

12

(a) Color segmentation

(b) Range segmentation

(c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAColored-range segmentation

(d) Colored-range segmentation on x-y plane

Figure 3: Colored range segmentation

following relationship between cameracentered points and range scanner-centered points can be

obtained. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P F = R P f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- P

where, P: and are a 3D scene point in a camera-centered coordinate

and a range scanner-centered coordinate respectively,

13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(a) Along the square and diagonal test course zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
intersection’ + t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

slope

(b) Around the bicycle slope and the stairs

Figure 4: The Vehicle trajectories zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P is the position vector of the camera relative to the range scanner,

and R is the 3x3 rotation matrix between two sensors.

Perspective transformation provides the following equations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAri = fz;

x;ci = fy ;

where, Pf = (x;. y;, 2;) and f is the focal length of the camera.

14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
By substituting Eq. (1) into Eq. (2) and Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) and rearranging it, we can obtain the following

equations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPf ri - P, ri - f R, PI + Pz* = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

R , PI ci - P,ci - f R 2 < + P,,' = 0

where, R, , R,, and R, is each row vector of rotation matrix R and Py* = f Py, PzD = f Pz

Using Eq. (4), the criterion can be written in the following form, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C = r k l ((A i - P,Bi - f C i + Pi)* + (D i - P x E i - f F i + P,,'),)

where, Ai = R, P: ri, Bi = ri, Ci = R, P:, Di = R , f ci, Ei = ci, and F, = R, Pr

To make a simpler form, we use a matrix representation.

C = IlU - A VI2 + IlW - B VllZ

where,V= [P P ' Pz'fJ', A= [Bi 0 - 1 Cil , U = [A, - - A,,]', and W = [D, - - - DJ'
X Y

(4)

The camera parameters, which minimize the criterion, can be determined in the following form by

taking the partial derivative of Eq. (5) with respect to the vector V and setting it to zero.

V = (A ' A + B ' B) - ~ (A ' U + B ' W) (6)

The problem of finding camera parameters is now just a matrix computation and the matrix form is

given in Eq. (5).

Because the focal length is fixed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunity in our projection model, the partial derivative with respect tof

is equal to zero. This causes the following changes in A , U, B , and W of Eq. (5).

v= [P, Py' Pz7'
A=[BiO - 1 3
B=[E iO - 1 1

U = [A , - C, - -
W=[D1 - F,

A,, - C,, 1'
* - D,, - F,, 1'

1.2. Optimum camera parameters by Newton-Gauss method
Once the initial camera parameters are computed by the first step, the optimum camera parameters

including positions and orientations of the camera can be numerically computed by using the Newton-

Gauss method.

The vector V has the unknown parameters as its elements. The unknown parameters are the position

vector (P, Py Pz) of the camera relative to the range scanner, the pan (a), the tilt @), and the rotation (y)

angle of the camera and the focal length f . With the measured color image points (ri ci), the

corresponding 3-D position vectors (xi yi zi) and the initial parameters computed by the first step, we can

easily find a function Fi(V) which represents the relationship between the given 3-0 scene points and the

corresponding color image points. The error between the measured color image points and the ideal

image points can be expressed by the following equation.

15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The condition for minimum error value is that the partial derivative of Eq. (7) with respect to camera

parameters should be equal to zero. From this condition, we obtain the following equation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA (v) + ~ A(C)=O (8)

where, 4 is Jacobian of function Fi,
A(v) is correction for camera parameters,
and A(c) =-(li-Fi(VJ)

Finally the equation for the correction of camera parameters can be obtained as

Using Eq. (9) the procedure is iterated until there is no change in the correction values of the camera

parameters.

Section 111

Vision and Navigation

for the Carnegie Mellon Navlab

Charles Thorpe
Martial Hebert
Takeo Kanade
Steven Shafer

and the members of
the Strategic Computing Vision Lab

1. Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Robotics is where Artificial Intelligence meets the real world. AI deals with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsymbols, rules, and

abstractions, reasoning about concepts and relationships. The real world, in contrast, is tangible, full of

exceptions to the rules, and often stubbornly difficult to reduce to logical expressions. Robots must span

that gap. They live in the real world, and must sense, move, and manipulate real objects. Yet to be

intelligent, they must also reason symbolically. The gap is especially pronounced in the case of outdoor

mobile robots. The outdoors is constantly changing, due to wind in trees, changing sun positions, even

due to a robot’s own tracks from previous runs. And mobility means that a robot is always encountering

new and unexpected events. So static models or preloaded maps are inadequate to represent the robot’s

world.

The tools a robot uses to bridge the chasm between the external world and its internal representation

include sensors, image understanding to interpret sensed data, geometrical reasoning, and a concept of

time and of the vehicle’s motion over time. We are studying those issues by building a mobile robot, the

Camegie Mellon Navlab, and giving it methods of understanding the world. The Navlab has perception

routines for understanding color video images and for interpreting range data. CODGER, our whiteboard,

proposes a new paradigm for building intelligent robot systems. The CODGER tools, developed for the

Navlab and its smaller cousin the Terregator, handle much of the modeling of time and geometry, and

provide for synchronization of multiple processes. Our architecture coordinates control and information

flow between the high-level symbolic processes running on general purpose computers, and the lower-

level control running on dedicated real-time hardware. The system built from these tools is now capable

of driving the Navlab along narrow asphalt paths near campus while avoiding trees and pausing for

joggers that get in its way.

This report describes the Navlab [Singh 861 and the software we have built over the past year: color

vision, for finding and following roads [Thorpe 861; 3-D perception, for obstacle avoidance [Hebert 86);

and the CODGER whiteboard [Shafer 861.

2. Navlab: Navigation Laboratory
The Navigation Laboratory, Navlab, is a self-contained laboratory for navigational vision system

research (see figures 1 and 2). The motivation for building the Navlab came from our earlier experience

with the Terregator, a six-wheeled vehicle teleoperated from a host computer through a radio link. The

17

Figure 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: The Navlab

Terregator had been a reliable workhorse for small-scale experiments, such as the Campus Sidewalk

navigation system [Goto 861. However, we have outgrown its capabilities. As we began to experiment

with sensor fusion, the Terregator ran out of space and power for multiple sensors. When we wanted to

expand our test areas, communications to a remote computer in the lab became more difficult. And as

the experiments became more sophisticated, we found it more productive for the experimenters to test or

debug new programs near or in the vehicle, instead of in a remotely located laboratory. All these factors

culminated in the design and construction of the Navlab [Singh 861.

Navlab is based on a commercial van chassis, with hydraulic drive and electric steering. Computers

can steer and drive the van by electric and hydraulic servos, or a human driver can take control to drive to

a test site or to override the computer. The Navlab has mom for researchers and computers on board,

and has enough power and space for all our existing and planned sensors. This gets the researchers

close to the experiments, and eliminates the need for video and digital communications with remote

computers.

Features of the Navlab include: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Onboard computers: We have five computer racks, one for low-level controllers and power

smoothing, one for video distribution, VCRs, communications and miscellaneous equipment,
two racks for general-purpose processors (currently Sun workstations), and one for a Warp
processor.

0 Onboard researchers: There is always a safety driver in the driver’s seat. There is room
for four researchers in the back, with a terminal or workstation for each. An overhead shelf
holds video monitors and additional terminals. The researchers can monitor both their
programs and the vehicle’s motion.

0 Onboard power: The Navlab carries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo 5500-W generators, plus power condaioning and
battery backup for critical components.

~Onboard sensors: Above the cab is a pan mount carrying our laser scanner and a
mounting rail for a color TV camera. There will eventually be a separate pamilt mount for
stereo cameras.

Evolving controller: The first computer controller for the Navlab is adequate for our current

18 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 2: Navlab interior

19 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
needs. It steers the van along circular arcs, and has commands to set speed and
acceleration, and to ask for the current dead reckoned position estimate. The controller will
evolve to do smoother motion control, and to interface with an inertial guidance system
possibly even with GPS satellite navigation. It will also eventually watch vital signs such as
computer temperature and vehicle hydraulic pressure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3. Color Vision
The Navlab uses color vision, specifically multiclass adaptive color classification, to find and follow

roads. Image points are classified into "road" or "non-road" principally on the basis of their color. Since

the road is not a uniform color, color classification must have more than one road model, or class, and

more than one non-road class. Because conditions change from time to time and from place to place

over the test course, the color models must be adaptive. Once the image is classified, the road is

identified by means of an area-based voting technique that finds the most likely location for the road in

the image.

3.1. Vision Principles for the Real World

We based the development of our vision system on the following principles:

Assume variation and change. On sunny days there are shadowed areas, sunlit areas, and patches

with dappled sunlight. On rainy days, there are dry patches and wet patches. Some days there are wet,

dry, sunny and shadowed areas all in the same image. The road has clean spots and other places

covered with leaves or with drips of our own hydraulic fluid. And as the sun goes behind a cloud or as the

vehicle turns, lighting conditions change. We therefore need more than one road and non-road color

model at any one time, those color models must adapt to changing conditions, and that we need to

process images frequently so that the change from one image to the next will be moderate.

Use few geometric parameters. A complete description of the road's shape in an image can be

complex. The road can bend gently or turn abruptly, can vary in width, and can go up- or downhill.

However, the more parameters there are, the greater the chance of error in finding those parameters.

Small misclassifications in an image could give rise to fairly large errors in perceived road geometry.

Furthermore, if all the road parameters can vary, there are ambiguous interpretations: Does the road

actually rise, or does it instead get wider as it goes? We describe the road with only two free parameters:

its orientation and its distance from the vehicle. Road width is fixed, we assume a flat world, and we

decree that the road is straight. While none of these assumptions is true over a long stretch of the road,

they are nearly tnre within any one image; and the errors in road position that originate in our

oversimplifications are balanced by the smaller chance of bad interpretations. If our system classifies a

few pixels incorrectly as road, the worst it will do is to find a slightly incorrect road. A method that tries to

fit more parameters, on the other hand, may interpret parts of the road perfectly, but could find an abrupt

turn or sudden slope near any bad pixels.

Work in the Image. The road can be found either by projecting the road shape into the image and

searching in image coordinates, or by back projecting the image onto the ground and searching in world

coordinates. The problem with the latter approach comes in projecting the image onto an evenly spaced

grid in the world. The points on the world grid close to the vehicle correspond to a big area in the lower

part of the image; points farther away may correspond to one or a few pixels near the top. Unless one
uses a complex weighting scheme, some image pixels (those at the top that project to distant world

20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
points) will have more weight than other (lower) points. A few noisy pixels can then have a big zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor a small

effect, depending on where in the image they lie. On the other hand, working directly in the image makes
it much easier to weight all pixels evenly. We can directly search for the road shape that has the most

road pixels and the fewest non-road pixels. Moreover, projecting a road shape is much more efficient

than back projecting all the image pixels.

Calibrate directly. A complete description of a camera must include its position and orientation in

space, its focal length and aspect ratio, lens effects such as fisheye distortion, and nonlinearities in the

optics or sensor. The general calibration problem of trying to measure each of these variables is difficult.

It is much easier, and more accurate, to calibrate the whole system than to tease apart the individual

parameters. The easiest method is to take a picture of a known object and build a lookup table that

relates each world point to an image pixel and vice versa. Projecting road predictions into the image and

back projecting detected road shapes onto the world are done by means of table lookup (or table lookup

for close-by values with simple interpolations). Such a table is straightforward to build and provides good

accuracy, and there are no instabilities in the calculations.

Use outside constraints. Even without a map of our test course or an expensive inertial navigation

system, we know, based on the previous image and on vehicle motion, approximately where the road

should be. Our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwhiteboatd, described in section 5, can predict where the road should appear if the road

were straight and vehicle navigation were perfect. Adding a suitable margin for curved roads and sloppy

navigation still gives useful limits on where in the image to look for the road.

Test with real data. We ran our VCR nearly every time we took the vehicle out, to collect images

under as many conditions as possible. We recorded sunny days, cloudy days, rainy days, leaves on

trees, leaves turning color, leaves falling, early morning, noon, after dusk, even a partial solar eclipse.

Strategies that worked well on one set of images did not always work on the others. We selected the

toughest images, ran our best algorithms and printed the classification results, changed parameters or

algorithms, reran the data set, and compared results. This gave us the best chance of being methodical

and of not introducing new bugs as we went. When the image processing worked to our satisfaction, we

ran simulations in the lab that included the whiteboard, range processing, path planning, and a vehicle

simulator, with the vision component processing stored images and interacting with the rest of the system.

When the simulations worked in the lab, we moved them to the vehicle. Only after the simulations worked

on the vehicle’s computers, and we were sure that all necessary software was on the van, did we go into

the field for real tests. Even then not everything worked, but there were many fewer bugs than there

would have been without the simulations and tests. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARoad Following Algorithm

We followed these principles in building and tuning adaptive color classification for following roads.

Figure 3 shows a relatively simple scene to help explain our algorithm. As shown in figure 4, the

algorithm involves three stages:
1. Classify each pixel.

2. Use the results of classification to vote for the best-fit road position.

3. Collect new color statistics based on the detected road and non-road regions.

Pixel classification is done by standard pattern classification. Each class is represented by the means,

variances, and covariances of red, green, and blue values, and by its a priori likelihood based on

21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: Original Image

expected fraction of pixels in that class. For each pixel, calculating the class to which it most likely

belongs involves finding how far the pixel’s values lie from the mean of each class, where distance is

measured in standard deviations of that class. Figures 5 and 6 show how each pixel is classified and how

well it matches.

Once each point has been classified, we must find the most likely location of the road. We assume the

road is locally flat, straight, and has parallel sides. The road geometry can then be described by two

parameters as shown in figure 7:

1. The intercept, which is the image column of the road’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvanishing point. This is where the
road centerline intercepts the horizon (or more precisely the vanishing line zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the locally flat
plane of the road; since the camera is fixed to the vehicle this vanishing line is constant
independent of the vehicle’s pitch, roll, and yaw). The intercept gives the road’s direction
relative to the vehicle.

2. The orientation of the road in the image, which tells how far the vehicle is to the right or left
of the centerline.

We set up a two-dimensional parameter space, with intercept as one dimension and orientation as the

other. Each point classified as road votes for all road orientationlintercept combinations to which it could

belong, while nonroad points cast negative votes, as shown in figure 9. The orientationhtercept pair that

receives the most votes is the one that contains the most road points, and it is reported as the road. For

the case of figure 3, the votes in orientationlintercept space look like figure 10. Figure 11 shows the

detected position and orientation of the road. It is worth noting that since this method does not rely on the

exact local geometry of the road, it is very robust. The road may actually curve or not have parallel

edges, or the segmentation may not be completely correct. But since this method does not rely on exact

geometry, the answer it produces is adequate to generate an appropriate steering command.

22 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+

Classification

Road Model Non-road Model
-

Appearances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(RGBT)

Surface Appearance

W B T) +
Road osinon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA A 1 A

& Orientation I 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f

Self Clustering

Vehicle
Motion

Figure 4: Color vision for road following, including color classification, Hough transform for road

region detection, and updating multiple road and non-road models.

Figure 5: Segmented image. Color and texture cues are used to label points below the horizon into

two road and two zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoff road classes

23 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure6: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARoad probability image. The pixels that best match typical road colors are displayed

Once the road'has been found in an image, the color statistics of the road and offroad models are

modified for each class by resampling the detected regions (figure 12) and updating the color models.

The updated color statistics will gradually change as the vehicle moves into a different road color, as

lighting conditions change, or as the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcolors of the surrounding grass, dirt, and trees vary. As long as the

processing time per image is low enough to provide a large overlap between images, the statistics adapt

as the vehicle moves. The road is picked out by hand in the first image. Thereafter, the process is

automatic, using the segmentation from each image to calculate color statistics for the next.

brightest.

There are several variations on this basic theme. One variation is to smooth the images first. This

throws out outliers and tightens the road and non-road clusters. Another is to have more than one class

for road and for non-road, for instance one for wet road and one for dry, or one for shadows and one for

sun. Other variations change the voting for best road. Besides adding votes for road pixels, we subtract

votes for non-road points. Votes are weighted according to how well each point matches road or non-

road classes. Finally, an image contains clues other than color, such as visual texture. Roads tend to be

smooth, with less high-frequency variation than grass or leaves, as shown in figure 13. We calculate a

normalized texture measure, and use that in addition to color in the road classification.

3.3. Implementation, Details, and Results
The implementation of road following runs in a loop of six steps: image reduction, color classification,

texture classification, combining color and texture results, voting for road position, and color update.

These steps are shown in figure 14, and are explained in detail below.

Image Reduction. We create a pyramid of reduced resolution R, G, and B images. Each smaller

image is produced by simple 2 x 2 averaging of the next larger image. Other reduction methods, such as

median filtering, are more expensive and produce no noticeable improvement in the system. We start

24 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P: Road direction relative to vehicle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0: Vehicle position relative to road center

Find a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgood combination of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P,@)

Figure 7: Hough Transform that considers the geometry of road position and orientation. Geometry of

locally flat, straight, and parallel road regions can be described by only P and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. Point A classified as road

could be a part of the road with the shown combination of (P, e), and thus casts a positive vote for it.

Point B classified as off-road, however, will cast a negative vote for that (P I e) combination.

with 480 x 512 pixel images, and typically use the images reduced to 30 x 32 for color classification. We

use less reduced versions of the images for texture classification. Image reduction is used mainly to

improve speed, but as a side effect the resulting smoothing reduces the effect of scene anomalies such

as cracks in the pavement.

Color Classification. Each pixel (in the 30 x 32 reduced image) is labeled as belonging to one of the

road or non-road classes by standard maximum likelihood classification. We usually have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo road and

two non-road classes. Each class is represented by the mean R, G, and B values of its pixels, by a 3 x 3

covariance matrix, and by the fraction of pixels expected a priori to be in that class. The classification

procedure calculates the probability that a pixel belongs to each of the classes, assigns the label of the

most probable class, and records the maximum road and non-road probabilities for each pixel.

25

Figure 8: A road point could be a part of roads with different orientations and vanishing points.

Figure 9: The point from figure 8 would vote for these orientation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ intercept values.

El I
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhorizon point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0
M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a
(I

I

n
I Y

0

Figure 10: Votes for best road orientation and intercept, and point with most votes (dark square), for

road in figure 3.

26

Figure 11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: Detected road, from the point with the most votes shown in figure 10.

Figure 12: Updating road and nonroad model colors, leaving a safety zone around the detected mad

region.

Texture Calculation. This is composed of six substeps:

Calculate texture at high resolution by running a Robert's operator over the 240 x 256 image. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Calculate a low resolution texture by applying a Robert's operator to the 60 x 64 image.

0 Normalize the texture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAby dividing the high resolution texture by a combination of the average
pixel value for that area (to handle shadow interiors) and the low resolution texture (to
remove the effect of shadow boundaries). The average pixel value is the value from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe
corresponding pixel in the 120 x 128 reduced image.

27 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 13: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZoomed picture of road-nonroad boundary. The road (at left) is much less textured than

the grass (at right). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

SAMPLE COLORS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP

EDGE OPERATOR

TEXTURE NORMN,IZATION

CLASSIFICATION

TEXTURE

TEXTURE u
CLASSIFICATION

J, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP

GRASS 1 , ,Roe$ CLASSIFICATION ON , R!gfl
ROAD 0

NEGATIVE VOTE

POSITIVE VOTE

Figure 14: Processing cycle for color vision.

28

Figure 15: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALow resolution texture image, showing textures from figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. The brighter blocks are

image areas with more visual texture.

high-freq gradient

ax low-freq gradient +px mean pixel value
normalized gradient =

Typical values for the coefficients are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 0.2 and p = 0.8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Threshold. Produce a binary image of "microedges" by thresholding the normalized gradient.

A fairly low threshold, such as 1 , is usually adequate.

0 Count Edges. Count the number of edges in each pixel block. This gives a 30 x 32 pixel
texture magnitude image. Figure 15 shows the texture image derived from figure 3. Each
texture pixel has a value between 0 and 256, which is the number of pixels in the
corresponding area of the full-resolution image that are microedges.

0 Texture Classification. Classify each pixel in the 30 x 32 image as road or non-road on the
basis of texture, and calculate a confidence for each label. We found experimentally that a
fixed mean and standard deviation for road and non-road textures were better than adaptive
texture parameters. Our best results were with road mean and standard deviation of 0 and
25, and non-road values of 175 and 100. Effectively, any pixel block of the image with more
than 35 microedges above threshold is considered textured, and is therefore classified as
nonroad.

Combination of Color and Texture Results. Color is somewhat more reliable than texture, so the

color probabilities are weighted somewhat more than the probabilities calculated by texture. The result of

this step is a final classification into road or non-road, and a "confidence" calculated by

Max(road confidence, non-road confidence) - Min(road confidence, non-road confidence)

Vote for Best Road Position. This step uses a 2-D parameter space similar to a Hough transform.

Parameter 1 is the column of the road's vanishing point, quantized into 32 buckets because the image on

which the classification and voting are based has 32 columns. Parameter 2 is the road's angle from

vertical in the image, ranging from -1 to 1 radian in 0.1 radian steps. A given mad point votes for all

possible roads that would contain that point. The locus of possible roads whose centerlines go through

29 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
that point is an arctangent curve in the parameter space. Because the road has a finite width, the arctan

curve has to be widened by the width of the road at that pixel's image row. Road width for a given row is

not a constant over all possible road angles but is nearly constant enough that it doesn't justify the

expense of the exact calculation. Each pixel's vote is weighted by its calculated confidence. Pixels

classified as non-road cast negative votes (with their weights reduced by a factor of 0.2) while road pixels

add votes. In pseudo C code, the voting for a pixel at (row, col) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(theta = -1; theta <= 1; theta+= 0 . 1) {

center = co l + arctan (theta);
for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c = center - width/2; c <= center + width/2; c++) {

parameter-6pace [theta] IC] += confidence;
1

1

At the end of voting, one road interceptlangle pair will have the most votes. That intercept and angle

describe the best road shape in the scene.

Color Update. The parameters of the road and non-road classes need to be recalculated to reflect

changing colors. We divide the image into four regions plus a "safety zone": left off road, right off road,

upper road, and lower road. We leave a 64-pixel wide "safety zone" along the road boundary, which

allows for small errors in locating the road, or for limited road curvature. For each of the four regions, we

calculate the means of red, green, and blue. We use the calculated parameters to form four classes, and

reclassify the image using a limited classification scheme. The limited reclassification allows road pixels

to be classified as either of the two road classes, but not as non-road, and allows non-road pixels to be

reclassified only as one of the non-road classes. The reclassified pixels are used as masks to recalculate

class statistics. The loop of classify pixelslrecalculate statistics is repeated, typically 3 times, or until no

pixels switch classes. The final reclassified pixels are used to calculate the means, variances, and

covariances of R, G, and B for each of the classes, to be used to classify the next image. Limited

reclassification is based on distance from a pixel's values to the mean values of a class, rather than the

full maximum likelihood scheme used in classifying a new image. This tends to give classes based on

tight clusters of pixel values, rather than lumping all pixels into classes with such wide variance that any

pixel value is considered likely.

Callbratlon. There is no need for complete geometric calibration. The vision algorithms calculate the

roads shape (road width and location of the horizon) from the first training image. We also take two
calibration pictures, with a meter stick placed perpendicular to the vehicle, 8 and 12 m in front. Then

during the run, given the centerfine of a detected road in image coordinates, it is easy to get the x position

of the road at 8 and 12 m, and then to calculate the vehicle's position on the road.

Performance. This algorithm is reliable. Running on the Navlab, with predictions of where the road

should appear, our failure rate is close to 0. The occasional remaining problems come from one of three

causes:

The road is covered with leaves or snow, so one road color class and one non-road color
class are indistinguishable.

Drastic changes in illumination occur between pictures (e.g. the sun suddenly emerges from
behind a cloud) so all the colors change dramatically from one image to the next.

*The sunlight is so bright and shadows are so dark in the same scene that we hit the
hardware limits of the camera. It is possible to have pixels so bright that all color is washed
out, and other pixels in the same image so dark that all color is lost in the noise.

30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Not every image is classified perfectly, but almost all are good enough for navigation. We sometimes find

the road rotated in the image from its correct location, so we report an intercept off to one side and an

angle off to the other side. But since the path planner looks ahead about the same distance as the center

of the image, the steering target is still in approximately the correct location, and the vehicle stays on the

road. This algorithm runs in about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 s per image on a dedicated Sun 31160, using 480 x 512 pixel

images reduced to 30 rows by 32 columns. We currently process a new image every 4 m, which gives

about three fourths of an image overlap between images. Ten seconds is fast enough to balance the rest

of the system but is slow enough that clouds can come and go and lighting conditions change between

images. We are porting this algorithm to the Warp, Camegie Mellon’s experimental high-speed

processor. On that machine, we hope to process an image per second and to use higher resolution.

4. Perception in 3-D
Our obstacle detection starts with direct range perception using an ERlM scanning laser rangefinder.

Our ERlM produces, every half second, an image containing 64 rows by 256 columns of range values; an

example is shown in figure 16. The scanner measures the phase difference between an amplitude-

modulated laser and its reflection from a target object, which in turn provides the distance between the

target object and the scanner. The scanner produces a dense range image by using two deflecting

mirrors, one for the horizontal scan lines and one for vertical motion between scans. The volume

scanned is 80 degrees wide and 30 high. The range at each pixel is discretized over 256 levels from zero

to 64 feet. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Flgure 16: Range image of two trees on flat terrain. Gray levels encode distance; nearer points are

painted darker.

Our range processing begins by smoothing the data and undoing the peculiarities of the ranging

geometry. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAambiguity intervals, where range values wrap around from 255 to 0, are detected and

unfolded. Two other undesirable effects are removed by the same algorithm. The first is the presence of

mixed points at the edge of an object. The second is the meaninglessness of a measurement from a

surface such as water, glass, or glossy pigments. In both cases, the resulting points are in regions limited

by considerable jumps in range. We then transform the values from angle-angle-range, in scanner

coordinates, to x-y-z locations. These 3-D points are the basis for all further processing.

We have two main processing modes: obstacle detection and terrain analysis. Obstacle detection

starts by calculating surface normals from the x-y-z points. Flat, traversable surfaces will have vertical

surface normals. Obstacles will have surface patches with normals pointed in other directions. This

31

analysis is relatively fast, running in about 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs on a Sun 3/75,
discrete obstacles.

Simple obstacle maps are not sufficient for detailed analysis.

and is adequate for smooth terrain with

For greater accuracy we do more careful

terrain analysis and combine sequences of images corresponding to overlapping parts of the environment

into an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAextended obstacle map. The terrain analysis algorithm first attempts to find groups of points that
belong to the same surface and then uses these groups as seeds for the region growing phase. Each

group is expanded into a smooth connected surface patch. The smoothness of a patch is evaluated by

fitting a surface (plane or quadric). In addition, surface discontinuities are used to limit the region growing

phase. The complete algorithm is:

1. Edges: Extract surface discontinuities, pixels with high jumps in x-y-z.

2. Clustering: Find clusters in the space of surface normals and identify the corresponding
regions in the original image.

3. Region growing: Expand each region until the fitting error is larger than a given threshold.
The expansion proceeds by iteratively adding the point of the region boundary that adds the
minimum fitting error.

The clustering step is designed so that other attributes such as color or curvature can also be used to

find potential regions on the object. The primitive surface used to compute the fitting e m r can be either a

plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor a quadric surface. The decision is based on the size of the region. Figure 17 shows the

resultant description of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-D terrain and obstacles for the image of figure 16. The flat, smooth, navigable

region is the meshed area, and the detected 3-0 objects (the two trees) are shown as polyhedra.

Obstacle detection works at longer range than terrain analysis. When the scanner is looking at distant

objects, it has a very shallow depression angle. Adjacent scanlines, separated by 0.5 degree in the range

image, can strike the ground at widely different points. Because the grazing angle is shallow, little of the

emitted laser energy returns to the sensor, producing noisy pixels. Noisy range values, widely spaced,

make it difficult to do detailed analysis of flat terrain. A vertical obstacle, such as a tree, shows up much

better in the range data. Pixels from neighboring scanlines fall more closely together, and with a more

nearly perpendicular sulface the returned signal is stronger and the data cleaner. It is thus much easier

for obstacle detection to find obstacles than for terrain analysis to certify a patch of ground as smooth and

level.

When neither video nor range information alone suffices, we must fuse data to determine mobility or
recognize an object. One such case occurs in navigating the smaller Terregator vehicle around.campus

sidewalks. At one spot, a sidewalk goes up a flight of stairs and a bicycle path curves around. Video

alone has a tough time distinguishing between the cement stairs and the cement bicycle path. Range
data cannot tell the difference between the smooth rise of the grassy hill and the smooth bicycle ramp.

The only way to identify the safe vehicle path is to use both kinds of data.

We start by fusing the data at the pixel level. For each range point, we find the corresponding pixel in

the video image. We produce a painted range image in which each pixel is a {red, green, blue, x, y, z}

6-vector. Figure 18 shows the painted range image, rotated and projected from a dmerent angle. We
can then run our standard range segmentation and color segmentation programs, producing regions of

smooth range or constant color. For the stairs in particular, we have a special-purpose step detection

program that knows about vertical and horizontal planes and how they are related in typical stairs. It is

32

-ed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAObrt8cle

bhoul zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAder

00th Patch

Upd8t.d SpbolIc Surfrce M8p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 17: The resultant description of 3D terrain and obstacles from the image in figure 16. The

navigable area is shown as a mesh, and the two trees are detected as "textured obstacles" and shown as

black polygons

easy to combine the regions from these separate processes, since they are all in the same coordinates of

the painted range image. The final result is a smooth concrete region in which it is safe to drive, and a

positive identification and 3-D location of the stairs, for updating the vehicle position.

33 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 18: Painted range image of campus stairs. Each point is a (red, green, blue, x, y, z} 6-vector.

This image has been rotated and projected from a different viewpoint. The color and range images are

registered, so the color edges and regions line up with range edges and regions.

34 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASystem Building

5.1. Artificial Intelligence for Real World Robots zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We have developed a new paradigm for intelligent robot system building. Artificial Intelligence

systems, including intelligent mobile robots, are symbol manipulators. Indeed, the very definition of

intelligence, artificial or otherwise, includes symbol manipulation. But the manipulation used by most AI

systems is based on inference, either by the logic of predicate calculus or by probabilities. The bulk of the

work of a mobile robot, in contrast, is based on geometry and on modeling time. Inference may be a part

of a mobile robot system, but geometry and time are pervasive. Consequently, intelligent mobile robots

need a new kind of expert system shell, one that provides tools for handling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-D locations and motion.

This fits into the context of changes in the field of AI as a whole. Early systems, such as the Logic

Theorist or GPS [Cohen 821, were search engines that had no domain knowledge. They could solve

problems such as the Towers of Hanoi or Missionaries and Cannibals that are essentially logic puzzles.

"Expert systems" brought lots of knowledge to bear on a problem. A system such as R1 or MYCIN (Cohen

821 has thousands of rules of the form "if P then try Q" or "if X is true then Y is true with confidence 0.7".

This type of knowledge allows these programs to deal with many real world problems. However, it is

"shallow" knowledge in the sense that it deals with externally visible input-output behavior, with no

knowledge of internal structure or mechanisms. MYCIN is like a doctor who has never taken Anatomy or

Physiology, but has seen a lot of cases. Its knowledge is adequate for handling things it has already

seen, but, because it does not understand the underlying mechanisms and structures of its domain, there

is a limit to its competence in reasoning about new or unexpected behavior. The newest generation of

expert systems is beginning to embed more "deep knowledge." For instance, the AIADIN aluminum alloy

design system [Rychener 861 includes both shallow knowledge rules ("If the alloy is too heavy, try adding

lithium") and deep knowledge of crystal structure and chemical interactions.

The evolution of mobile robot systems is following an analogous course. Early systems such as SRl's

Shakey were based on deduction. Shakey could decide which light switch to flip and in what order to

traverse a sequence of moms; it was a success with respect to logical action, but it lacked the deep

knowledge needed to move and live in a complicated environment. Its home was a series of empty

rooms with flat floors and uniform walls that allowed Shakey to function with very simple perception and

motion capabilities. In contrast, a robot that must move through the real outdoor world, needs a vast

reservoir of deep knowledge of perception, object models, motion, path planning, terrain models,

navigation, vehicle dynamics, and so forth.

The deep knowledge needed by a mobile robot must be supported by the system architecture and by

the system building tools. We have developed and followed the following tenets of mobile robot system

design in building our system:

Use separate modules. Much of the deep knowledge can be limited to particular specialist modules.

The effects of lighting conditions and viewing angle on the appearance of an object, for instance, are

important data for color vision but are not needed by path planning. So one principle of mobile robot

system design is to break the system into modules and minimize the overlap of knowledge between

modules.

Provide tools for geometry and time. Much of the knowledge that needs to be shared between

modules has to do with geometry, time, and motion. An object may be predicted by one module (the

lookout), seen separately by two others (color vision and 3-D perception), and used by two more (path

planner and position update). During the predictions, sensing, and reasoning, the vehicle will be moving,

new position updates may come in, and the geometrical relationship between the vehicle and the object

will be constantly changing. Moreover, there may be many different frames of reference: one for each

sensor, one for the vehicle, one for the world map, and others for individual objects. Each module should

be able to work in the coordinate frame that is most natural; for instance, a vision module should work in

camera coordinates and should not have to worry about conversion to the vehicle reference frame. The

system should provide tools that handle as many as possible of the details of keeping track of coordinate

frames, motion, and changing geometry.

Provide tools zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor synchronization. A system that has separate modules communicating at a fairly

coarse grain will be loosely coupled. Lock-step interactions are neither necessary nor appropriate.

However, there are times when one module needs to wait for another to finish, or when a demon module

needs to fire whenever certain data appear. The system should provide tools for several different kinds of

interaction and for modules to synchronize themselves as needed.

Handle real-time vs symbolic Interface. At one level, a mobile robot reasons symbolically about

perceived objects and planned paths, probably on a slow time scale. At the same time, the vehicle is

constantly moving, and low-level servo processes are controlling steering and motion. The top level

processes need to be free to take varying amounts of time to process scenes of varying difficulty. They

are often event driven, running when a particular object is seen or a particular event occurs. The servo

processes, though, must run continuously and in real time (not "simulated real time" or "real time not

counting garbage collection"). The system should provide for both real-time and asynchronous symbolic

processes, and for communications between them.

Provide a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvidual vehicle. As many as possible of the details of the vehicle should be hidden. At

Carnegie Mellon, we have one robot (the Terregator) that has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsix wheels, steers by driving the wheels on

one side faster than those on the other side, and carries a camera mount approximately 6 ft high. A

second robot (the Navlab) is based on a commercial van, steers and drives conventionally, and mounts

its camera 2 ft higher. We need to be able to use one system to drive either of the vehicles, with only

minor modifications. This requires hiding the details of sensing and motion in a "virtual vehicle" interface,

so a single "move" command, for instance, will use the different mechanisms of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo vehicles but will

produce identical behavior.

Plan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor big systems. It takes good software engineering to build a mobile robot. The system may be

written in a mixture of programming languages, will probably run on multiple processors, and may use

different types of processors including specialized perception machines. System tools must bridge the

gaps between languages, data formats, and communications protocols.

In addition to these tenets of good design, we have identified certain approaches that are

inappropriate. Many good ideas in other areas of AI present difficulties for mobile robots. Specifically, we

avoid the following.

Do not throw away geometric precision. Mobile robots need all the information they can get. It is

often important to know as precisely as possible where an object is located, either for planning efficient

paths or for updating vehicle location. There is no need to turn a measured distance of 3.1 m into fairly

36 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
close. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGiven the relative costs and speeds of computers and vehicles, it is more efficient to spend extra

computing effort (if any) to handle precise data than to plan fuzzy paths that take the vehicle

unnecessarily far out of its way. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Do not concentrate on explanations. It is important to have hooks inside the vehicle's reasoning, for

debugging and for learning about the system behavior. However, the prime output of the vehicle is its

externally observable behavior. Producing explanations is nice, but is not the primary product as it is in

expert systems for diagnosis or in intelligent assistants.

Do not build an omniscient master process. In some systems (notably early blackboards) a single

master process "knows" everything. The master process may not know the internal working of each

module, but it knows what each module is capable of doing. The master controls who gets to run when.

The master itself becomes a major AI module and can be a system bottleneck. In contrast, the individual

modules in a mobile robot system should be autonomous, and the system tools should be slaves to the

modules. The module writers should decide when and how to communicate and when to execute. The

system support should be as unobtrusive as possible.

We have followed these tenets in building the Navlab system. At the bottom level, we have built the

CODGER "whiteboard" to provide system tools and services. On top of CODGER we have built an

architecture that sets conventions for control and data flow. CODGER and our architecture are explained

below.

5.2. Blackboards and WhIteboards

The program organization of the NAVLAB software is shown zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin figure 19. Each of the major boxes

represents a separately running program. The central database, called the Local Map, is managed by a

program known as the Local Map Builder (LMB). Each module stores and retrieves information in the

database through a set of subroutines called the LMB lntedace which handle all communication and

synchronization with the LMB. If a module resides on a different processor than the LMB, the LMB and

LMB Interface will transparently handle the network communication. The Local Map, LMB, and LMB

Interface together comprise the CODGER (COmmunications Database with GEometric Reasoning) system.

The overall system structure-a central database, a pool of knowledge-intensive modules, and a

database manager that synchronizes the modules-is characteristic of a traditional blackboard system.

Such a system is called "heterarchical" because the knowledge is scattered among a set of modules that

have access to data at all levels of the database (Le. low-level perceptual processing ranging up to

high-level mission plans) and may post their findings on any level of the database; in general,

heterarchical systems impose de facto structuring of the information flow among the modules of the

system. In a traditional blackboard, there is a single flow of control managed by the database (or

blackboard) manager. The modules are subroutines, each with a predetermined precondition (pattern of

data) that must be satisfied before that module can be executed. The manager keeps a list of which

modules are ready to execute. In its central loop it selects one module, executes it, and adds to its

ready-list any new modules whose preconditions become satisfied by the currently executing module.

The system is thus synchronous and the manager's function is to focus the attention of the system by

selecting the "best" module from the ready-list on each cycle.

We call CODGER a whiteboard because although it implements a heterarchical system structure, it

37 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Blackboard

Pilot Monitor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&
Display

Blackboard zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdl-h
I

Obstacle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 19: Navlab software architecture

differs from a blackboard in several key respects. In CODGER, each module is a separate, continuously

running program; the modules communicate by storing and retrieving data in the central database.

Synchronization is achieved by primitives in the data retrieval facilities that allow, for example, for a

module to request data and suspend execution until the specified data appears. When some other

module stores the desired data, the first module will be reactivated and the data will be sent to it. With

CODGER a module programmer thus has control over the flow of execution within his module and may

implement real-time loops, demons, data flows among cooperating modules, etc. CODGER also has no

precompiled list of data retrieval specifications; each time a module requests data, it provides a pattern for

the data desired at that time. A whiteboard is heterarchical like a blackboard, but each module runs in

parallel, with the module programmer controlling the synchronization and data retrieval requests as best

suited for each module. Like other recent distributed AI architectures, whiteboards are suited to execution

on multiple processors.

5.3. Data Storage and Retrieval
Data in the CODGER database (Local Map) is represented in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtokens consisting of classical

attribute-value pairs. The types of tokens are described in a ternplate file that tells the name and type of

each attribute in tokens of each type. The attributes themselves may be the usual scalars (integers,

floating-point values, strings, enumerated types), arrays (or sets) of these types (including arrays of

arrays), or geometric locations (as described below). CODGER automatically maintains certain attributes

for each token: the token type and id number, the generation number as the token is modified, the time at

which the token was created and inserted into the database, and the time at which the sensor data was

acquired that led to the creation of this token. The LMB Interface provides facilities for building and

dissecting tokens and attributes within a module. Rapid execution is supported by mapping the module

programmer's names for tokens and attributes onto globally used index values at system startup time.

A module can store a token by calling a subroutine to send it to the LMB. Tokens can be retrieved by

constructing a pattern called a specification and calling a routine to request that the LMB send back

tokens matching that specification. The specification is simply a Boolean expression in which the

:38 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
attributes of each token may be substituted; if a token's attributes satisfy the Boolean expression, then

the token is sent to the module that made the request. For example, a module may specify:

This would retrieve all tokens whose type and trafficcontrol attributes satisfy the above conditions. The

specification may include computations such as mathematical expressions, finding the minimum value

within an array attribute, comparisons among attributes, etc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACODGER thus implements a general

database. The module programmer constructs a specification with a set of subroutines in the CODGER

system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tokens with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtype q u a / to "intersWion" andtrafflc-control equal to "stop-sign"

One of the key features of CODGER is the ability to manipulate geometric information. One of the

attribute types provided by CODGER is the location, which is a 2-D or 3-D polygon and a reference to a

coordinate frame in which that polygon is described. Every token has a specific attribute that tells the

location of that object in the Local Map, if applicable, and a specification can include geometric

calculations and expressions. For example, a specification might be:

or

where X is a description of a rectangle on the ground in front of the vehicle. The geometric primitives

currently provided by CODGER include calculation of centroid, area, diameter, convex hull, orientation, and

minimum bounding rectangle of a location, and distance and intersection calculations between a pair of

locations. We believe that this kind of geometric data retrieval capability is essential for supporting spatial

reasoning in mobile robots with multiple sensors. We expect geometric specifications to be the most

common type of data retrieval request used in the NAVLAB.

tokens with location within 5 units of (4532) bn world ooordinates]

tokens with location over/apping X

CODGER also provides for automatic coordinate System maintenance and transformation for these

geometric operations. In the Local Map, all coordinates of location attributes are defined relative to

WORLD or VEHICLE coordinates; VEHICLE coordinates are parameterized by time, and the LMB

maintains a time-varying transformation between WORLD and VEHICLE coordinates. Whenever new

information (i.e. a new VEHICLE-to-WORLD transform) becomes available, it is added to the "history"

maintained in the LMB; the LMB will interpolate to provide intermediate transformations as needed. In

addition to these basic coordinate systems, the LMB Interface allows a module programmer to define

local coordinates relative to the basic coordinates or relative to some other local coordinates. Location

attributes defined in a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlocal coordinate system are automatically converted to the appropriate basic

coordinate system when a token is stored in the database. CODGER provides the module programmer

with a conversion routine to convert any location to any specified coordinate system.

All of the above facilities need to work together to support asynchronous sensor fusion. For example,

suppose we have a vision module A and a rangefinder module B whose results are to be merged by

some module C. The following sequence of actions might occur:
1. A receives an image at time 10 and posts results on the database at time 15. Although the

calculations were carried out in the camera coordinate system for time 10, the results are
automatically converted to the VEHICLE system at time 10 when the token is stored in the
database.

2. Meanwhile, B receives data at time 12 and posts results at time 17 in a similar way.

3. At time 18, C receives A's and E's results. As described above, each such token will be
tagged with the time at which the sensor data was gathered. C decides to use the vehicle

39 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
coordinate system at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 (B's time) for merging the data.

4. C requests that A s result, which was stored in VEHICLE time 10 coordinates, be
transformed into VEHICLE time 12 coordinates. If necessary, the LMB will automatically
interpolate coordinate transformation data to accomplish this. C can now merge As and B's
results since they are in the same coordinate system. At time 23, C stores results in the
database, with an indication that they are stored in the coordinate system of time 12.

5.4. Synchronlzatlon Primitives
CODGER provides module synchronization through options specified for each data retrieval request.

Every time a module sends a specification to the LMB to retrieve tokens, it also specifies options that tell

how the LMB should respond with the matching tokens: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Immediate Request. The module requests all tokens currently in the database that match this

specification. The module will block (i.e. the "request" subroutine in the LMB Interface will
not return control) until the LMB has responded. If there are no tokens that match the
specification, the action taken is determined by an option in the module's request:

Non-B/ockin~. The LMB will answer that there are no matching tokens, and the module
can then proceed. This would be used for time-critical modules such as vehicle
control. Example: "Is there a stop sign?"

B/ocMng. The LMB will record this specification and compare it against all incoming
tokens. When a neHS token matches the specification, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAit will be sent to the module and
the request will be satisfied. Meanwhile, the module will remain blocked until the LMB
has responded with a token. This is the type of request used for setting up
synchronized sets of communicating modules: each one waits for the results from the
previous module to be posted to the database. Example: "Wake me up when you see
a stop sign."

0 Standing Request. This provides a mechanism for the LMB to generate an interrupt for a
running mgdule. The module gives a specification along with the name of a subroutine. The
module then continues running; the LMB will record the specification and compare it with all
incoming tokens. Whenever a token matches, it will be sent to the module. The LMB
Interface will intercept the token and execute the specified subroutine, passing the token as
an argument. This has the effect of invoking the given subroutine whenever a token appears
in the database that matches the given specification. It can be used at system startup time
for a module programmer to set up "demon" routines within the module. Example: "Execute
that routine whenever you see a stop sign."

5.5. Architecture
Several modules use the CODGER tools and fit into a higher level architecture. The modules are:

0 Pilot: Looks at the map and at current vehicle position to predict road location for Vision.
Plans paths.

0 Map Navigator: Maintains a world map, does global path planning, provides long-term
direction to the Pilot. The world map may start out empty, or may include any level of detail
up to exact locations and shapes of objects.

0 Color Vision: Waits for a prediction from the Pilot, waits until the vehicle is in the best
position to take an image of that section of the road, returns road location.

Obstacle Detection: Gets a request from the Pilot to check a part of the road for obstacles.
Returns a list of obstacles on or near that chunk of the road.

0 Helm: Gets planned path from Pilot, converts polyline path into smooth arcs, steers vehicle.

Graphics and Monitor: Draws or prints position of vehicle, obstacles, predicted and

40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
perceived road.

There are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo other modules in our architecture. These have not yet been implemented:

Captain: Talks to the user and provides high-level route and mission constraints such as

Lookout: Looks for landmarks and objects of importance to the mission. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAavoid area A or go by road B.

These modules use CODGER to pass information about driving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunits. A driving unit is a short chunk of

the road or terrain (in our case 4 m long) treated as a unit for perception and path planning. The Pilot

gives driving unit predictions to Color Vision, which retums an updated driving unit location. Obstacle

Detection then sweeps a driving unit for obstacles. The Pilot takes the driving unit and obstacles, plans a

path, and hands the path off to the Helm. The whole process is set up as a pipeline, in which Color

Vision is looking ahead 3 driving units, Obstacle Detection is looking 2 driving units ahead, and path

planning at the next unit. If for any reason some stage slows down, all following stages of the pipeline

must wait. So, for instance, if Color Vision is waiting for the vehicle to come around a bend so it can see

down the road, Obstacle Detection will finish its current unit and will then have to wait for Color Vision to

proceed. In an extreme case, the vehicle may have to come to a halt until everything clears up. All

planned paths include a deceleration to a stop at the end, so if no new path comes along to overwrite the

current path the vehicle will stop before driving into an area that has not been seen or cleared of

obstacles.

In our current system and test area, 3 driving units is too far ahead for Color Vision to look, so both

Color Vision and Obstacle Detection are looking at the same driving unit. Obstacle Detection looks at an

area sufficiently larger than the Pilot's predicted driving unit location to guarantee that the actual road is

covered. Another practical modification is to have Obstacle Detection look at the closest driving unit also,

so a person walking onto the road immediately in front of the vehicle will be noticed. Our system will try to

plan a path around obstacles while remaining on the road. If that is not possible, it will come to a halt and

wait for the obstacle to move before continuing.

6. Conclusions and Future Work
The system described here works. It has successfully driven the Navlab many tens of times,

processing thousands of color and range images without running off the road or hitting any obstacles.

CODGER has proved to be a useful tool, handling many of the details of communications and geometry.

Module developers have been able to build and test their routines in isolation, with relatively little

integration overhead. Yet there are several areas that need much more work. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Speed. We drive the Navlab at 10 cwsec, a slow shuffle. Our slow speed is because our test road is

narrow and winding, and because we deliberately concentrate on competence rather than on speed. But

faster motion is always more interesting, so we are pursuing several ways of increasing speed. One

bottleneck is the computing hardware. We are mounting a Warp, Carnegie Mellon's experimental high-

speed processor, on the Navlab. The Warp will give us a factor of 100 more processing power than a

Sun for color and range image processing. At the same time, we are looking at improvements in the

software architecture. We need a more sophisticated path planner, and we need to process images that

are more closely spaced than the length of a driving unit. Also, as the vehicle moves more quickly, our

simplifying assumption that steering is instantaneous and that the vehicle moves along circular arcs

becomes more seriously flawed. We are looking at other kinds of smooth arcs, such as clothoids. More

41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
important, the controller is evolving to handle more of the low-level path smoothing and following.

Map. One reason for the slow speed is that the Pilot assumes straight roads. We need to have a

description that allows for curved roads, with some constraints on maximum curvature. The next steps

will include building maps as we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgo, so that subsequent runs over the same course can be faster and

easier.

Cross-country travel. Travel on roads is only half the challenge. The Navlab should be able to leave

roads and venture cross-country. Our plans call for a fully integrated on-road/off-road capability.

Intersections. Current vision routines have a built-in assumption that there is one road in the scene.

When the Navlab comes to a fork in the road, vision will report one or the other of the forks as the true

road depending on which looks bigger. It will be important to extend the vision geometry to handle

intersections as well as straight roads. We already have this ability on our sidewalk system and will bring

that over to the Navlab. Vision must also be able to find the road from offroad.

Landmarks. Especially as we venture off roads, it will become increasingly important to be able to

update our position based on sighting landmarks. This involves map and perception enhancements, plus

understanding how to share limited resources, such as the camera, between path finding and landmark

searches.

Software Development. Our current blackboard system can manipulate primitive data elements but

has no concept of data structures made up of tokens on the blackboard. We need aggregate data types

for representing complex 3-D geometric descriptions of objects for recognition. We will also be

implementing a Lisp interface to our blackboard. All current modules are written in C, but we will soon

want to write higher-level modules in Lisp.

Integration with Work from Other Sites. Other universities and research groups cooperating with

Carnegie Mellon through DARPA Strategic Computing Vision program. We plan to incorporate some of

their programs into the Navlab system in the coming years as it evolves into the "new generation vision

system" that is the goal of that program.

Acknowledgments
The Terregator and Navlab were built by William Whittaker's group in the Construction Robotics

Laboratory, and the Warp group is led by H. T. Kung and Jon Webb. The real work gets done by an army

of eight staff, nine graduate students, five visitors, and three part time programmers.

This research was supported by the Strategic Computing Initiative of the Defense Advanced Research

Projects Agency, DoD, through ARPA Order 5351, and monitored by the U.S. Army Engineer

Topographic Laboratories under contract DACA76-85-C-0003. V i and conclusions contained in this

document are those of the authors and should not be interpreted as representing official policies, either

expressed or implied, of the Defense Advanced Research Projects Agency or the United States

Government.

42

References zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[Cohen 821 Cohen, P., Barr, A., Feigenbaum, E., eds. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The Handbook of Artificial Intelligence.
William Kaufman, 1982.

Goto, Y., Matsuraki, K., Kweon, I., Obatake, T.
CMU sidewalk navigation system.
In Fall Joint Computer Conference. ACMIIEEE, 1986.

Hebert, M., Kanade, T.
Outdoor scene analysis using range data.
In IEEE International Conference on Robotics and Automation. 1986.

Rychener, M. D., Farinacci, M. L., Hulthage, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI . , Fox, M. S.
Integration of muttiple knowledge sources in Alladin, an alloy design system.
In AAAI-7986. MI, 1986.

Shafer, S., Stentz, A., Thorpe, C.
An architecture for sensor fusion in a mobile robot.
In IEEE International Conference on Robotics and Automation. 1986.

Singh, J., et al.
NavLab: an autonomous vehicle.
Technical Report, Carnegie Mellon Robotics Institute, 1986.

Vision and navigation for the CMU Navlab.
In SPIE Society of Photo-Optical Instrumentation Engineers, October, 1986.

[Goto 861

[Hebert 86)

[Rychener 861

[Shafer 861

[Singh 861

(Thorpe 861 Thorpe, C.

.- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Section IV

The CMU System for Mobile Robot Navigation

Yoshimasa Goto

Anthony Stentz

The Robotics Institute

Camegie-Mellon University

Pittsburgh, PA 15213

Abstract

This paper describes the current status of the Autonomous Land Vehicle research at Camegie Mellon

University's Robotics Institute, focusing primarily on the system architecture. We begin with a discussion

of the issues concerning outdoor navigation, then describe the various perception, planning, and control

components of our system that address these issues. We describe the CODGER software system for

integrating these components into a single system, synchronizing the data fbw between them in order to

maximize parallelism. Our system is able to drive a robot vehicle continuously with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo sensors, a color

camera and a laser rangefinder, on a network of sidewalks, up a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbicycle slope, and through a cuwed road

through an area populated with trees. Finally, we discuss the results of our experiments, as well as

problems uncovered in the process and our plans for addressing them.'

1. Introduction
The goal of the Autonomous Land Vehicle group at Camegie Mellon University is to create an

autonomous mobile robot system capable of operating in outdoor environments. Because of the

complexity of real-world domains and the requirement for continuous and real-time motion, such a robot

system needs system architectural support for multiple sensors and parallel processing. These

capabilities are not found in simpler robot systems. At CMU, we are studying mobile robot system

architecture and have devebped the navigation system working at two test sites and on two experimental

vehicles [2,3,4,8,10,11]. This paper describes the current status of our system and some problems

uncovered through real experiments.

1 .l. The Test Sltes and Vehlcles
We have two test sites, the Camegie Mellon campus and an adjoining park, Schenley Park. The CMU

campus test site has a sidewalk network including intersections, stairs and bwcle sbpes (figure 1). The

Schenley Park test site has cuwed sidewalks in an area well populated with trees (figure 2).

Figure 3 shows our two experimental vehicles, the Navigation Laboratory (Navlab) used in the

'This mearch was supported by the Strategic Computing Initiative of the Defense zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAdvmoed Research Projects Agency, DoD,
through ARPA Order 5351, and monitored by the US. Army Engineer Topographic Leborapories under antract DACA7685-
cooO3. V i and conclusions contained in this document am those of the authors and should not be hterprebd as representing
offtcial poliaes. either expresed or implied, of the Defense zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAdvanced hearch Projects Agency w the United State Government.

44

Figure 1: Map of the CMU Campus Test Site

Figure 2: Map of the Schenley Park Test Site

45 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Schenley Park test site, and the Terregator used in the CMU campus test site. Both of them are

equipped with a color zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN camera and a laser rangefinder made by ERtM. The Navlab carries four

general purpose computers (SUN-3s) on board. The Terregator is linked to SUN-3s in the laboratory with

radio communication. All of the SUN-3s are interconnected with a EtherNet. Our navigation system works

on both vehicles in each test site.

Flgure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3: The Navlab and Terregator

1.2. Current System Capabillties
Currently, the system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas the capability.

to execute a prespecified user mission over a mapped network of sidewalks, including

to recognize landmarks, stairs and intersections:

to drive on unmapped, curved, ill-defined roads using assumptions about local mad linearity;

to detect obstacles and stop until they move away;

to avoid obstacles; and

to drive continuously at 200mm/sec.

turning at the intersections and driving up the bicycle slope;

2. Design of the System Architecture
In this section we describe the goals of our outdoor navigation system and the design principles,

followed by an analysis of the outdoor navigation task itself. We describe our system architecture as it is

shaped by these principles and analyses.

46

2.1. Design Goals and Principles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The goals of our outdoor navigation system are: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 map-drlven mission execution: The system drives the vehicle to reach a given goal
position.

on- and off-road navigation: Navigation environments include not only roads but also open
terrain.

landmark recognition: Landmark sightings are essential in order to correct for drift in the
vehicle’s dead-reckoning system.

0 obstacle avoldance

0 continuous motion In real time: Stop and go motion is unacceptable for our purposes.
Perception, planning, and control should be carried out while the vehicle is moving at a
reasonable speed.

In order to satisfy these goals, we have adopted the following design principles.

sensor fusion: A single sensor is not enough to analyze complex outdoor environments.
Sensors include not only a Tv camera and a range sensor but also an inertial navigation
sensor, a wheel rotation counter, etc.

0 parallel execution: In order to process data from a number of sensors, make global and
local plans , and drive the vehicle in real-time, parallelism is essential.

0 flexibility and extenslbllity: This principle is essential because the whole system is quite
large, requiring the integration of a wide range of modules.

2.2. Outdoor Navigation Tasks
Outdoor navigation includes several different navigation modes. Figure 4 illustrates several examples.

On-road vs. off -road is just one example. Even in on-road navigation, turning at the intersection requires

more sophisticated driving skill than following the road. In road following, the assumption that the ground

is flat makes perception easier, but driving through the forest does not satisfy this assumption and

requires more complex perception processing.

According to this analysis we decompose outdoor navigation into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo navigation levels: global and

local. At the global level, the system tasks are to select the best navigation route to reach the destination

given by a user mission, and to divide the whole route into a sequence of mute segments, each

corresponding to a uniform driving mode. The current system supports the following navigation modes:

following the road, turning at the intersection, driving up the slope.

Local navigation involves driving within a single route segment. The navigation mode is uniform and

the system drives the vehicle along the route segment continuously, perceiving objects, planning path

plans, and controlling the vehicle. The important thing is that these tasks, perception, planning, and

control, form a cycle and can be executed concurrently.

2.3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASystem Architecture

and a communications database which links the modules together.

Figure 5 is a block diagram of our system architecture. The architecture consists of several modules

47

Flgure 4: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOutdoor navigation

2.3.1. Module Structure

In order to support the tasks described in the previous section, we first decomposed the whole system

into the following modules:

CAPTAIN executes user mission commands and sends the destination and the constraints
of each mission step to the MAP NAVIGATOR one step at a time, and gets the result of each
mission step. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 MAP NAVIGATOR selects the best route by searching the Map Database, decomposes it
into a sequence of route segments, generates a route segment description which includes
objects from the Map visible from the route segment, and sends it to the PILOT.

PILOT coordinates the activities of PERCEPTION and the HELM to perform local navigation
continuously within a single route segment.

PERCEPTION uses sensors to find objects predicted to lie within the vehicle's field of view.
It estimates the vehicle's position if possible.

HELM gets the local path plan generated by the PILOT and drives the vehicle.

The PILOT is decomposed into several submodules which tun concurrently (figure 6).

DRIVING MONITOR decomposes the route segment into small pieces called driving units. A
driving unit is the basic unit for perception, planning, and control processing at the local
navigation level. For example, PERCEPTION must be able to process a whole driving unit
with a single image. The DRIVING MONITOR creates a driving unit description , which
describes objects in the driving unit, and sends it to the following submodules.

0 DRIVING UNIT FINDER functions as an interface to PERCEPTION, sending the driving unit
description to it and getting the result from it.

CAPTAIN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
MAP

NAVIGATOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I L

- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACODGER PILOT
I

NAVIGATOR

PERCEPTION

POSITION BSTILIIITOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt

L

HELM

I DRIVING UNIT NAVIGATOR I

I PEREUPTION

M I

HELM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALOCAL PATH PXWNER

I

Figure 6: Submodule structure of the PILOT

49 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPOSITION ESTIMATOR estimates the vehicle position using both the result of

0DRlVlNG UNIT NAVIGATOR determines the admissible passage in which to drive the

0 LOCAL PATH PLANNER generates the path plan within the driving unit, avoids obstacles

PERCEPTION and dead-reckoning.

vehicle.

and keeps the vehicle in the admissible passage. The path plan is sent to the HELM.

2.3.2.CODGER

It is important zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot only to build the modules, but also to connect them into a coherent system. Based

on our design principles, we have created a software system called CODGER (COmmunications

Database with GEometric Reasoning) which supports parallel asynchronous execution and

communication between the modules. We describe CODGER in detail in the next section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAParallelism

3.1. The CODGER System for Parallel Processlng
In order to navigate in real-time, we have employed parallelism in our perception, planning, and control

subsystems. Our computing resources consist of several SUN9 microcomputers, VAX minicomputers,

and a high-speed, parallel processor known as the WARP interconnected with an EtherNet. We have

designed and implemented a software system called CODGER (COmmunications Database with

GEometric Reasoning) [9] to effectively utilize this parallelism.

The CODGER system consists of a central database (Local Map), a process that manages this

database (Local Map Builder of LMB), and a library of functions for accessing the data (LMB interface)
(see Figure 7). The various perceptual, planning, and control modules in the system are compiled with

the LMB interface and invoke functions to store and retrieve data from the central database. The

CODGER system can be run on any mix of SUN-3s and VAXes and handles data type conversions

automatically. This system permits highly modular development requiring recompilation only for modules

directly affected by a change.

3.1 .l. Data Representation

Data in the Local Map is represented in tokens consisting of lists of attribute-value pairs. Tokens can

be used to represent any information including physical objects, hypotheses, plans, commands, and

reports. The token types are defined in a template file which is read by the LMB at system startup time.

Attribute types may be the usual scalars (e.g., floats, integers), sets of scalars, or geometric locations.

Geometric locations consist of a two- dimensional, polygonal shape and a reference coordinate frame.
The CODGER system provides mechanisms for defining coordinate frames and for automatically

converting geometric data from one frame to another, thereby allowing modules to retrieve data from the

database and representing it in a form meaningful to them. Geometric data is the only data interpreted by

the CODGER system; the interpretation of all other data types is delegated to the modules that use them.

50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I

in8 ~ n t e r f r c o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Sensor Modulo 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Local Map Database

LM6 I a t e t f r c o

I l4rlgrt lon Modulo 2

LUB Intet f rco

I Oavlgatlor Modulo 1 I

Figure 7: The CODGER software system

3.1.2. Synchronizatlon

The LMB interface provides functions for storing and retrieving data from the central database. Tokens

can be retrieved using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspecifications. Specifications are simply boolean expressions evaluated across

token attribute values. A specification may include computations such as mathematical expressions,

boolean relations, and comparisons between attribute values. Geometric indexing is of particular

importance for a mobile robot system. For example, the planner needs to search a database of map

objects to locate suitable landmarks or to find the shortest path to the goal. The CODGER system

provides a host of functions including those for computing the distance and intersection of locations.

These functions can be embedded in specifications and matched to the database.

The CODGER system has a set of primitives to ensure that data transfer between system modules is

synchronized and runs smoothly. The synchronization is implemented in the data retrieval mechanism.

Specifications are sent to the LMB as either one-shot or standing requests. For one-shot specs, the

calling module blocks while the LMB matches the spec to the tokens. Tokens that match are retrieved

and the module resumes execution. If no tokens match, either the module stays blocked until a matching

token appears in the database or an error is returned and the module resumes execution, depending on

an option specified in the request. For example, the PATH PLANNER may use a one-shot to find

obstacles stored in the database before it can plan a path. In contrast, the HELM, which controls the

vehicle, uses a standing spec to retrieve tokens supplying steering commands whenever they appear.

51

3.2. Parallel Asynchronous Execution of Modules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Thus far we have run our scenarios with four SUN-3s interconnected with an EtherNet. The CAPTAIN,

MAP NAVIGATOR, PILOT, and HELM are separate modules in the system, and PERCEPTION is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo
modules (range and camera image processing). All of the modules run in parallel; they synchronize

themselves through the LMB database.

3.2.1. Global and Local Navlgatlon

A good example of parallelism in the system is the interaction between the CAPTAIN, MAP

NAVIGATOR, and PILOT. The CAPTAIN and MAP NAVIGATOR search the map database to plan a

global path for the vehicle in accordance with the mission specification. The PILOT coordinates

PERCEPTION, PATH PLANNING, and control through the HELM to navigate locally. The global and

local navigation operations run in parallel. The MAP NAVIGATOR monitors the progress of the PILOT to

ensure that the PILOT'S transition from one route segment to the next occurs smoothly.

3.2.2. Drivlng Pipeline

Another good example of parallelism is within the PILOT itself. As described earlier, the PILOT

monitors local navigation. For each driving unit, the PILOT performs four operations in the following

order: predict it, recognize with the camera and scan it for obstacles with the rangefinder, establish driving

constraints and plan a path through it, and oversee the vehicle's execution of it. In the PILOT, these four

operations are separate modules linked together in a pipeline (see Figure 8). While in steady state, the

PILOT is predicting a driving unit 12 to 16 meters in front of the vehicle, recognizing a driving unit and

scanning it for obstacles (in parallel) 8 to 12 meters in front, planning a path 4 to 8 meters in front, and

driving to a point 4 meters in front. The stages of the pipeline synchronize themselves through the

CODGER database.

The processing times for each stage vary as a function of the navigation task. In navigation on

uncluttered roads, the vision subsystem requires about 10 seconds of real-time per image, the range

subsystem requires about 6 seconds, and the local path planner requires less than a second. In this

case, the stage time of the pipeline is that of the vision subsystem: 10 seconds. In cluttered

environments, the local path planner may require 10 to 20 seconds or more, thereby becoming the

bottleneck. In either case, the vehicle is not permitted to drive on to a driving unit until it has propagated

through all stages of the pipeline (Le., all operations have been performed on it). For example, when

driving around the comer of a building, the vision stage must wait until the vehicle reaches the corner in

order to see the next driving unit. Once the vehicle reaches the comer, it must stop while waiting for the

vision, scanning, and planning stages to process the driving unit before driving again.

4. Sensor Fusion

4.1. Types of Sensor Fusion
The Navlab and Terregator vehicles are equipped with a host of sensors including color cameras, a

laser rangefinder, and motion sensors such as a gyro and shaft-encoder counter. In order to obtain a
single, consistent interpretation of the vehicle's environment, the results of these sensors must be fused.

We have identified three types of sensor fusion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[8]:

Competitive: Sensors provide data that either agrees or conflicts. This case arises when

52 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Predict zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Recognize/Scan

Plan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 8: Driving pipeline

sensors provide data of the same modality. In the CMU systems, the task of determining the
vehicle’s position best characterizes this type of fusion. Readings from the vehicle’s dead-
reckoning system as well as landmark sightings provide estimates of the vehicle’s position. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 Complementary: Sensors provide data of different modalities. The task of recognizing
three-dimensional objects illustrates this kind of fusion. In the CMU systems, a set of stairs is
recognized using a color camera and laser rangefinder. The color camera provides image
information (e.g., color and texture) while the laser rangefinder provides three-dimensional
information.

Independent: A single sensor is used for each task. An example of a task requiring a single
sensor is distant landmark recognition. In this case, only the camera is used for landmarks
beyond the range of the laser rangefinder.

4.2. Examples of Sensor Fusion Tasks

4.2.1. Vehicle Position Estlmatlon

In our road following scenarios, vehicle position estimation has been the most important sensor fusion

task. By vehicle position, we mean the position and orientation of the vehicle in the ground plane (3
degrees of freedom) relative to the world coordinate frame. In the current system, there are two sources

of position information. First, dead-reckoning provides vehicle-based position information. The CODGER

system maintains a history of the steering commands issued to the vehicle, effectively recording the

trajectory of the vehicle from its starting point.

Second, landmark sightings directly pinpoint the position of the vehicle with respect to the world at a

point in time. In the campus test site, the system has access to a complete topographical map of the

53 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
sidewalks and intersections on which it drives. The system uses a color camera to sight the intersections

and sidewalks and uses these sightings to correct the estimate of the vehicle's position. The intersections

are of rank three, meaning that the position and orientation of the vehicle with respect to the intersection

can be determined fully (to three degrees of freedom) from the sighting. Our tests have shown that such

landmark sightings are far more accurate but less reliable than the current dead-reckoning system, that is,

landmark sightings provide more accurate vehicle position estimates; however, the sightings occasionally

fail. If the vehicle position estimates from the sighting and dead-reckoning disagree drastically, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
conflict is settled in favor of the dead-reckoning system; othenvise, the result from the landmark sighting

is used. In this case, the CODGER system adjusts its record of the vehicle's trajectory so that it agrees

with the most recent landmark sighting, and discards all previous sightings.

The CODGER system is able to handle landmark sightings of rank less than three. The most common

"landmark" in our scenarios is the sidewalk on which the vehicle drives. Since a sidewalk sighting

provides only the orientation and perpendicular distance of the vehicle with respect to the sidewalk, the

correction is of rank two. Therefore, the position of the vehicle is constrained to lie on a straight line. The

CODGER system projects the position of the vehicle from dead-reckoning onto this line and uses the

projected point as a full (rank three) correction. Since most of the error in the vehicle's motion is lateral

drift from the road, this approximation works well. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4.2.2. Pilot Control

Complementary fusion is grounded in the Pilot's control functions. The Pilot ensures that the vehicle

travels only where it is permitted and where it can. For example, the color camera is used to segment

road from nonroad surfaces. The laser rangefinder scans the area in front of the vehicle for obstacles or

unnavigable (i.e., rough or steep) terrain. The road surface is fused with the free space and is passed to

the local path planner. Since the two sensor operations do not necessarily occur at the same time, the

vehicle's dead-reckoning system also comes into play.

4.2.3. Colored Range Image

Another example of complementary fusion of camera and range data is the colored range image. A

colored range image is created by "painting" a color image onto the depth map of a range image. The

resultant image is used in our systems to recognize complicated three dimensional objects such as a set

of stairs. In order to avoid the relatively large error in the vehicle's dead-reckoning system, the vehicle

remains motionless while digitizing a corresponding pair of camera and range images [2].

4.3. Problems and Future Work

We have plans for improving our sensor fusion mechanisms. Currently, the CODGER system handles

competing sensor data by retaining the most recent measurement and discarding all others. This is

undesirable for the following reasons. First, a single bad measurement (e.g., landmark sighting) can

easily throw the vehicle off track. Second, measurements can reinforce each other. By discarding old

measurements, useful information is lost. A weighting scheme is needed for combining competing sensor

data. In many cases, it is useful to model error in sensor data as gaussian noise. For example, error in

dead-reckoning may arise from random emr in the wheel velocities. Likewise, quantization error in range

and camera images can be modeled as gaussian noise. A number of schemes exist for fusing such data

ranging from simple Kalman filtering techniques to full-blown Bayesian observation networks 111 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7l.

5. Local zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAControl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this section we discuss some of the control problems in local navigation.

5.1. Adaptive Driving Units and Sensor View Frames
Management of driving units and sensor view frames is essential in local control. As described in

section 2, the driving unit is a minimum control unit, a unit to perceive objects, generate a path plan, and

drive the vehicle. The PERCEPTION module digitizes an image in each driving unit, and the vehicle’s

position is estimated and its trajectory is planned once in each driving unit. Therefore, an appropriate

driving unit size is essential for stable control. For example, the sensor view frame cannot cover a very

large driving unit. Conversely, small driving units place rigid constraints on the LOCAL PATH PLANNER,

because of the short distance between the starting point and the goal point. The aiming of the sensor

view frame determines the point at which to digitize an image and to update the vehicle position and path

plan.

In the current system, the sensor view frame is always fixed with respect to the vehicle. The size of the

driving unit is fixed for driving on roads (4-6 meters length), and is changed for turning at intersections so

that the entire intersection can be see in a single image and to increase driving stability (see Figure 9).

This method works well in almost all situations in our current test site.

Figure 9: Intersection driving unit

For intersections requiring sharp turns (about 135 degrees), the current method does not suffice.

Because there is only one driving unit at the intersection, the system digitizes an image, estimates the

vehicle’s position, and generates a path plan only once for a large turn. Furthermore, since the camera’s

field of view is fixed straight ahead, the system cannot see the driving unit after the intersection until the

55 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
vehicle has turned through the intersection. Though the actual path generated is not so bad, it is

potentially unstable.

This experimental result indicates that the system should scan for an admissible passage, and update

vehicle position estimation and local path plan more frequently when the vehicle changes its course

faster. We plan to improve our method for managing driving units. Our new idea is:

length of the driving unit: The length of the driving unit is bounded at the low end by the
LOCAL PATH PLANNER'S requirements for generating a reasonable path plan, and at the
high end by the view frame required by PERCEPTION for recognizing a given object.

Driving unit interval: The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdriving unit interval is the distance between the centers of
adjacent driving units. Adjacent driving units can be overlapped, that is, they can be placed
such that their interval is shorter than their length. Figure 10 illustrates this situation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L : dr i v ing u n i t leng th

I : driving u n i t interval

Figure 10: Adaptive Driving Units

*Adjusting size and intewal of drivlng unit: If the passage is simple, the length and
interval of the driving unit is long. If the passage is complex, for example, in the case of
highly curved roads or intersections, or in the presence of obstacles, the length and interval
of driving unit are shorter. And if the required driving unit interval must be shorter than the
length of driving unit, the driving units are overlapped. Therefore, the vehicle's position is
estimated and a local path is planned more frequently so that the vehicle drives stably (figure
10).

Adjusting sensor view frame: The sensor view frame with respect to the vehicle, the
distance and the direction to the driving unit from the vehicle, is adjusted using the pan and
tilt mechanism of the sensor. In most cases, a longer distance to the next driving unit allows
a higher vehicle speed. If the processing time of the PERCEPTION and the PILOT is
constant, the longer distance means a higher vehicle speed. But the longer distance
produces less accuracy in perception and vehicle position estimation. Therefore, the
distance is determined for the required accuracy, which depends on the complexity of

56 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
passage. Using the pan and tilt mechanism, PERCEPTION can digitize an image at the best
distance from the driving unit, since the sensor’s view frame is less rigidly tied to the
orientation and position of the vehicle. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5.2. Vehicle Speed
It is an important capability of an autonomous mobile robot to adjust the vehicle’s speed automatically

so that the vehicle drives safely at the highest possible speed. The current system slows the vehicle

down in turning to reduce driving error.

The delay in processing in the LOCAL PATH PLANNER and in communication between the HELM and

the actual vehicle mechanism gives rise to errors in vehicle position estimation. For example, because of

continuous motion and non-zero processing time, the vehicle position used by the LOCAL PATH

PLANNER as a starting point differs slightly from the vehicle position when the vehicle starts executing

the plan. Because the smaller tuming radii give rise to larger errors in the vehicle’s heading, which are

more serious than displacement errors, the HELM slows the vehicle for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAturns with smaller radii. This

method is useful for making the vehicle motion stable.

We will add to the system the capability for adjusting the vehicle speed to the highest possible value

automatically. Our idea is the following:

schedule token: The modules and the submodules working at the local navigation level
store their predicted processing times in a schedule token in each cycle. PERCEPTION is
the most time consuming module, and its processing time varies drastically from task to task.

0 adjusting vehicle speed: Using the path plan and the predicted processing time stored in
the schedule token, the HELM calculates and adjusts vehicle speed so that the speed is
maximum and the modules can finish processing the driving unit before the vehicle reaches
the end of the current planned trajectory.

5.3. Local Path Planning and Obstacle Avoidance
Local path planning is the task of finding a trajectory for the vehicle through admissible space to a goal

point. in our system, the vehicle is constrained to move in the ground plane around obstacles

(represented by polygons) while remaining within the driving unit (also a polygon). We have employed a

configuration space approach [5] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI. This algorithm, however, assumes that the vehicle is

omnidirectional. Since our vehicles are not, we smooth the resultant path to ensure that the vehicle can

execute it. The smoothed path is not guaranteed to miss obstacles. We plan to overcome this problem

by developing a path planner that reasons about constraints on the vehicle’s motion.

6. Navigation Map
Some information about the vehicle’s environment must be supplied to the system a priori, even if it is

incomplete, and even if it is nothing more than a data format for storing explored terrain. The user
mission, for example, ”turn at the second cross intersection and stop in front of the three oak trees” does

not make sense to the system without a description of the environment. The Navgation Map is a data
base to store the environment description needed for navigation.

57 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6.1. Map Structure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The navigation map is a set of descriptions of physical objects in the navigation world. It is composed
of two parts, the geographical map and the object data base. The geographical map stores object

locations with their contour polylines. The object data base stores object geometrical shapes and other

attributes, for example, the navigation cost of objects. Though, in the current system, all objects are

described with both the geographical map and the object data base, in general, either of them can be

unused. For example, the location of stairs A is known, but its shape is unknown.

The shape description is composed of two layers. The first layer stores shape attributes. For example,

the width of the road, the length of the road, the height of the stairs , the number of steps, etc. The

second layer stores actual geometrical shapes represented by the surface description. It is easy to

describe incomplete shape information with only the first layer.

6.2. Data retrieval
The map data is stored in the CODGER data base as a set of tokens forming a tree structure. In order

to retrieve map data, parent tokens have indexes to child tokens. Because the current CODGER system

provides modules with a token retrieval mechanism that can pick up only one token at a time, retrieving

large portions of the map is cumbersome. We plan to extend CODGER so that it can match and retrieve

larger structures, possibly combined with an inheritance mechanism.

7. Other Tasks of the System
Navigation is just one goal of a mobile robot system. Generally speaking, however, navigation itself is

not an end, but actually a means to achieve the final goals of the autonomous mobile robot system, such

as carrying baggage, exploration, or refueling. Therefore, the system architecture must be able to

accommodate tasks other than navigation.

Figure 11 illustrates one example of an extended system architecture which loads, carries and unloads

baggage. The whole system is comprised of four layers, mission control, vehicle resource management,
signalpmcessing, and physical hardware. The CAPTAIN, only one module in the mission control layer,

stores the user mission steps, sends them to the vehicle resource management layer one by one, and

oversees their execution.

In the vehicle resource management layer, there are different modules working for different tasks.

Although their tasks are different, they all work in a symbolic domain and do not handle the physical world

directly. These modules oversee mission execution, generate plans, and pass information to modules in

the signal processing layer. Through CODGER, they can communicate with each other, if necessary.

The MAP NAVIGATOR and the PILOT, parts of the navigation system, are included in the vehicle

resource management layer. The MANIPULATOR makes a plan (e.g., how to load and unload baggage

with the arm) and sends it to the ARM CONTROLLER.

The modules in the signal processing layer interact with the physical world using senors and actuators.

For example, PERCEPTION processes signals from sensors, the HELM drives the physical vehicle, and

the ARM CONTROLLER operates the robot arm. The bottom level contains the real hardware, even if it

includes some primitive controller. The sensors, the physical vehicle, and the robot arm are included in

this layer.

EUTAXW zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHisalon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAControl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI
I

b I

. I I

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I ?hyaical Hardware

Figure 11 : Extended system architecture

Because our current system architecture is built on the CODGER system it will be easy to expand to

include these additional capabilities. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8. Conclusions

In this paper, we have described the CMU architecture for autonomous outdoor navigation. The

system is highly modular and includes components for both global and local navigation. Global

navigation is carried out by a route planner that searches a map database to find the best path satisfying

a mission and oversees its execution. Local navigation is carried out by modules that use a color camera

and a laser rangefinder to recognize roads and landmarks, scan for obstacles, reason about geometry to

plan paths, and oversee the vehicle's execution of a planned trajectory.

The perception, planning, and control components are integrated into a single system through the

CODGER software system. CODGER provides a common data representation scheme for all modules in

the system with special attention paid to geometry. CODGER also provides primitives for synchronizing

the modules in a way that maximizes parallelism at both the local and global levels.

We have demonstrated our system's ability to drive around a network of sidewalks and along a curved

road, recognize complicated landmarks, and avoid obstacles. Future work will focus on improving

CODGER for handling more difficult sensor fusion problems. We will also work on better schemes for

local navigation and will strive to reduce our dependence on map data.

59

9. Acknowledgements

group at CMU. We extend special thanks to Steve Shafer, Chuck Thorpe, and Takeo Kanade.

The design of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAour architecture was shaped by contributions from the entire Autonomous Land Vehicle

References

[41

[51

[91 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Durrant-Whyte, H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Integration, Coordination and Control of Multi-Sensor Robot Systems.
PhD thesis, University of Pennsylvania, 1986.

Goto, Y., Matsuzaki, K., Kweon, I., Obatake, T.
CMU Sidewalk Navigation System.
In FJCC-86. 1986.

Hebert, M. and Kanade, T.
Outdoor Scene Analysis Using Range Data.
In Proc. 1986 IEEE Conference on Robotics and Automation. April, 1986.

Kanade, T., Thorpe, C., and Whittaker, W.
Autonomous Land Vehicle Project at CMU.
In Proc. 1986 ACM Computer Conference. Cincinnati, February, 1986.

Lozano-Perez, T., Wesley, M. A.
An Algorithm for Planning Collison-Free Paths Among Polyhedral Obstacles.
Communications of the ACM 22(lo), October, 1979.

Lozano-Perez, T.
Spatial Planning: A Configuration Space Approach.
IEEE Transactions on Conputers C-32(2), February, 1983.

Mikhail, E. M., Ackerman, F.
Observations and Least Squares.
University Press of America, 1976.

Shafer, S., Stentz, A., Thorpe, C.
An Architecture for Sensor Fusion in a Mobile Robot.
In Proc. IEEE International Conference on Robotics and Automation. April, 1986.

Stentz, A., Shafer, S.
Module Programmer’s Guide to Local Map Builder for NAVLAB.
1986.
In Preparation.

Wallace, R., Stentz, A., Thorpe, C., Moravec, H., Whittaker, W., Kanade, T.
First Results in Robot Road-Following.
In Proc. IJCAI-85. August, 1985.

Wallace, R., Matsuzaki, K., Goto, Y., Webb, J., Crisman, J., Kanade, T.
Progress in Robot Road Following.
In Proc. IEEE International Conference on Robotics and Automation. April, 1986.

