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Abstract

This report describes progress in research on an autonomous robot for planetary exploration
performed during 1989 at the Robotics Institute, Carnegie Mellon University. The report begins
with an introduction, summary of achievements, and lists of personnel and publications. It also
includes several papers resulting from the research.

The research program includes a broad agenda in the development of an avtonomous mobile
robot. In the year covered by this report, we addressed two key topics:

Six-Legged Walking Robot — To overcome shortcomings exhibited by existing wheeled and
walking robot mechanisms, we configured the Ambler as a walking robot. The fundamental
advantage of the Ambler confignration—which has implications for efficiency, mechanism
modeling, and control simplicity—is that actuators for body support are independent of
those for propulsion; a subset of the planar joints propel the body, and the vertical actu-
ators support and level the body over terrain. During 1989 we configured, designed, and
constructed the Ambler. In addition, we developed models of its dynamics, and studied
leveling control.

Integrated Single Leg Walking — We implemented and tested an integrated system capable of
walking with a single leg over rugged terrain. A prototype of an Ambler leg is suspended
below a carriage that slides along rails. To walk, the system uses a laser scanner to find a
clear, flat foothold, positions the leg above the foothold, contacts the terrain with the foot,
and applies force enough to advance the carriage along the rails. Walking both forward
and backward, the system has traversed hundreds of meters of rugged terrain including
obstacles too tall to step over, trenches too deep to step in, closely spaced rocks, and sand
hills. In additon, we conducted preliminary experiments with concurrent planning and
execution, and developed a leg recovery planner that generates time and power efficient
3D trajectories using 2D search.

Mobile Manipulation with Hero Robot — Indoor mobile manipulator tasks include collecting
cups from the lab floor, retrieving printer output, and recharging when its battery gets low.
The robot monitors its environment, and handles exceptional conditions in a robust fashion.
For example, it uses vision to track the appearance and disappearance of cups, uses on-
board sonars to detect imminent collisions, and monitors battery level periodically.

This research is primarily sponsored by the National Aeronautics and Space Administration.
Portions of this research are also supported by the National Science Foundation and the Defense
Advanced Research Projects Agency.



Introduction

This report reviews progress during 1989 at the Robotics Institute, Carnegie Mellon University,
on research sponsored by NASA tirled “Autonomous Planetary Rover.” This report begins with
an overview and a summary of achievements. It then lists the members of the research group
supported by, or directly related to the contract, and their publications. Finaily, it includes three
detailed papers representative of specific areas of research.

Overview

The CMU program to deveiop an Earth-based prototype of an autonomous planetary rover is
organized around three teams that are developing the locomotion, perception, and planning sub-
systems. A joint task is to integrate the three subsystemns into an experimental robot system. We
will use this system for evaluating, demonstrating, and validating the concepts and technologies
developed in the program.

The technical objectives of the research include the following:

e To develop and demonstrate an autonomous Earth-based mobile robot that can survive,
explore, and sample in rugged, natural terrains analogous to those of Mars.

e To provide detailed, local representations and broad, 3-D descriptions of rugged, unknown
terrain by exploiting diverse sensors and data sources.

e To demonstrate robot autonomy through a planning and task control architecture that
incorporates robot goals, intentions, actions, exceptions, and safeguards.

Accomplishments

This section describes key accomplishments of the project research from January 1989 to De-
cember 1989. Wt present these accomplishments in three parts: the first includes all activities
related to construction of the Ambler!; the second includes those activities related to integrated
walking; the third covers other activities.

1An acronym for Autonomous MoBiLe Exploration Robot.
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Figure 1: Ambler configuration

Ambler

A major accomplishment of 1989 was to reconfigure, design, and build the six-legged walking
machine. Using all six legs, we demonstrated body motion (lift, advance) and leg recovery
{circulation between stacks). These first steps of the Ambler are a significant project milestone.

Configuration — We reconfigured the earlier Ambler designs to have two stacks, with six
circulating legs (Figure 1). Each leg is a rotary-prismatic-prismatic orthogonal leg. The
configuration enables level body motion, a circulating gait, conservatively stable gaits,
high mobility, and many sampling deployment options.

Design — We detailed the relative leg link scale, duplicated components when possible, and
augmented our efforts with results from a prototype leg testing program. Also in the
design process we identified worst cases for structural loads, drivetrain loads, power, and
link speeds. We made a number of key design decisions: to use aluminum as our primary
material; to equip all axes with spur gear drives; to outfit the prismatic links with linear
bearings; to incorporate separate slipring units in each leg; to have shoulders ride not



on each other but on a central shaft; and 10 construct the superstructure from aluminum
instead of composites.

Fabrication ~— As we completed designs, we began fabrication but continued to alter them
slightly to simplify assembly. An intensive effort to put all the pieces together culminated
in a complete vehicle in December.

Electronics and Sensing — We designed and implemented a variety of electronic devices to
link computing, actuation, and the physical mechanism. We established signal paths to
provide machine status—including drive train, positions, and forces—to computing. To
reduce the number of cables required, we designed and built a high-speed multiplexor that
provides real-time data transmission of analog and digital signals. We built 2 tether to
carry all signals to and from the machine. The tether is 46m of protective fabric sheathing
that contains 130 shielded twisted pairs, 30 coaxial cables, and power cables. To ensure
safe operation of the machine, we implemented a three state finite state machine safety
circuit that allows manual control, computer control, and provides graceful termination
upon certain conditions.

Real-Time Controller — We have developed a real-time controller based on VME hardware
and the VxWorks operating system. Multiple processors synchronize input/output and
motion control. Creonics motion control cards receive encoder feedback and amplifier
status signals, and transmit motor command and amplifier control signals. Digital boards
route signals for brake control, the safety circuit interface, and force sensor control. Up
to 64 A/D converter channels read signals from the force sensors, absolute encoders, and
inclinometers.

Mechanism Modeling — We formulated two models for the Ambler mechanism: a com-
prehensive model and a planar model. The comprehensive model incorporates non-
conservative foot-soil interactions in a full non-linear dynamic formulation. We employed
it for performance evaluations such as assessment of power consumption, potential for
tipover, and foot slippage, and continue to use it to develop body leveling control algo-
rithms. We used the second, planar model to evaluate mechanism designs and to investigate
joint driving configurations for propulsion.
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Figure 2: Single leg testbed

Integrated Walking

We implemented and tested an integrated system capable of walking with a single leg over
rugged terrain. A prototype of the Ambler leg is suspended below a carriage that slides along
rails (Figure 2). To walk, the system uses a laser scanner to find a foothold, computes an efficient
trajectory to the foothold, contacts the terrain with the foot, and applies force enough to advance
the carriage along the rails. Walking both forward and backward, the system has traversed
hundreds of meters of rugged terrain including obstacles too tall to step over, trenches too deep
to step in, closely spaced rocks, and sand hills. The implemented system consists of a number
of task-specific processes (two for planning, two for perception, one for real-time control, briefly
described below) and a central control process that directs the flow of communication between
processes. With this system we experimented with extensions to support concurrency and error

TECOVETY.



Task Control Architecture — We implemented the Task Control Architecture (TCA) and used
it to integrate the various components of the walking system. TCA provides a number
of important facilites for building and operating complex robot systems. In particular, it
provides mechanisms to support message passing between distributed processes, hierarchi-
cal planning, plan execution, monitoring the environment, and exception handling. Using
TCA the system consists of a number of task-specific processes and a central control
process that directs the flow of communication between modules.

Real-Time Controller — We implemented a real-time control system for the single leg. This
system, which runs under the VxWorks operating system, communicates via the TCA,
moves the leg and carriage and reports their positions, and handles asynchronous interrupts
generated by the Creonics maotion control boards.

Perception using Elevation Maps — We implemented a perception system to build elevarion
maps from sequences of range images. In addition to the elevation, the system computes
the elevation uncertainty, local slope, visibility, and foothold goodness (measure of ter-
rain flatness in a foot-size neighborhood). The system executes approximately 20 x 108
instructions to build a 400 point map. In parallel, we developed techniques for marching
long sequences of range images and for merging them stochastically into a composite map
(Figure 3), and conducted experiments in updating satellite maps from local data.

Figure 3: Composite elevation map

This map was built by matching 125 Erim range images acquired by the Autonomous Land Vehicle as it
traversed a 40m path {right to left), including a2 30 degree left turn, at an outdoor site in Colorada. The
matching between consecutive range images was performed by first maiching features to obtain an initial
estimate of the displacement, and then using that estimate to seed an iterative minimization procedure.



Planning — We developed and implemented two planning modules: the Gait Planner and the
Leg Recovery Planner. The Gait Planner determines leg sequencing, body trajectory, and
foothold locaticn. The Leg Recovery Planner generates trajectories that avoid obstacles and
minimize an objective function of time and energy. It plans three-dimensional trajectories
while searching a two-dimensional space, which reduces computation time substantially.

Single Leg Walking Experiments — We conducted a series of experiments and demonstra-
tions using the Single Leg Testbed. For the first stage of testing, we levelled the terrain and
did not alter it between runs. We began with a minimal set of processes, and incrementally
added processes. For the second stage of testing, we executed the same processes, and
walked over different terrains. We began with level ground, and graduated to succes-
sively more difficult terrain. Figure 4 shows an obstacle course that the integrated system
traversed more than 30 times, and the elevation map built by the perception system.

Figure 4: Obstacle course

The abstacle course consists of a small obstacle (upside down basket, lower right), a box (right) too tall
for the leg to step over, a “steeplechase” arrangement of pylons (center) lying on the ground, two larger
obstacles (left and upper center) separated by about 1m, and a dozen or so smaller obstacles.

The perception system built this elevation map from approximately five range images acquired at different
positions. The labels indicate metric units in the global reference frame, where 0 < X < 3and4 < ¥ < 12,
The map resolution is 10cm.



Other Activities

Mobile Manipulator Testbed — At the Mobile Manipulator Testbed we developed and tested
advanced TCA features such as monitors, task ree management, temporal constraints,
exception handling, and resource allocation. Using these features, a Hero robot successfully
demonstrated several tasks: cup collection, retrieval of printer output, delivering objects
to workstations, recharging its battery, using on-board reflexive procedures to detect and
react to imminent collisions. We also achieved substantial progress toward a number of
other capabilities, including navigation based on sonar, leamning to approach and recognize
objects, and leamning stimnius-response action rules.

Simulator — We developed a simulation system on a Titan supercomputer (Figure 5). Capa-
bilities include three-dimensional solid and kinematic models of the six-legged Ambler,
generation and display of synthetic terrain (rocks, hills, craters, etc), and acguisition of
synthetic range images of terrain.

Figure 5: Simulated Ambler on synthetic terrain



Personnel

The following personnel were directly supported by the project, or performed related and con-
tributing research in 1989:

Faculty: Martial Hebert, Katsushi Ikeuchi, Takeo Kanade, Chelva Kumar, Eric Krotkov, Tom
Mitchell, Reid Simmons, Chuck Thorpe, William Whittaker,

Staff: Brian Albrecht, Purushothaman Balakumar, Gary Baun, Mike Blackwell, Kevin Dowl-
ing, Christopher Fedor, Kerien Fitzpatrick, Joe Hirsch, Regis Hoffman, Ralph Hyre, Jim Martin,
Clark McDonald, Jim Moody, Dave Pahnos, Henning Pangels, Gerry Roston, Kevin Ryan, Jay
West, David Wertergreen.

Visiting Scientists: Jim Blythe, Claude Caillas, Herve Delinguette, Bac Xin Wu,

Graduate Students: John Bares, Lonnie Chrisman, Richard Goodwin, Goang Tay Hsu, In So
Kweon, Long-Ji Lin, David Manko, Peter Nagy, Ming Tan.

Undergraduate Students: Steve Baier, Jonathan Burroughs, John Greer, Nathan Harding,
Chris Ivory, Susan Kane, Nina Koros, Terry Lim, Eric Miles, Sundip Patel, Naeem Shareef,
Hans Thomas, Rob Wolpov, Kurt Zimmerman.
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INVERSE DYNAMIC MODELS USED FOR FORCE CONTROL OF
COMPLIANT, CLOSED-CHAIN MECHANISMS

D, 4. Manko and W, L. Whittaker
Field Robotics Gentar
Carnagie Mellon University
Schenlay Park, Pennsyivania

ABSTRACT

A general inverse dynarpic model is presented that is applicable to
mechanisms incorporating member, joint and base compliance.
Previous approaches for defining inverse dynamic models of compliant
mechanisms have been approximations or limited to simple mechanism
geometries and open-chain mechanisms. Hence, the motivation fora
wmore general approach. Inverse dynamic equations for compliant
mechanisms modeled with and without constraint equations are shown
to be soivable sets of differential/algebraic equations (DAE's); relevant
characteristics and solutions of DAE systems are discussed. An
unportant application for inverse dynamic models of compliant
mechanisms is model-based force control of closed-chain mechanisms.
The formulation and solution procedures discussed in this paper have
been successfully applied w0 medel legged locomotion on natural
tefrain.

L INTRODUCTION

An inverse dynamic model of a mechanism is an application of the
equations of motion for a system where joim rajectories are defined,
and the actuator forces and interaction forces required to produce these
motions are calculated. (In contrast, 8 forward dynamic model is used
to calculate mechanisim motions in response to a set of applied forces.)
Caleulations of thest forces are useful for sizing members and
actuators during the mechanism design phase. Additionally,
computationally fast versions of the model can be incorporated inro
model-based contoi schemes. An important application is model-
based foree control of closed-chain mechanisms where the constraint or
interaction forces (e.g., foot forces for a walking machine) are sampled
quantities. The inverse dynamic model provides estimates of these
intcraction forces, which may be used as control set points.

The following section of this paper discusses existing methods for
defining inverse dynamic models of compliant mechanisms. A general
formulation of inverse dynamic models for compliant mechanisms
modeled with and without constraint equations is described in Section
3, The resulting inverse dynamic equations are shown 1o be sets of
differential/algebraic equations (DAE's) after substitution of specified
Jjoint modons. Relevant characteristics and solution procedures for
DAE systems are considered in Scction 4. The system index (which
comrelates with solutton dif€iculty} of compliant mechanism, inverse
dynamic models ars defined in Section 5 of this paper; identifying the
System index assures that stabie and accurate numerical solutions can
be calculated by the methods described in Section 4.

i3

2. BACKGROUND

An inverse dynamic model is obtained by substitution of specified
coorndinate trajectories into the equations of motion developed for the
system. For non-compliant mechanisms, all coordinate wajectories can
be specified because rigid body motions cormpletely define the system
kinematics. Alternately, inverse dynamic models for compliant
mechenisms are complicated by the fact that trajectories cannot be
specified g priori for the deflection variables which model the system
compiiance. In general, deflection variables are not directly controlled
(Lc., applied forces equal to 2e10) so it is inappropriate to presume that
motions of 2 deflection variable can be specified. Responses of the
deflecdon variables are wnknown quantites that are calealated along
with the required actwasor forces to produce the specified joint motions.

An approximate approach for formulating inverse dynamic models
of compliant mechanisms is to impose inergal loads on a fiexible, static
mmechanism model for deflection calculadons [Dado 86). The inertial
loads used in the analysis are obtained from the kinematics of the
roechanism considering it to be ideally rigid. Although this method is
relarively simple to implement, it does not account for the coupling
between joint and deflection variables which limits its application to
relatively slow moving mechanisms. Also, ime dependent deflection
response is not considered.

The inverse dynamic model for a compliaat, 2 dof cylindrical arm
[Forrest-Barlach 87] was obuained by substitution of dyramic
equations for the deflection variables (where the deflection variables are
defined as fonctions of the joint variables) into the remaining dynamic
equations corresponding to the joint variables. The resulting joint
variable equations are fourth order differential equations requiring joint
trajectory planning of both jerk and jerk rate. The approach of
eliminating deflection variables from the equations of motion can only
be accomplished for relatively simple sysiems.

The finite element method wes used to discretize the equations of
motion for open-chain mechanisms having structural flexibiiity [Bayo
B8l. An inverse dynamic model was obtained by specifying
trajectories for a subset of the deflection variables which decouples the
equations for an individual link. Joint torques required to produce a
desired end effector motion were calculated using an iterative solution
scheme. Specification of rajectories for a subset of the deflection
variables is not appropriate for all compliant systems (c.g., 2
inechadism on a compliant base).



3. COMPLIANT MECHANISM INVERSE DYNAMIC EQUATIONS

The equations of motion (before substitution of specified joint
rajectories) for open—cham and closed-chain mechanisms {rigid or
compliant), where motions are defined in terms of an independent set
of generalized coordinates {g), have the following form,

M(qy =

Substimtion of joint trajectories into the equations of motion for a non-
compliant mechanism results in straightforward evaluation of joint
forces. Alternately, substitution of trajectories into the equations of
motion for a compliant mechanisra and conversion to siandard form
{discussed in Section 4) results in a coupled set of first order
differeniial and algebraic equations (DAE's).

f(q.q,1)

The planar manipnlator on a vertically compliant base shown in
Figure ! is used to illusirate formulation of an inverse dynamic mode!l
for compliant mechanisms modeled without consmaint equations. The
planar mechanisin has the dynamic eguations shown in Figure 2 after
substtution of joint trajectories (all joints must be powered to produce
a conirolled motion) and conversion to state space form. Gaussian
elimination of derivative tenms from the joint variable equations results
in the standard form equations shown in Figure 3 where the differential
equations correspond to the vertical deflection variable and the
algebraic equations comespond o the joint variables. The joint varieble
dynamic equations always reduce (o algebraic equations while the
deflection variable equations remain as differential equations for any

compliant mechanism modeled without constraint equations.

Fig. ! Planar Manipulator on a Vertically Compliant Base
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Fig. 3 Dynamu: Equations in Standard DAE Form for a Planar
Manipulator on a Verically Compliant Base

Inverse dynamic solutions for compliznt mechanisms modeled
without constraint equations are calculated by first inegratng the
differential equations for the mechanism deflections. The solved
deflections are then substitated into the algebraic equations to obtain the
Joint forces required to produce the desired motions. The two part
solution is possible because the diffcrential equations are decoupled
from the algebraic equarions (i.e., independent of the joint forces) as
shown in Figure 3.

The equations of motion (before substitution of specified joint
trajectories) for closed-chain mechanisms have the following form

M(q)j = f(n.q.1) + Glgh
O =0
)

T
where ==
aq
A - Lagrange multipliers

®{q) - consiraint equations

The closed kineimatic chains are enforced with algebraic constraint
equations and Lagrange multipliers in the above equations.

For non-compliant mechanisms, the constraint equations are
identically satisfied by the specified joint trajectories so these equations
provide no useful information for the inverse dynamic model. The
number of unknowns (joint and constraint forces) may exceed the
number of available dynamic equations for inverse dynamic models of
<losed-chain, non-compliant systems, This occurs when the number
of actuated joints iz greater than the number of system dofs. In such
cases, an infinite number of possible force solutions exist for a given
trajectory. Many of the possible solutions correspond to actuator
conflict where powered joints act in an isometric (i.e., non-productive)
manner. An example of actuator conflict is shown in Figure 4 for a
non-compliant four bar linkage.

—
prem—
—

A -
£ AN

Fig. 4 An Example of Actuator Conflict for a Non-Compliant, Four
Bar Linkage



When a closed-chain mechanism hat cormpliance in each closed
inematic chain, the inverse dynamic solution is dererminate for any
number of actusted joints because opposing actuator forces result in
deformation that distribuses internal forces. The compliance must be
arranged 50 that no mechanism motion is rigidly constrained for the
problem to be determinate. Otherwise, the degree of indeterminacy
would be reduced and not tliminated dependent on the number of
constraint equations that are no longer applicable. When sufficient
system compliance exisis for the inverse dynamic solution to be

inate considering ail joints to be actated, the recharism will be
refecred to as fully compliant.

All joints in a closed-chain mechanism do not have 1o be powered 1o
produce a conwolled mechanism motion. The existence of a
i inverse dynamic solution for a less than fully compliant,
closed-chain mechanism is dependent on having an unactuated joint
with a specified trajectory in each closed kineratic chain corresponding
to an eliminated constraint equation. (Constraint equations cannot be
eliminated for fully compliant, closed-chain mechanisms because
deflection varisbles are present in these equations.) If a joint is
unpowered (ie., its trajectory is onkaown) in a fully compliant,
closed-chain mechanism, the corresponding joint motion is governed
by the deflection veriables in addition to the constraint equations.
Either a mrajectory or force, but not both, is specified for each joint of
fully compliant, closed-chain mechanism becausz the unknown
deflection variables and constraint forces affect the unspecified
quandty.

The inverse dynamic model of & compliant mechanism modeiod
with constraint equations is obtained by substimtion of the defined joint
Tajectonies into the equations of motion for the conversion of
Ihcequaﬁmsmgqndudfommuluinacqlmhdsctof_bhﬁ‘s. An
mmpleoftwun_gldlyoomecwd.plmrmwhmmmdgpaﬂem,
vertically compliant bases shown in Figure 5 is used to illustrate
formulstion of an inverse dynamic model for compliant mechanisms
maodeled with constraint equations. The constraint equations given in
Figure 6 ensure compatability st the end-effectors. Joinzs dyg, G2 and
642 were considered to be which results in a determinate
solution. {(If, in addition, joints B and G4, were considered to be
powered, the first and thind constmaint equations would be eliminated
and the inverse dynamirc sohution would become indsterminate. )

F=k8
Fig. 5 Two Rigidly Connected, Planar Manipulators on independent,
Vertically Coonpliant Bases
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Fig. 6 Constraint Equations for Two Rigidly Connected, Planar
Manipulators on [ndependent, Vertically Compliant Bases

The inverse d ic equations have the functional form shown in
Egm?a&ummgonofmejoimmjecwﬂu and conversion to
state space form. Ganssian elimination of derivative terms from the
dynamic equations for joint varisbles having defined trajectories (ie.,
diz, ngandegg) resilts in the standard form equations shown in
The differential equations correspond to deflection and joint

unspecified motions while the algebmic equations
correspond to constraint equations and joint variables with specified
trajectorics.
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Fig. 7 Dynamic Equations in Stne Space Form for Two Rigidly
Connected, Plagar Manipulators on Independent, Vertically
Compliant Bases
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Fig 7 (cont'd) Dynamic Equations in State Space Form for Two
Rigidly Connected, Planar Mznipulators on Independent, Vertically
Compliant Bases
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where: Fy(x.X.y.t) - same as first 10 equations of Figure 7
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Fig. 8 Dynamic Equations in Standard DAE Form for Two Rigidly
Connected, Planar Manipulators on Independent, Vertically
Compiiant Bases
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The dynamic equations for joing variables having defined rajectories
reduce to algebraic equations whilethe constraint equations remain as
algebraic cquations for any compliant mechanism modeled with
consiraint equations, Also, the dynamic equations for joint and
deflection variables having unspecified motions remain as differential
equations. The difference between inverse dynamic models for
systems modeied with and without constraint equations is the
additionai algebraic (constraint} equations of the former. These
additional equations serve to coupie the differential and algebraic
equations of the inverse dynamic model through the Lagrange
multipliers; this eliminates the possibility of separate solutions (as for
systems modeled without constraint equations). Relevant
characteristics of DAE systerns are considered belew so that
appropriate solution techniques can be defined for inverse dynamic
models of compliant mechanisms modeled with constraint equations.

4. DIFFERENTIAL/ALGEBRAIC EQUATIONS

A coupled set of DAE's, which are also described as singular
systers of differential equations [McClamroch 86], can be expressed
in the following standard form

F(xiyD =0
Fy(zyn =0

Systems of DAE's cannot be solved directly using numerical
methods intended for ordinary differential equations (ODE's); an
equation transformation or special numerical techniques must be
considered. A singularity measure of a set of DAE's is given by its
index (or nilpotency) and the solution difficuity increases as the index
increases [Perzold 82). The index of a system is detcrmined by
mansforming the: set of equations into canonical form and observing the
size of the coefficient matrix for the non-state variables (i.e., variables
not having any derivative terms). Aan alternate approach for
determining the index [Gear 88] is to count the reguired number of
differenriations of the algebraic equations to product a set of ODE's.
The forward dynamic model of a closed-chain mechanism is shown -
[Petzoid 36) 10 be index 3 or index 2 when position or velocity
constraints are defined, respectively.

Solutions 10 determinate systems of DAE's can be obtained by
substituting backward difference formulas (BDF) for the derivative
expressions and solving the resulting set of simultaneous equations
iteratively using Hewton's method [Gear 71]. (There gre no proven
optimization 1echniques for indeterminate DAE systems except for the
preliminary work in [Lotstedt 84].) For 2 gencral system of DAE's,
the Jacobian matrix used in Newton's method is

ST Lo

; ax  h 3k dy
1ooF aF,
E3 ¥

where h - stepsize
o, - BDF coefficient

A unique soludon exists if the Jacobian is non-singular. An
obvious requirement for an invertible Jacobian is that dF,/dy be nor-
singular, which is an alternare definition of an index | system [Lotstedt
86]. For this reason, index 1 DAE systems can be readily solved using
BDF substinution and Newton's method with little more difficulty than
solving ODE's. A mathematically precise requirement for a unigue
soluticn o exist is that the Schur complement [Cottle 74] of the above
matrix must be non-singular. This explains why solutions can be
obtained for cenain higher order systems (i.e., index greater than 1)
where 3Fy/dy is singular. A solvable index 2 system has non-zero
rows of dF,/dy that are linearly independent [Lotsiedt 86].



The etroc in solving index 1 systems, solvable index 2 systents and
index 3 mechanical systems of DAE's using a constant siepsize BDF is
O(h¥) [Lotstedt 86], where k is the order of the difference expression
and b is the stepsize, The use of variable stepsizes is difficult because
the normal error definitions used for ODE's can be completely incorrect
for DAEs as # result of the non-state variable contributions. A suitable
error definition used for varizble stepsize conmol of DAE systems is
discussed in [Petzold 82).

A method for reducing the index of a set of DAE's {Gear 38] is w
differentiate the consiraint equations 1o produce a DAE system with an
index that is one lower for each differentiation. Taken to the extreme,
this approach can resuit in a sysiem of ODE's, Since the ODE is
equivaient to the original DAE system, calculared solutions will depend
on differentials of stse variables, non-state veriables and input
functions; any discontinuitics ia the Iatter can nesolt in non-defined
solutions. Similarly, consistent imitial conditions that satisfy not only the
consiraint equations bur derivatives of the constaint equations sre
mTeqtial: otherwise, errors in the initial conditions will coptaminate the
solution.

5. EQUATION INDEX OF COMPLIANT MECHANISM INVERSE
DYNAMIC MODELS

The inverse dynamic equations of motion for 2 compliant
mechanism modeled without constraint equations have been shown by
this study to be a set of DAE's where the differential equations
corespond to unknown deflection variables and the algebraic squations
correspond to unknown joint forces. Converting the equations to
standard form resalts in an index 1 syswem becausze 2F,/0y is non-
singular. A singie unknown joint force is unique o cach algebraic
equation which makes the rows of oF/@y always linearly independent
as shown by the example equations for the planar manipulator on a
vertically compiiant bese given in Figure 9,

stabs space variables
Ff %7 B
AT I

AEydy = ]
1

Fig. 9 dFy/@y for a Planar Manipuiator on a Vertically Cowmpliznt Base

If the mechanism has closed kinematic chains modeled with
constraint equoations, additionsl algebreic equations and non-state
variables corresponding to the consiraint equations and Lagrange
mujtipliers, respectively, are included in the equations of motion.
Thes+ adlitional equations make JF,/dy sitgular becanse the constraint
equations are independent of the non-state varjables (L2, variables not
having devivative terms in the equations). The non-zero rows of
aFy/oy are always linearly independens because a single unknown joint
force is unique to each algebraic equation that nds 10 joints
with specified trajectontes (i.e., actusted joints). This linear
independence is shawn by the equarions given in Figure 10 for two
rigidly connected, planar manipulators on independent, vertcally
compliant bases. Therefore, the ifverse dynamic equations of motion
for 2 compliant, ¢losed-chain mechanism modeled with conswraint
equarions are & solvable set of index 2 DAE's.
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where: * - indicates a non-zero entry

Fig. 10 aF-jay for Two Rigidly Connected, Planar Manipulators on
Independent, Vertically Compliant Bases

3. SUMMARY

A general forraulation of inverse dynamic models for ail compliant
mechanisms is where the model is obtained by substitution
of prescribed jont motions into the cquations of mation for the system.
The resulting equations for compliant mechanisms modeled with and
without constraint equations are shown to be solvable index 2 and
index 1 DAE systems, yespectively. Relevant characieristics of DAE
systems and solutions of these equadons are discussed. Stable and
accurate nomerical solutions can be obtained by BDF substitation and
appiication of Newton's method to the resulting set of equations.

The formulation and solution procedures have been used 1o define
the inverse dynamic made] of legged locomotion on natural tecrain,
Foot-s0il inreractions are modeled with non-linear force-deflection
mlanpnsb;gls‘;emlting in a fully compliant mode] and determinate
soladons. The mechanism structsre and joints are considered to be
rigid while joint damping and backdrive effects are included in the
model. Stable solutions are being calculated with two to five Newton
iperations per i The locomotion model is currently being used
for guit and control sysiem simulation studies of a multi-izgged robot
iljnr_ler development at the Field Robotics Center, Camegie Melion

niversity,
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A Perception System for a Planetary Explorer

M. Hebert, E. Krotkov, T. Kanade !
The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Abstract

To perform planetary expioration without human sopervision,
a complete autonomous robot must be able to model its environ-
ment and to locate itself while exploring its surroundings. For
that purpose, we propose 8 moduler perception system for an au-
tonomous explorer. The perception system maintsing & consistent
internal representation of the observed terrain from multiple sen-
sor views. The representation can be accessed from other moduies
through gueries. The perception system is intended to be used by
the Ambler, a six-legged vehicle being built a2t CMU. A partial im-
plementetion of the system using a renge scanner is presented as
well as experimental results on a testbed that includes the sensor,
one compuler controlled leg, and obsiacles on a sandy surface.

1 Introduction

The unmanned exploration of planets, such as Mars, requires a
high level of autonomy due v the communication delays between
a fobot and the Earth-based station. This impacts ail the compo-
nent: of the system: planning, sensing, and mechanizm [6). In
paticular, such & level of autonomy can be achieved only if the
robot has a perception sysiem that can reliably build and meintain
models of the environment. We propose a perception sysiem that is
designed for applicaticn to sutonomous planctary explorstion. The
perception sysiem is a major part of the development of a com-
plete sysiem that includes planning and mechanism design. The
target vehicle is the Ambler, a six-legged walking machine being
developed at CMU (Figare 1, [1]).

The perception system can be viewed as an intelligent mem-
ory that can be interrogated by external moduies (e.g., path plan-
ning modules) while maintaining an internal represemiation of the
world built from sensors as the vehicle navigates. The paper ad-
drezses the choice of the basic represencation maintained by the
sysiem in Section 2 and the architecture of the perception system
in Section 3. Although the arzi“:7ture is designed to handle a
variety of sensors, we have focused on the vse of & leser range
finder, since the first requiremen: for safe navigation of the robot
is relisbly modeling the geometry of the sarrounding terrain. Sac-
tion 4 describes the algorithms developed for the construction of
terrain modeils rom range images. Finally, Section 5 describes the
experiments thar were condncted o evaluats the perception system.

1This research wus sponsored by NASA under Contract NAGW 1175,
The views and conclusions conlained in this document are those of the
uathors and should not be nterpreted as representing the official policies,
rither expressed or implied, of NASA or the US Governmnent.

Figure 1. The Ambler

2 Terrain Representation

The basic intemal representation used by the perception system is a
grid, the local terrain map, each cell of which contains attributes of
the terrain. A cell must contain at ieast the elevation of the terzain
and the uncertainty on the efevation due 10 sensor noise. The
uncertainty is modeled as a2 Ganssian disiribntion, whose standard
deviation 7 i5 stored in the terradn mep. Other atributes may
incinde the siope, the surface texmre, etc. In addition, stiributes
that are siored in & cell may be of non-geometric nature, such as
the color of the terrain. Severad resolutions of the grid may be
maintained simultaneously.

On top of the base grid. higher level information can be rep-
resentzd in the form of labeled fesmtures in the grid, such ss -
pographic feswres (hills, ravines, etc.), regions of homogenesous
terrein type, objects of intercst that have been extracted (boulders,
rocks, etw.),

Orher terrain representations are possible. The sorface conld
be represented directly by 3-D paiches that either are approxima-
tons of the measured surface or are built directly upon the set of
daia points. In both cases, however, retrieving a region of interest
from the map becomes & complex operation. Another possibility
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is to represent only & higher-leve] description of the terrmin, such
as 3 segmentation of the surface. This is not eppropriate in our
case since some planning tasks need information at the lowest level
(elevation map). One example for the Ambler is 1o estimate how
stable a fool placement on the terrain wounld be, in that case »
surface description at & resolution that is well below the size of
the foot is needed. By contrast with the slternative representa-
tions, the lerrain map representation as an elevation map is simple
to manipulate, can include high-level information as weill as high
resolution elevation dats, and can be accessed by external modules
in & simple way by giving the boundary of the region of interest
in the map.

3 Architecture

The perception system is divided into six logical moduies (Fig. 2).
The system communicates with external modules using messages
that are routed through a central message handler [4]. The percep-
tion system is controlled by a from end-—the Local Terrain Map
Manager (LTMM)—that receives the messages. Once s message
Tequesting data is received, the LTMM checks whether it is avail-
able in the current intemal terrain map. If not, then the LTMM
instructs the Imaging Sensor Manager (ISM) to 1ske a new image
from the relevant sensors, and the terrain map from the new image
is merged in the current tesynin map. The iniernal representation
is a terrain map built with respect to a fixed reference frame, the
plobal frame G. All the operations in the overall Ambler system
are expressed with respect to ¢. A separate modole provides the
vehicle pose in G. Since the errain map is of interest only in
a region around the vehicle, useless perts of the terrain map are
discarded by another module, the Scroller.

\ Pllnmm.
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Figure 2: Architecture of the perception system

3.1 Accessing the Perception System

Ixternal modoles communicate with the perception system by ex-
‘hanging messages (Fig. 2). Two types of messages are used:
'weries that are reuest for data, and replies that are used for send-
1g data in retponse (o & query. The queries and replies are routed
nd synchronized by a central module 4], The simpilest exam-
le of a query from & planning module wouild be a request for an
levation map in a given wrea for clearance checking. The main
dvantage of this mode of access is that exiernal modules do not

need to know the internal workings of the perception system such
as the sensor used or the format of the intemnat representation.

The LTMM is the front 2rd 10 the perception system, and
is yesponsible for processing queries and for activating the proper
submodoles. When a query is received, the manager first checks
if the area of intevest has been already processed at the requested
resolution, if that is the case the requested information is exizacted
from the existing terrein map, otherwise the manager requests 2
new image from the ISM that is processed and merged with the
current [errain map.

To be processed all queries must contain three pieces of in-
formation: = polygon that is the boundary of the region of interest;
a resolution that indicates at what level of detail the requested cal-
culations must be carried out on the terrain map;® and the type
of informadon requesied {elevation, uncerntainty, slopes, eic.). Be-
cause ull queries are expressed in §, external modules do not need
o know the pose of the sensors. The transiormation berween a
sensor and the vehicle’s base frame is swred intemnally by the per-
ception system, while the current vehicle pose with respect to G is
requesied each time a query is received. ‘

3.2 Acquiring Sensor Data

Instead of hardcoding the sensor interfece into the LTMM, sensor
data is obtsined through the same query mechanism. Whenever
an image is requested, the requesting module sends 2 guery to the
ISM that includes the type of sensor and the type of data desired.
The ISM is responsible for activating the requested sensor. The
ISM can be viewed as a virtual sensor that hides the details of the
sensors’ inferfaces from the perception system, thus allowing for a
mote flexible way of changing sensor specifications. Because =ll
queties are expressed in ¢, the ISM is also responsible for requesi-
ing the positon of the vehicle with respect 0 § from & module
that keeps track of the position of the robot efther by dead reck-
oning or by using a navigetion sysiem. The other transformation
that is needed in ordex to use the sensor data is the transformation
between sensor frame and vehicle frame; this transformation is
pre-computed by a calibration procedure and stored by the ISM at
initialization time. The composition of thoge two transformations,
that is the ransformation berween sensor frame and G, is mumed
1o the perception system along with the sensor data (Fig. 3).

Roques: for data

+ mEpor CYpé

LTMM

Sensow  data
+ transtormation T

Vehicls fragie

Semsor Manager

Figure 3: The Imaging Sensor Manager

2For example, & resolmtion of sevenal \ens of cemimeters iy sufficient
for checking that the path of the body i clear. Analyzing the stability of
one foot of the Ambler reguires a resolution of a few centimeters.
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3.3 Building the Terrain Map

Once a query is received, & terrain map must be built within the
boundary of the region of interest, This is the roie of the Builder
(Fig. 2) which constructs a terrain map given sensor data taken at
one position of the vehicle. The terrain map is computed at the
Tequested resolution and includes the elevation and the uncertainty
at each point. In addition to those two attribotes, the Builder also
implements the elgorithms for computing other local attributes such
az slope or surface textare as we)l as non-geometric attributes such
s color of lerrain type depending on the available sensors. In
addition to computing the local attributes, the Builder also identifies
the portons of the map that are outside of the fields of view of the
sensore, end those that are occlnded by parts of the terrsin.

The Buiider is optimized in several ways: It maintains meps
at differert resolutions 5o that it is not necessary to slways com-
pute the map at finest resolution. Also, if 2 map at the desired
resolution does not exist, the Builder will creaie one, thus allow.
ing for arbiqary resolutions. The Builder minimizes the amount
of computation by remembering both the regions of the world that
have already been computed and by storing the past images so that
if a query falis within the feld of view of an existing image, it is
not necessary to acquire and process a new image.

An implementation of a Builder that nses range images is
described in Section 4,

3.4 Updating the Terrain Map

Since the Builder constructs a terrain map from a single image,
new sensof data has to be acquired each time a new guery is re-
ceived. This is sufficient as a first approximation, however the
perception systen: should be able to handle terrein maps built from
sensor data acquired at different positions. There are two motiva-
tions for handling multiple frames. It is obviously more efficiemt
to remember terrain maps built from previous frames rather than
recomputing everything at each siep. A more compelling moti-
vation is that merging multiple frames may be the only way o
provide the reqnested data. Such a sitoation occurs when parts of
the vehicle, usuelly a leg, lie within the field of view of the sensor
and therefore cccludes a part of the terrain map, in that case it may
not be possible to extract the region of interest from the current
positicn. A second case in which multiple frames are needed is
when data that is outside of the current feld of view of the sensor
is needed. In the case of the Ambler, this is actually the standard
sintation since, in the normal walking mode, the leg Farther behind
the body is moved o the front of the body which requires data
behind the body 50 that the path of the feg can be checked for
clearance. For these reasons, the perception system must include
the capability 10 merge terrain maps from successive frames into &
single 1erTain map.

The responsibility for the management of multiple terrain
maps is shared by two modules, the Matcher and the Merger
{Fig. 2). The Maicher estimates the displacement between a new
terrain map and the corrent internal terrain map. The displacement
is in general a 3-D transformatiof. It is estimated by muiching fea-
tures exmwacied from the maps, or by using a correlation technique
that compares the two maps directly. Section 4 briefly describes an
impiementation of the lauer in the case of terrain maps built from
tange images. An initial estimate of the displacement is always
available either from dead reckoning or from a navigation system.
Once the displascement is computed, the Merger is responsibie for
merging the new map into the corrent map. Actually, only the
part of the map that is within the requested region of interest is

actually merged for efficiency reasons. The maps are merged by
combining the elevation values at 2ach locetion of the map using
the uncertainty values to obtain the maximum likelihood estimate
of the elevation. The Merger must aiso update the occluded areas
of the current map.

It is important to logically separate the matching and merg-
ing operations. First of alt, the matching operation may or may
not be necessary depending on the accuracy of the positioning sys-
tem. If a navigation system provides displacement estimates that
are well below the resolution of the grids, the esimates will not
be improved by terrain matching. Second, if raw sensor data is
stored along with past terrain maps, a new query requires only
merging portions of the terrain maps since the displacements have
already been computed at the time the images were acquired. Fi-
nally, separating the two modules allows for experimenting with
different matching algorithms, presumably the most difficult pars
of the system, while retaining the same strucmre for the rest of the
system.

Since the terrain map must grow as the vehicle moves and
at new sensor dala is acquired, a third module, the Scroller, is
responsibie for discarding the part of the map that is too far from
the vehicie to be ysefol. This can be viewed as sliding a window
centered on the current position of the vehicie; only data within
this window iz retained. The Scroller is motivated both by the nesd
o prevent the size of the terrain map from expanding during the
course of a long mission, with the risk of memory cverflow, and
by the fact that only the most recent terrain maps can be used with
confidence due w the accomulation of errors in the displacement
estimates between maps.

4 Elevation Maps from Range Data

The perception system is designed to 2se multiple sources of data.
Because geometric information is mest important for local paviga-
tion, we consider in this section the case of data from an active
Iange scanner.

We use the Erim laser scanner, which delivers 64 x 256 range
images by measyring the phase difference between a laser beam
and its reflection from & point in the scene (7]. The scanner mea-
sures the range p in a spherical coordinate system in which ¢ and
# wre the vertical and horizontal scanning angles, corresponding o
Tow and column positions in the image.

Prior 10 operation, the position of the sensor with respect o
the vehicie's coordinate frame must be computed. This is done
by a calibration procedure that computes the position by observing
markings on the Jeg using the range scanner at different known
positions of the Jeg. A least-squares estimation aigorithm estimates
the transformation berween the coordinate sysiem of the scanner
and the coordinate system of the vehicle. This transformation is
compourided with the transformation between vehicle and global
frames by the ISM each time a new image is 2cquired.

The easiest way o convert the range images to elevations
maps is to convert each pixel (p, #, ¢) to » point in space (x, ¥, 2),
which is straightforward imowing the geometry of the sensor and
the transformation between sensor and global frames, This ap-
proach has some severe drawbacks, however, such as the need for
interpolation, the dependency on a panicoler coordinate sysiem,
and the fact that it is not poasible © Limit the computation to a re-
gion of the terrain map becanse we do not know spriori where this
region is in the image. Instead, we use the Jocus method described
in [3]. This approsch has many wivantages including the explicit
detection: of range shadows, the representation of uncertainty, the
independence of the algorithm with respeci 1o a reference frame,
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a straightforwerd extension to the case of multiple frames of data.
Furthermore, & major feature of the locus method s its ability to
limit the computation of the terrain msp t© any region in space,
thus facilitating the computation of the maps within the boundaries
of the queries of Section 3.1.

The terrain map building algorithms were evaluated on range
images taken by the Erim scanner. The test images were taken in
a construction site that exhibits the type of mgged terrain thai we
are interested in. Fig. 4 shows s map built frem one range image
using the locus slgorithm. The resolution is 10 ¢m over a 10 x 10
m square.

Figure 4. Elevation map built from one range image

An extznsion of the locus algorithm allows for matching and
merging terrain meps built from images taken from different posi-
tions. The matching elgorithm computes the best 3-D wansforma-
tion between maps, while the merging algorithm computes optimal
combination of the elevation from the Iwo maps given this trans-
formaticn. The map building from multiple frames was tested on
sequences of Erim images as well a5 on synthesized images. Fig. 5
shows the icrrain map obtained by merging data from four succes.
sive range images. The resuiting tervain map is about thirty meters
Iong. In this example the images were collected along a general
path including a sharp tum (aboutr 30*). The matching between
consecutive terrain maps was performed by first matching feamres
to obtain a first estimate of the transformation [3), and by using the
estimate &s 8 starting point for the minimization of the difference
between the two terrain maps that is used 2s the final tansforma-
tion for the merging. Experiments on synthesized images for which
the mansformation between images is known show that the error
on the resulting transformation can be as small as the resolution of
the grid. The error in elevation is of the order of a few centimeters,
ncreasing with the uncertainty as the points are further away from
he sensor,

Theses experiments show that the algorithms deveioped for
ange data provide the type of terrain maps required for rugged,
nstructored environments including variable resolution, arbioary
sference frame, explicit uncerteinty tepresentation, snd represen-
ation of occluded areas.

Figure 5: Elevation map from 125 range images

S Experimentation

A firse veysion of the perception system of Fig. 2 is implemented.
This version includes the LTMM, LTM Builder, and ISM. This
implementation includes the algorithms of Section 4 and nses the
Erim scanner. This implementation of the system is nsed to vali-
date the interface on single range images. The system builds terrain
maps with curreatly two anributes: uncertzinty and footfall evain-
ation. The latter is a measure of how good a footfsl) each location
in the map wonld be, based on the local shape of the terrzin. The
algorithms used for the footfall evalnation are described in {2].
Three types of queries are currently recognized:

o Elevation map: This is a request for an eievation map within
a given region {polygon) with a given resclution.

o Elevation and uncertainty map: This is basically the same
query exceps that the uncertainty at each point of the terrain
map is retumed as well.

o Fooifall evaluation: This is a request for the best position of
the foot within & region. Currently this request is processed
by computing the stability of a circular foot at each point of
the tefTain map by using only the geometry of the terrain [2].

Fig. & shows the resalt of processing a footfall evaluation
query. The lower Jeft view displays an overhead view of the site
with the region of interested displayed as a shaded polygon, The
three other views are the mep computed from a range image. The
lower right map is a map of the footfall evaluaion in which the
highest values correspond to the best footfall locations. The di-
mensions on the lower left disgram are in meters. The resolution
of this query is 10 cm.

A testbed was built in order to test the fully integrated plan-
ning/perception/mechanisim system. The testbed (Fig. 7) includes
a single leg, the range finder moonted on wp of the "body” of the
vehicle, and a 25m® sandbox that simulates the terrain in which



23

Ahowytsi o
e = -0, TH, ms o =k WL

L
[L RN A TN L

AR
LRNR

i
[
P

ddddds

L¥ yeaivlm

Figure 6: Processing a footfall query

the rover will navigate. The testbed leg was built from an esrlier
design, as 4 result it is slightly different from the legs in Figure 1.
The main difference is that the testbed leg uses rotationsl joints
while the design of Figure 1 nses prismatic joints. A real-time
controller drives the leg w specified locations in Cartesian or joint
space, allowing for constraints on the velocity of the leg snd the
forces applied to the foot. In addition, the body can be transisted
along two paralle] rails by controlling the two horizontal joints of
the leg while keeping the foot on the ground, thus simulating the
motion of the body in the sctual rover. The testbed is equipped
with s linear position sensor and two clinometers that together give
&n estimate of the position and orientation of the rover with respect
ta the global frame.

Figure 7: The single leg testbed

The most complicated task that is used in order to test the
perception system as pant of the complete single teg testbed is the
so-called "move-body" tagk in which, given a desired length of

uavel and & desired siep length, the leg takes a series of steps,
pulling the body forward after each step. The locations of the
footfalls a8 well as the irajectory of the leg are computed nsing the
tesrain maps from the perception system.

For each siep, the sequence of operations is as follows.

1. A region in which the foot may be piaced to achizve the next
step is computed by the gait planner module.

2. The gait planning module queries the perception system for
the best footfall position within this region. This query ac-
tivates the whole cycle of t2king an image, computing the
terrsin map, computing the footfall evalnation atrribnce, and
replying.

3. Given the fooifall position, the leg recovery planning module
computes x path for the leg and sends a region around this
path to the perception system requesting a map.,

4. Perception answers the query by sending back s map within
the specified region, including the uncertainty attribute.

5. The planning module uses the map to compute the locations
of intermediate points glong the path of the leg. The leg is
moved o the goal location and the oot is lowered onto the
tesrain using position control. The oncertainty is used as a
safety masgin both for the travel of the leg and for the actual
footfall. In the latter case the foot is lowered to a position
that is 20 above the nominal valoe reported in the terrain
map, and then lowered using force control until it contacts
the soil.

Repeated expetiments with the "move-body” scenaric with
different terrain shapes and different initial and goal configurations
of the leg have shown conclusively that the first version of the
perception system performs reliably and atlow the sysiem to safely
walk zround obstacies.

Several leszonz were learned during these experimnents, Good
calibration between the sensor and the leg is essential for comput-
ing retiable elevation value in the vehicle's reference frame, It is
importans to use information already axtracted when possible, if an
irage is taken whenever a query is received wa then run the risk to
bave the leg in the field of view of the sensor occluding the region
of interest. The solution to this problem is to include in the per-
ceplion system the algorithms that extract the relevant information
from the existing terrain map before acquiring new data. Finally, it
is clear from those experiments that more development is needed
& far as the computation of attributes is concerned. The only
atributes are currently the footfall evaluation and the uncertainty.

6 Discussion

We have presenied a perception system for an sutwnomous vehicle
designed for planetary explormtion. The perception system uses
terrain maps as the basic internal representation that is accessed
by external modules. Parts of the system have been demonstrated
using algorithms for builting terrain maps from range images. The
carrent version of the perception system has been included in &
complete single leg testbed.

6.1 Improvements

Several improvements are neaded in the cirrent system. First, cal-
ibration is of critical importance for the successful operation of
the overnll system. We therefore need to improve the calibration
procedure to the point at which the extors due to miscalibeation are
minimal compared to the other sources of errors. This involves in



particuiar & more detailed analysis of the geometry of the mech-
anism, a more accurste mode! of the sensor, and more reliable
algorithms for the detection of calibration targets.

The quality and accuracy of the terrain maps may also be im-
proved. In particular, the uncertrinty model may reflect the actual
environment by using 2 more detailed model of the sensor measure-
ments. Another improvement is the extensive use of map merging
Ip produce more sccurate maps by combining many measurements
at each point in the map,

The last improvement is in the area of exception handling.
Currently, the perception systemn cannot recover gracefully from
errors such as comrupied sensor data, bad transformation from cor-
rupted position resdings, or bad message handling. In order 1o
have a robust system we need to design 2 mechanism to detect and
recover from these conditions.

6.2 Extensions

Further work is required to demonstrate a perception system that
can handie the tasks of a complete astonomous system. Other
sensors must be used in conjunction with the Inser range finder
in order to compute non-geometric types of information such as
the type of the terrain in a region. This is important both for
sampling tasks, which require the identification of specific Types
of temmain, xnd for the evaluation of footfall selection since the soil
compliance depends on the type of terrain. The best candidates are
color cameras and thermal cameras. We sre working on integrating
those sensars into the perception system.

Other sensors that should be added to the perception sys-
tem include sensors for short-range perception, such as proximity
sensors. Those sensors would be used in the final phase of the
footfall 10 provide better control of the foot contact with the ter-
rain. Currently, the foot is lowered 1o a nominal value given by
the elevation map, after which point it is slowly lowered untl &
given force reaction is observed. This is a potentially dangerous
spproach if the map is inaccurate at that point, or if the terrain has
changed berween the time the map was built and the time the foot
is moved. A proximity sensor would gusrantee that the foot does
not attempl 0 peneteate the ground.

The perception system uses only local information from its
sensors. A possible extension would be the addition of more global
information such as a large-scale map from an orbiter. The main
issue is then to establish the relationship between the low.tesolution
global map and the high-resolution local maps. This is essentially
& maiching capability that can greatly enhance the performances of
the rover. For instance, the rover could register iiself with respect
0 large-scale terrain features from the global map.

Finally, we must complete the inclusion of the maiching of

aultipie frames in the system. Map metching will give the rover
- "self-localization” capability, that is the ability to register itself
rith respect to its environment without relying entirely on special-
urpose posidon sensors (clinometers, dead reckoning, INS). It
is been our experience that those sources of position information
tnnot be relied upon at all time because they do not necessarily
¥e an accurate description of the position and orientation of the
nsor at the time an image is taken. Furthermore, they have 1o be
refully calibrated with respect to the perception sensors which
d another level of complexity to the already difficult calibration
oblem. The solution will be w use the output of the position
nsors as an initial estimate for the map maching process which
11 provide the sccurate position estimate actually used.
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6.3 Remaining Issues and Lessons Learned

In the course of developing this system we have encountered the
vsual fundamental issues in the design of autonomous systems [5),
and had to make choices to overcame those problems, Two issues
were of special interest: the mode of synchronization between the
perception system and the other modules, and the limitations due
© message-passing between modoles.

The architecture is currently entirely query-driven in that the
teyrain maps are computed only in response to & specific query
from snother module. This may not be the best strategy in a
system that includes many other computation-intensive modules.
In that case, the perception system would be idle most of the time.
A different strategy would be for the perception system to keep
computing the terrsin map sround the vehicle even if no query
has been received. That way, the perception would take advantage
of the idle time to perform some additional computations, The
main issue is for the perception system to be able to predict the
regions of the environment that will be "useful” o compute for
the fatore queties. This also requires & carcful analysis of the
synchronization between modules so that this self-driven approach
does not accidentally slow down the other modules._ .

Ouar experience with this systemt hes been that the communi-
cation bandwidth using conventional network technology is not a
Hmitation. In this application, shipping images and maps between
the different modules of the perception system and the other mod-
ules does not ffect the performnance of the overall system signifi-

lcantty. There are still some synchronization issues to be addressed,

however. The most important one is o guarantee that the position
of the vehicle is correcily read at the time that an image is taken
(Section 3.2), which iz not possible if there is 1vo much of a delay
between the ISM and the module that sends the vehicle position.
One solution is to bypass the central message handler completely
for some of the low-level operations such taking ant image so that
the communications are performed by direct memeory transfer with
minimal delay,
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Experience with a Task Control
Architecture for Mobile Robots

Long-Ji Lin
Reid Simmons
Christopher Fedor

Abstract

This paper presents a general-purpose architecture for controlling mobile robots, and describes a
working mobile manipulator which uses the architecture to operate in a dynamic and uncertain
environment. The target of this work is to develop a distributed robot architecture for planning,
execution, monitoring, exception handling, and multiple task coondination. We repott our progress to
date on the architecture development and the performance of the working robot. In particular, we discuss
temporal reasoning, execution monitoring, and context-dependent exception handling.
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1. Introduction

The principal goal of this work is to develop a distributed robot architecture to support robot planning,
execution, monitering, exception handling, and multiple task coordination. We have been developing
such a robot architecture, called the Task Control Architecture (TCA)([15]. TCA is designed for
controlling mobile robots that have limited computational and sensory resources, operate in uncertain,
changing (but relatively benign) environments, have multiple goals, and have a variety of strategies to
achieve goals and handle exceptions.

We have been developing TCA concurrently on two testbeds -- the CMU six-legged Planetary Rover
(3] and the Heath/Zenith Hero 2000 mobile manipulator robot [12]. The CMU Rover project is an
attempt to develop an autonomous robot that can survive, navigate, and acquire samples on the Martian
surface. The Hero testbed is an indoor platform that has been used to drive the architecture design. The
current capabilities of the Hemo include collecting cups in the laboratory and recharging itself,

Qur initial implementation on the Hero robot [12), which was developed in an ad hoc manner, had
several shoricomings. It was slow and slack in reacting to environmental changes, It could not protect
itself and recover from failures properly. It also could not change its focus to higher-priority tasks or
respond 10 requests from human advisors. Afier re-implemerting the testbed using mechanisms and
functions provided by TCA, most of these shortcomings have been minimized. The robot is now faster
and more robust. It can react w0 environmental changes in a reasonable time frame, and it has a variety of
strategies to recover from failures,

The following are the capabilities that TCA currently supports.

o Concurrent planning and execution. Robots often take a significant amount of time in
constructing plans. Since planning and execution are activities that often need different
resources, both can occur concurrently. However, this concurrency sometimes needs to be
constrained. In many cases, the robot must act on an incomplete plan and defer some specific
decisions until more information can be acquired. On the other hand, to minimize risk to the
mbot, one might want to completely plan out a goal before executing any of its sub-
commands.

¢ Reacting to environmental changes. To accomplish tasks, and even to survive, the robot
must be reactive. It must always be aware of environmental changes, and respond 1o them
appropriately and in a timely manner. Some environmental changes invalidate current plans,
while others may demand the robot to change its focus completely.

e Error recovery. In complicaled, changing environments, failures are bound 10 occur. When
they do occur, the robot must change its plan to meet the new situation. Error recovery is
often context-dependent, that is, the same failure may have to be handled differenty,
depending on the robot’s intentions. Since in a benign environment, the failed plan is often
close to being correct, it is desirable for the robot to be abie to fix and re-use the problematic
plan, instead of always replanning from scratch.

o Coordinating Muitiple Tasks. With many simultancous goals but limited resources, the
robot must be able o dynamically prioritize and schedule its various tasks based on their
urgency, relative costs, likelithoods of success, etc. Currendy, only simple-minded strategies
can be specified using TCA, but we envision taking a more knowledge intensive approach in
the near future. :

Varicus TCA mechanisms have been developed to support these capabilities.

 Distributed processing. TCA is a distributed architecture with centralized control, A robot
system using TCA includes a central control and a number of concurrent, application-specific
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processes. We believe that a centralized control architecture facilitates the coordination of
multiple complex robot behaviors, while the distributed processing allows for concurrency in

planning, execution, and perception. '

» Resources. TCA provides a mechanism to schedule the use of the robot’s limited
computational and physical resources. A task is automatically queued by TCA until the
needed resources are available. Resource reservation, together with temporal constraints (see
below), provide synchronization mechanisms to control distributed robot systems.

» Task trees and temporal constraints. In TCA, planning and execution are separate
activities and can be performed concurrently. The interieaving of these activities can be
constrained by imposing temporal constraints among the planning and achievement times of
subgoals. TCA explicitly maintains the poal/subgoal hierarchies, called rask trees. Task
trees, together with the temporal constraints, are TCA’s representation of plans.

¢ Concurrent monitors. Concurrent monitors enable the robot to watch for environmental
changes in parallel with normal task execution. Because task execution and monitoring occur
concurrently, the performance of tasks will not be (significantly) slowed down, while stiil
enabling environmental changes 10 be detected as eariy as possible.

¢ Exception handling. TCA provides a general mechanism for handling planning time
failures, execution time errors, and contingencies. The roboi implementor can specify
different strategies for handling the same exception in different contexts. One benefit of
having this mechanism is to allow the user to separate robot behaviors for normal situations
from these that handle failures or contingencies. In this way, complex robot behaviors can be
developed incrementally, and exception handling can be flexibly defined. At present, the
mechanism is still under construction but some primary results have been obtained.

Table 1-1 summarizes the supporting relationships between the TCA mechanisms and desired robot
capabilities. A mark "X" in an entry of the table indicate that the mechanism in that column is used 1o
support the capability in that row. Note that although synchronization by itself is not a capability needed
by robots, it plays an important role in the distributed environment of TCA.

Table 1-1: The supporting relationships between mechanisms and capabilities
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The rest of this paper presents the Hero robot system, the Task Congol Architecture, and their
performance. Section 2 describes the hardware setup of the system and gives a scenario to illustrate how
the Hero robot performs tasks. Section 3 discusses the various mechanisms of TCA. Section 4 describes
the robot system in detail. Performance of the robot and TCA is evaluated in Section 5. Comparisons
with related work are given in Section 6. Finally the paper is concluded in Section 7.
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2. Scenario

Qur mobile manipulator robot, the Heath/Zenith Hero 2000, is a commercially available wheeled robot
with a two-finger hand (sce Figure 2-1). The robot operates in an unstructured laboratory, which is
obscrvable through a ceiling-mounted camera (see Figure 2-2). The Hero robot has three sonar sensors: a
rotating sonar on top, a forward-pointing sonar fixed to its base, and one mounted on the robot’s hand
which can be repositioned relative to the body. In addition, the robot has a battery charge level sensor, a
rotating light intensity sensor, and touch sensors on the fingers. Using existing vision software [10], we
developed a 2D vision subsystem for the ceiling camera. We also developed algorithms for navigation
and manipulation in the indoor environment.

Figure 2-1: The Hero 2000 Robot

When the system is started up, the robot is given several high-level goals, including (1) collecting cups
discovered on the iab floor and placing them in a receptacle, (2) avoiding obstacles, and (3) recharging its
bartery when necessary. The rest of this section presents a scenario to illustrate how the robot achieves
and coordinates these goals.

For the cup collection task, the robot monitors its 2D vision map for the appearance of cups on the
floor. An asynchronous perception process contirually takes a picture and updates a worid map. Once a
new map is built, the robot scans the map to find cup-like objects. In this scenario, two cup-like objects
are sposted, and the sysiem sets up two cup-collection goals and temporally orders them so that the closer
object will be explored frst.

The robot then plans and executes a path to the first object. While moving, it monitors for obstacles in
its path. A monitor, whose temporal extent continues until the object is picked up, is created 1o ensure
that the target object does not disappear {e.g., someone else may pick it up). Upon artiving near the
object, the robot uses its wrist sonar 10 measure the height and width of the object and matches them
against its cup models. If a satisfactory match is found, the robot plans and executes actions to pick up
the object. In parallel with measuring and picking up the object, the robot uses its overhead vision map to
pre-plan a path to the receptacle so that 2 path plan is ready for execution when the cup is picked up. The
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Figure 2-2: Overhead View of Laboratory as Seen by Robot
robot then uses the plan 1o navigate to the receptacle, where it deposits the cup.

Next, the robot attends to collecting the other object. While moving toward the object, the robot
notices (from either its overhead vision or its sonar sensors) that an object appears in into its path. The
robot stops immediately and waits to see if the object will move away soon. If the obstacle does not
move, the robot plans a detour by modifying the blocked path plan. If no detour can be found, the robot
replans a path from scratch. If still no path can be found, the robot abandons this cup-collection goal.

In this scenario a detour is found, so the robot continues to navigate to the object. The robot finally
arrives near the object and starts measuring it. At this point, the battery charge monitor potifies the robat
that its battery charge is getting low. Based on the simple-minded strategy: "if the robot has arrived near
the object complete the task before going over 10 recharge”, the robot creates a recharge goal with
temporal constraints indicating that the new goal will be attended to afier the cup-collection goal is -
achieved or aborted. The robot continues and subsequently discovers that the object is not a cup at ail. It
gracefully terminates all ongoing and pending activities and monitors that were set up for collecting the
object, and then it chooses 1o pursue its next goal, which is the recharge goal.

3. The Task Contrel Architecture

TCA is designed to implemen: capabilities we believe to be necessary for autonomous robots. TCA is
a distributed architecture with centralized control. An application of TCA includes a central process and
a number of concurrent, application-specific processes, called modules. Communication occurs via
coarse-grained message passing between modules, with all messages being routed through the central
prOCeSS,

To facilitate experimentation with different controt schemes, TCA is built as a layered system 50 that an
implementor can choose which layers to use -- higher layers provide more functionality specific to robot
control, but lower layers provide flexibility to implement altemative control schemes,
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At present, the implemented layers include:
¢ Communication layer that supports distributed processes under centralized control;

e Behavior layer for querying the environment, specifying goals, executing commands, and
altering the robot's intemal state

¢ Resource layer for allocating and managing physical and computational resources;

» Task management layer for building hierarchical plan structures and specifying temporal
constrainis between planning and execution of various goals in the plan;

e Monitor layer for concurrently monitoring user-selected aspects of the robot's extemal and
intemal environments;

* Exception handling layer for specifying comtexi-dependent strategies for handling plan
fatlures, execution errors, and environmental changes.

In addition, other layers (o support multi-task coordination and user interaction are planned.

3.1. Communication Layer

The base layer of functionality provided by TCA is the sending and receiving of messages between
modules. Modules can be written in different languages (currently both Lisp and C are supported) and
run on different machines (using the UNIX TCP protocol). In essence, TCA provides a simple remote
procedure caliRPC) interface from a caller in one module to a procedure in a possibly remote module.
The main difference between typical RPC implementation and TCA is that the central control determines
which module handles messages and in what order they are handled.

A potential problem with centralized control is that the central process may become a bottleneck,
Experimentally, a round-irip time for messages of under 10K bytes is about 50 milliseconds. Since this
time is small compared with the time taken by image processing, planning, and the robot’s actuators, the
centralized control has not been a problem on our current testbeds. Besides, the potential bottleneck
problem can be overcome by using high-speed hardware {e.g., the Nectar [2]) and adhering to some
conventicns, such as using coarse-grained behaviors to limit the amount of module-to-module
communication.

3.2. Behavior Layer

TCA provides several types of primitive buiiding blocks needed to construct robot behaviors. The
primitive behaviors are implemented as different classes of messages, built on top of the communication
layer. The classes differ mainly in their control flow. For exampie, query messages block the user’s code
until a reply is received, while goal and command messages are non-blocking and report success or
failure directly to the central controi.

» Query messages are requests to provide information abount the external or intemal
environment, such as obtaining a world map or determining the robot’s dead-reckoned
position.

» Goal messages are intended to support top<lown, hierarchical planning. A typical response
i0 a goal message would be to issue other (sub)goal and/or command messages based on the
results of planning. Unlike queries, goal messages are asynchronous and non-blocking. That
is, the central control may queue the goal until resources become available; in the meanwhile,
the module sending the goal message can continue. The rationale is that non-blocking goal
messages give the implementor greater flexibility in controlling the achievement of goals
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(e.g., interleaving planning and execution).
e Command messages are used to execute actions. Like goal messages, command messages

arc asynchronous and non-blocking. Distinguishing goal from command messages is done
mainly for interleaving planning and execution.

» Constraint messages provide a way to alter the robot's internal state. For example,
constraint messages can be used to add expectations about its future behaviors.

3.3. Resource Layer

It is crucial for an autonomous agent to effectively allocate its limited resources in order to satisfy its
goals. The robot must detect when tasks need competing resources, and must prioritize and schedule
tasks when conflicts occur. In TCA, a resource is an abstract entity that is used to manage the handling of
messages. A resource may be associated with a ¢omputational entity, such as a module, or with a
physical entity, such as a motor or camera,

Resources are created with a capacity - the number of messages the resource can handle
simultaneously. A message received by the central control is gueved until the resource that handles the
message has available capacity. Currently, messages to the same resource are handled in FIFO order,
subject to the temporal constraints imposed by the task management layer.!

Sometimes, a module might need control over a resource for some period of time, particularly one
associated with a physical item. For example, if a vision module is acquiring an image, it might want to
ensure that the robot does not move during that period. To facilitate this, TCA includes mechanisms for
reserving resources, in effect, preventing other modules from utilizing the resource until the reservation is
explicitly canceled. Resource reservation is one of the synchuonization constructs in TCA.

3.4. Task Management Layer

The task management layer provides mechanisms for organizing sets of messages into hierarchical task
trees (see Figure 3-1). For each goal, command, or monitor message sent by a module, TCA adds a node
to the task tree as a child of the node that issued the message. The resulting tree is an execution of graph
of messages used to complete a given task, In addition, facilities have been developed for tracing and
manipulating the task tree, such as killing off subtrees, suspending them, and adding new nodes. These
facilities will provide functionalities needed by some of the higher layers, such as the exception handling
layer (see Section 3.6) and the planned multi-task coordination layer.

Another imporntant purpose of this layer is for scheduling tasks. The layer contains a general facility for
reasoning about time. In TCA, by default planning and execution can occur concurrently. Interieaving of
planning and execution ¢an be constrained by imposing temporal constraints on the planning times of
goals and achievement times of goals, commands, and monitors. For ¢xample, a module might specify
that the achievement time of G1 precedes that of G2, but the planning time of G2 precedes that of G1
(e.g., first achieve pick up the cup, then bring it to the receptacle, but plan the route to the receptacle
before planning how 10 pick up the cup). Similarly, a module might constrain a goal to be completely
planned before any of its sub-commanxis can start being achieved.

'We plan 10 add more sophisticated scheduiing mechanisms in the futore.
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Figure 3-1: Sample task tree

The mechanisms for reasoning about temporal consiraints are based on the Quansity Lattice (13], an
arithmetic reasoning system, that integrates relationships, arithmeric expressions, qualitative and
quantitative? information to perform a wide range of common arithmetic inferences. In TCA, it is used to
maintain a consistent partial order of time points and to answer queries about relationships between time
points and about the durations of intervals,

With the temporal mechanisms provided, robot implementors can formulate a fairly wide range of
different constraints to take advantage of concurrencies in the distributed environment of TCA. Together
with resource reservation, the temporal constraints provide synchronization mechanisms to control
distributed robot systems.

3.5, Monitor Layer

To react to environmental changes, robots must first be able to monitor the environment and detect
changes in time. Although in the real world many things may go wrong at any time, robots with limited
sensory resources, such as ours, cannot afford to monitor everything that goes on in the environment. The
monitor layer provides mechanisms to monijtor user-selected aspects of the environment and report
detected changes to the central control for handling. Monitors in TCA run concurrently with normal task
execution. For example, the Hero robot attends to the cup collection goal while monitoring for obstacles
and its battery charge.

A monijtor specifies the condition to be monitnred, and the time, relative to other messages, when
monitoring is 1o take place. When the condition holds, a typical action would be to send an exception
message to the central control, which will decide what 10 do based on the environment and context in

*The quantitative reasoning capability of the Quantity Lattice is not yet uilized by TCA.
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which the exception occurred (see Section 3.6).

Two classes of monitors are implemented: point monitors and interval monitors. Point monitors, which
test the monitor's condition just once, are usefu! for checking static, execution time conditions, such as
checking the pre-condition or post-condition of a command or goal. Interval monitors, which have a
temporal extent, are useful for checking for environmental changes over time.

TCA has two variations of interval monitors: polling and demon monitors. Polling monitors implement
synchronous polling of conditions at a fixed frequency, while demon monitors implement asynchronous
demon-invocation. For instance, the battery monitor of the Hero robot, which is a polling monitor,
periodically checks the battery charger and raises an exception if a low charge is detected. The cup
appearance monitor, implemented as a demon monitor, is invoked whenever a world map is updated by
the asynchronous perception process, and checks the world map for cup-like objects, raising exceptions if
such objects are found.

Monitors can also be used to construct conditional plans. For instance, suppose there are two strategies
0 achieve goal G, but we do not know in advance which one will be applicable. We can set up a monitor
to check the environment and choose the appropriate strategy at execution time.

3.6. Exception Handling Layer>
Exceptions can be divided into three classes, according to the ways they are detecied,

» failures detected in planning (¢.g., no path 1o the cup);
e errors detected in executing commands (e.g., wheel slippage);

= contingencies detected by monitors (e.g., low battery charge).
TCA employs the same mechanisms to handle the three different types of exceptions.

Exception handling is often context-dependent: the same exception might need be handled differently,
depending on the environment and where in the plan the excepuon occurs. For example, a wheel
blockage is a failure if it is detected when the robot is navigating in an open space. But it could be a
signal of a successful docking if the robot’s goal is to dock on the charger. To facilitate contex:-
dependent exception handling, TCA supports mechanisms for associating exception handlers with
contexts at planning time and automatically invoking the handlers when exceptions are raised. Various
utilities are also provided 10 enable handlers 10 fix problematic plans.

The context of an exception handler is established by attaching the handler 10 a task tree node, This
association is done dynamically as the task tree is created. When an exception is raised, TCA searches up
the task tree, starting from the node where the exception arose, to find a handler specific to that exception.
The first matched handler is then invoked to handle the exception.

Exception handling is achieved by editing the task turee, for example, by deleting part of it and inserting
some new nodes. The exception handlers can use the task tree operations provided by the 1ask
management layer to access, scrutinize, and then modify the task tree. Modifications to task trees may
include terminating or suspending the execution of subtrees, and adding new nodes to the task tree, which

*Currently, only the framework of the exception handling layer has been implemented, and various supporting
mechanisms are still under construction.
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is then expanded using the normal TCA mechanisms. To illustrate, Figure 3-2(a) shows a situation where
a bautery charge monitor is set up and the robot is actively attending to the cup-collection goal. When the
monitor delects a low battery charge, the low bantery charge handler attached to the root node is chosen
to handle it. After checking the battery charge and the progress of the cup collection, the handler decides
to vecharge first and finally ends up with the siuation in Figure 3-2(b), where the monitor has been
canceled, the cup-collection goal has been suspended, and the recharge goal has been added and become
the current goal.

* low battary

charge handler Roat

* suapended

@ © €

{a}
Figure 3-2: Exception handling

If an exception handler finds it cannot actually handle the situation, it can raise an exception itself.
When the central control receives an exception from an exception handler, the search for a capable
handler is resumed, starting from the node where the previous handler was found and searching up the
task tree. This process is repeated until the exception is successfully handled. As a catchall, TCA
ataches a general exception handler to the root node of the task tree. ‘When invoked, this general handler
simply deletes the failed task along with all its subtasks.

This TCA approach to exception handling is efficient. First, the invocation of exception handlers is
fast, because only a2 simple search on the task tree is involved. Second, TCA allows a preblematic plan to
be fixed and re-used as much as possible. For example, when moving obstacles appear unexpectedly, the
Hero robot first waits for obstacles to move away. If they do not move away, it tries to plan a detour by
modifying the blocked path plan. If no detour is found, a new path is planned from scratch. Only if no
path is found is the task terminated,

4. The Hero Robot System

The Hero robot system, which uses TCA, presently consists of five modules plus the central control
(see Figure 4-1). In this section, we describe the functionalities of the modules and how they interact with
each aother,

Perception World
Query Map
Handler Buildex
User 1
Interface Central Concroller
Hero
Planney Rebot

Figure 4-1: Organization of the robot testbed
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Controller. This module, which controls the robot via either a radio link or an RS232 cable, executes
navigation commands (e.g., tum, move} and manipulation commands (e.g., raise arm, open grippers). It
also handles queries that involve using sensors on the robot, for example, reading the battery charge level,
and measuring the height of an object using the wrist sonar,

The Controller also keeps track of the robot's trajectory and handles trajectory queries. Because of the
control error, the uncertainty about the robot’s position will grow over time. The Controlier uiilizes a
covariance matrix representation [16] w0 model the control error, and compounds the uncertainty
whenever the robot moves or tuns.  This uncentainty information is primarily used by the Perception
Query Handler to determine the likelihood of hitting obstacles in the course of navigation.

We also implemented reflexive guarded move commands directly on-board the Hero. These give the
robot a higher degree of reactivity than could be gotten from centralized control. While the robot is
moving or tuming, the on-board CPU detects wheel slippage and blockage by monitoring the motor
encoders. At the same time, the sonar sensors are used to detect obstacles in the robot's trajectory. In
both cases, the reflex action is to stop the robot immediately, stabilizing it. Then the Controller signals a
failure 50 that the system can rectify the situation using the exception handling mechanisms.

World Map Builder. This module continually takes and processes images of the lab (every 20
seconds or s0), and updates a world map, which is then forwarded to the Perception Query Handler. We
have found that this asynchronous process has substantially increased the performance of the robot
compared with our previous system, For example, since a relatively up-to-date world map is always
available, the robot does not need 1o wait for processing an image in order to find a cup-like object or w0

plan a path.

To identify the robot in the image, the World Map Builder first gets the robot’s dead-reckoned
trajectory from the Controlier. Based on the trajectory and other information such as the size of the robot,
the robot region can often be distinguished from other object regions. Two failures, however, can be
encountered. First, the robot may not be successfully spotted, because the robot region, for example,
overlaps another visual region. This failure is handled by taking an image, moving the robot a few
inches, taking another image, and comparing the differences in the images to spot the robot. The second
failure occurs when the light in the lab is tumed off. This exception is handled by asking humans to um
on the light or going 10 sleep (i.e., turning off the power to all circuitry except the memory) if no help is
secured.

Perception Query Handler. The Perception Query Handler provides three kinds of functionality.
First, it updates the world map upon receiving a new map from the World Map Builder. Second, it
handles perception demons. When a new world map is received, perception demons are invoked to check
conditions that they monitor. Presently there are two kinds of demons that can be set up - cup appearance
monitors and object monitors (for checking if an object remains at a specified position on the floor).

The third task of this module is to handle perception gqueries, including
e calculating the vicinity of an object in order to approach it,
» checking if a path is clear, based on uncerntainty reasoning,

e reducing the uncertainty about the robot's location and orientation by using vision.
As mentioned previcusly, the Controller explicitly models the uncertainty of the robot's status. When the
robot is executing a path plan, the Perception Query Handler, given the uncerntainty information, would be
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asked to determine (1) if the path is clear, (2) if yes, how far the robot may safely proceed along the path
before the uncertainty cone overlaps object regions (see Figure 4-2). If the uncertainty has grown to the
extent that collisions with obstacles are possible, the Perception Query Handler uses vision o reduce the
uncertainty. To do this, it first takes a picture of the robot and calculates the robot status (including visual
uncertainty) based on properties of the robot’s shape and intemnal modei of sensor uncertainty. A new
robot statys is then obtained by merging the observed and expected status [16].

Figure 4-2:

Interpreted Version of the Image from Figure 2-2 with Planmed Path and Uncertainty
Cone. The brightened line shows the final computed path to a cup-like object, while the
dimmer line is the original path before optimization. The shaded area in the uncertainty
cone indicates how far the robot may safely proceed.

Planner. At present most of the navigation and manipulation planning is done in this module. The
Plammer has a collection of procedures, each of which is intended to achieve a goal. When executed to
achieve goals, the procedures typically send queries, create subgoals, issue commands, set up monitors,
specify temporal constraints, and/or associate exception handlers with contexts.

As an exampie, the procedure for handling the cup collection goal does the following:

1. Adds approach object goal. The first step is to navigate to the vicinity of the target object.
In the course of navigation, the robot models uncertainty and watches out for obstacles.

2. Sets up object monitor. This monitor watches for the disappearance of the target object.
Temporal constraints are added to indicate that the monitor starts from the beginning of the
cup collection goal and ends at the beginning of the grasp cup goal (sez below).

3. Adds servo to object goal. Once arriving near the object, the robot utilizes its wrist sonar to
estimate its distance and otientation relative to the object This information is used to
compute the locomotion commands to reduce the differences between the estimated and
desired distance and orientation. To overcome sensing and control errors, this goal is re-
generaied recursively until the differences are within acceptable limiis. This recursive
implementation makes it possible to break the time-consuming servoing loop for handling
contingencies.

4. Adds identify object goal to measure and classify the object.

5. Adds grasp cup goal. If the object is a cup, it is grasped by a procedure specific to that cup.
A point monitor, which utilizes the basc sonar, is set up for checking if the grasping
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succeeds.

6. Adds approach recepracle goal. Once picked up, the cup is brought to the receptacle.
However, temporal constraints are imposed so that the path planning can begin once the
robot arrives near the cup.

7. Sets up holding monitor. This interval monitor pericdically reads the sensors on the fingers
to make sure that the cup does not drop on the way to the receptacle.

8. Adds deposit command to drop off the cup in the recepiacle.
9. Associates appropriate exception handlerss o various task tree nodes.

User Interface. Presently the User Interface merely allows the user to enter commands, add goals, and
set up monitors. Facilities for supporting a friendly user interface are being planned.

5. Performance :
Our experience with the testbed shows that TCA is a helpful tool for building robot behaviors.
e TCA is easy 10 use and programs developed under TCA are usually easy to extend and
modify. This is partly because TCA encourages modularity of programs. For example,
normal robot behaviors, monitors, and exception handling can be developed separately.

e TCA provides a fair amount of expressive power 1o facilitate implementing complex robot
behaviors. For example, TCA makes it easy to specify and control the interleaving of
planning and execution, concurrent monitors, and exception handling.

Due to its deliberative nature, TCA cannot be used to implement low-level reflex behaviors that
demand sub-second responses to environmental changes. To minimize the interval between the time an
exception is detected and the time the exception handler gets executed, the implementors themselves must
adhere to a principle: each of the robot’s primitive actions must be designed to finish in a small time
frame. In other wonds, a time-consuming action must be repeatedly divided into smaller ones, so that
each does not take much time. The reason is that when an exception is raised, the chosen exception
handler might be blocked by other ongoing primitive actions, because of resource conflicts. If so, the
handler must wait for these actions to finish. Guaranteed reactivity is an interesting research area and we
plan to investigate it in the near future.

Roughly speaking, the robot system described above is quite successful in surviving, collecting cups,
and maintaining baitery charge. It typically takes about 3-5 minutes to collect a cup, depending on the
difficuity of individual tasks (e.g., smaller cups usually demands more time). If a cup is placed away
from the perimeter of the visual view and not occluded, the robot can locate and collect it most of the
time. Although the vision subsysiem can be easily fooled by small non-cup objects (e.g., small box.
sneaker), those objects are usually identified as non-cups by the sonar sensors when the robot approaches
the objects (but they can result in considerable wasted time).

The robot system is about twice as fast as the previous sequential version. This is mainly because the
world map is updated by an asynchronous process; this is a big win, because image processing takes
much time. Anocther speed-up results from concurrent monitors and concurrent planning and execution.

The robot system is also relatively robust compared with the previous version. This is mainly because
the concurrent monitors enable exceptions 1o be found early and the robot has a variety of strategies for
handling exceptions. It is also helped by the reflexive guarded commands and their integration into the
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TCA mechanisms.

The robot, however, is still susceptible to dangers. These dangers mainly arise from the robot's
inability in sensing. For exampie, the robot has no sensor to detect imminent arm collisions and prevents
them in advance, The vision processing is siow, so the robot might use cut-of-date information and make
wrong decisions. Although these problems can be minimized (but not overcome) by adding more sensors
and using faster hardware, that is not the purpose of this work.

6. Related Work

‘An alternative approach to building reactive and robust robots is that taken by the subsumption
architecture [4]. The main features of this approach are {1) hard-wired, layered robot behaviors, (2) no
explicit intemal model of the world, (3) no explicit representation of goals and plans, (4) no central
control, and (5) continual monitoring. Many of these characteristics are shared by some other approaches,
such as (1] and [11]. In contrast to these architectures, TCA has a centralized conirol and makes the
notion of goals explicit, allowing the robot to reason about them. These differences make TCA more
flexible in coordinating complex robot behaviors. The use of explicit plan representations enables TCA
to pre-plan for the fumre, not just figure out "what to do next". TCA advocates selective monitoring,
because sensors are often scarce resources and the use of them should be carefully scheduled. These
differences result in two architectures with very different capabilites (6). While the subsumption
architecture is good at handling low-level sensor and effector actions (e.g.. car chasing), it is not yet clear
how complex behaviors (e.g., planning, exception handling) can be coordinated in the architecture. On
the other hand, while with TCA fairly complex behaviors have been realized on the Hero mobot, it is oot
well-suited to handling low-level reflex activities. Rather than competing architectures, however, it is
reasonable to combine the strengths of both approaches, for example, by using the subsumption
architecture for reflexive control, which talks to TCA for higher-level control. In fact, our experience
with the guarded move commands {see Section 4) suggests that this might be a promising way to
impiement robust, intelligent robots.

The Procedural Reasoning System (PRS) [7] consists of four main components: a database of beliefs
about the world, a goal stack, a library of procedural plans, and an interpreter. PRS is similar to TCA in
several aspects. For example, both are concerned with combining planful, reasoned behaviors with
reactivity. The goal stack and procedural plan representation used in PRS is similar to our task tree
structure plus temporal constraints. The main difference befween the two systems is that PRS is more
concermed with reasoning and planning, while TCA mainly focuses on the execution, monitoring, and
exception handling.

The Reactive Action Package (RAP) system [5], which is very similar to PRS, is another work which
addresses reactivity and adaptive execution of plans. Like TCA, the RAP system provides various
mechanisms for supporting resource reservation, temporal constraints, monitoring, and exception
handling. The RAP system, which is a sequential system, is based on the idea of situation-driven
execution, much like the subsumption architecture. This viewpoint is different from that of TCA. While
supporting reactivity, TCA still allows the robot to pian for the future. For example, the Hero robot can
measure the potential cup, monitor its battery charge, and pre-plan the path to the receptacle concurrently.
Both systems also differ in the ways exceptions are handled. When exceptions are raised, the RAP
system examines the context at run-time to find the appropriate method for re-achieving the failed task,
while in TCA only a simple search on the task ree is needed.
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The exception handling mechanisms of TCA are similar to those in some programming languages such
as Ada [9] -- when an exception occurs, program execution is transferred to the exception handler with a
maiched name that is closest to the exception point in the context (i.e., the runtime call-stack in Ada or the
task trees in TCA). However, they differ in three aspects. First, TCA allows the exception handlers to
manipulate the task trees explicitly, while explicit manipulation of the call-stack in Ada is prohibited.
Second, popping and pushing the call-stack is always simpler than killing and adding new subtrees,
because of the temporal constraints placed on the task trees. Maintaining the desired temporal constraints
between tree nodes while modifying the task trees is a difficult problem, which we have not solved
completely, Third, task tree nodes are not killed while TCA is searching for capable handlers, so the
exception handlers can examine the failed node and its ancestors to belp in debugging [14].

7. Conclusion

We have designed and implemented TCA, a general-purpose task control architecture, for the control of
mobile robots. TCA is designed 1o be used for robots with multiple tasks, and limited computational and
physical resources, that operate in an uncertain and changing, but relatively benign, environment. The
design of TCA is based partly on experience gained from our first version of the Hero testbed. That
version, developed in an ad ho¢ manner, had several shortcomings, such as brittleness, unawareness of
environmental changes, etc. By using TCA, we have re-implemented the system in a more disciplined
way. The current robot can navigate in a changing (indoor) environment, avoid obstacles, collect cups on
the floor, and at the same time watch for failures and contingencies, recover from failures, and go
recharge when necessary.

The feamres of TCA that result in the Hero robot's success and that, we believe, will facilitate the
building of intelligent, robust robots are (1) distributed processing, (2) resources, (3) task trees and
temporal constraints, (4) concurrent monitors, and (5) context-dependent exception handling, The
distributed environment enables robot activities such as planning, sensory data processing, monitoring,
and plan execution, to be performed concurrently. The resource mechanisms enable robots to schedule
the use of their limited resources. By using the temporal mechanisms, the user can implement intelligent
robots that are able to act on an incompiete plan when not enough information is available to make a
decision, and 1o take advantage of parallelism by planning ahead when needed information is obtainable.
Concurrent monitors, which allow robots to acquire information from the environment while executing
tasks, gives robots the opportunity of reacting to environmental changes and changing their focus for
contingencies or opportunities. The exception handling mechanisms enable robots to dynamically choose
context-dependent strategies for handling contingencies, planning time failures, and execution time errors.
The mechanisms also allow robots to re-use 2 failed plan by making changes in it, or even to change their
focus completely.

Another important feature of TCA is that it facilitates modular and incremental design of compiex robot
sysiems. In TCA, planning, execution, monitoring, and exception handling are all logically and
functionally separate activiies. This enables one to build systems incrementally -- first building
behaviors that plan and execute, then adding features (usually by adding new code with few changes to
the existing programs) to take advamtage of concurrency in planning and execution, to monitor for
exceptional situations, and to handle those sitations intelligently. :

Despite these encouraging results, much more work remains © be done. In particular, we plan to
extend TCA to support various knowledge-intensive decision-making capabilities (8], such as, scheduling
various tasks based on their urgency and relative cost, choosing optimal plans based on the analysis of
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various plans’ strength, limitation, resource usages, time constraints, etc.

Although building complex, robust robot systems is still very much an art, we believe that with the use
of high-level architectures, such as TCA, we can make the process easier. Through experience with
different robot systems (the CMU planetary Rover also uses TCA), and analysis of the requirements for
different environments and robot configurations, we are converging on a set of mechanisms to support the
building of such robot systems.
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Figure 1; Ambler configuration

Ambler

A major accomplishment of 1989 was to reconfigure, design, and build the six-legged walking
machine. Using all six legs, we demonstrated body motion (lift, advance) and leg recovery
(circulation between stacks). These first steps of the Ambler are a significant project milestone.

Configuration — We reconfigured the carlier Ambier designs to have two stacks, with six
circulating legs (Figure 1). Each leg 1s a rotary-prismatic-prismatic orthogonal leg. The
configuration enables level body motion, a circulating gait, conservatively stable gaits,
high mobility, and many sampling deployment options.

Design — We detailed the relative leg link scale, duplicated components when possible, and
augmented our efforts with results from a prototype leg testing program. Also in the
design process we identified worst cases for structural loads, drivetrain loads, power, and
link speeds. We made a number of key design decisions: to use aluminum as our primary
material; to equip all axes with spur gear drives; to outfit the prismatic links with linear
bearings; to incorporate separate slipring units in each leg; to have shoulders ride not



on each other but on a central shaft; and to construct the superstructure from aluminum
instead of composites.

Fabrication — As we completed designs, we began fabrication but continued to alter them
slightly to simplify assembly. An intensive effort to put all the pieces together culminated
in a complete vehicle in December.

Electronics and Sensing — We designed and implemented a variety of electronic devices to
link computing, actuation, and the physical mechanism. We established signal paths to
provide machine status—including drive train, positions, and forces—to computing. To
reduce the number of cables required, we designed and built a high-speed multiplexor that
provides real-time data transmission of analog and digital signals. We built a tether to
carry all signals to and from the machine. The tether is 46m of protective fabric sheathing
that contains 130 shielded twisted pairs, 30 coaxial cables, and power cables. To ensure
safe operation of the machine, we implemented a three state finite state machine safety
circuit that allows manual control, computer control, and provides graceful termination
upon certain conditions.

Real-Time Controller —~ We have developed a real-time controller based on VME hardware
and the VxWorks operating system. Multiple processors synchronize input/output and
moticn control. Creonics motion control cards receive encoder feedback and amplifier
status signals, and transmit motor command and amplifier control signals. Digital boards
route signals for brake control, the safety circuit interface, and force sensor control. Up
to 64 A/D converter channels read signals from the force sensors, absolute encoders, and
inclinometers.

Mechanism Modeling — We formulated two models for the Ambler mechanism: a com-
prehensive model and a planar model. The comprehensive model incorporates non-
conservative foot-soil interactions in a full non-linear dynamic formulation. We employed
it for performance evaluations such as assessment of power consumption, potential for
tipover, and foot slippage, and continue to use it to develop body leveling control algo-
rithms. We used the second, planar model to evaluate mechanism designs and to investigate
joint driving configurations for propulsion.
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Figure 2: Single leg testbed

Integrated Walking

We implemented and tested an integrated system capable of walking with a single leg over
rugged terrain. A prototype of the Ambler leg is suspended below a carriage that slides along
rails (Figure 2). To walk, the system uses a laser scanner to find a foothold, computes an efficient
trajectory to the foothold, contacts the terrain with the foot, and applies force enough to advance
the carriage along the rails. Walking both forward and backward, the system has traversed
hundreds of meters of rugged terrain including obstacles t00 tall to step over, trenches too deep
to step in, closely spaced rocks, and sand hills. The implemented system consists of 2 number
of task-specific processes {two for planning, two for perception, one for real-time control, briefly
described below) and a central control process that directs the flow of communication between
processes. With this system we experimented with extensions to support concurrency and error
TECOVETY.



Task Control Architecture — We implemented the Task Control Architecture (TCA) and used
it to integrate the various components of the walking system. TCA provides a number
of important facilities for building and operating complex robot systems. In particular, it
provides mechanisms to support message passing between distributed processes, hierarchi-
cal planning, plan execution, monitoring the environment, and exception handling. Using
TCA the system consists of a number of task-specific processes and a central control
process that directs the flow of communication between modules.

Real-Time Controller — We implemented a real-time control system for the single leg. This
system, which runs under the VxWorks operating system, communicates via the TCA,
moves the leg and carriage and reports their positions, and handles asynchronous interrupts
generated by the Creonics motion control boards.

Perception using Elevation Maps — We implemented a perception system to build elevation
maps from sequences of range images. In addition to the elevation, the system computes
the elevation uncertainty, local slope, visibility, and foothold goodness (measure of ter-
rain flamess in a foot-size neighborhood). The system executes approximately 20 x 10f
instructions to build a 400 point map. In parallel, we developed techniques for matching
long sequences of range images and for merging them stochastically into a composite map
(Figure 3), and conducted experiments in updating satellite maps from local data.
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Figure 3: Composite elevation map

This map was built by matching 125 Erim range images acquired by the Autonomous Land Vehicle as it
traversed a 40m path (right to left), including a 30 degree left tum, at an outdoor site in Colorado. The
matching between consecutive range images was performed by first matching features to obtain an initial
estimate of the displacement, and then using that estimate to seed an iterative minimization procedure.



Planning — We developed and implemented two planning moduies: the Gait Planner and the
Leg Recovery Planner. The Gait Planner determines leg sequencing, body trajectory, and
foothold location. The Leg Recovery Planner generates trajectories that avoid obstacles and
minimize an objective function of time and energy. It plans three-dimensional trajectories
while searching a two-dimensional space, which reduces computation time substantially.

Single Leg Walking Experiments — We conducted a series of experiments and demonstra-
tions using the Single Leg Testbed. For the first stage of testing, we levelled the terrain and
did not alter it between runs. We began with a minimal set of processes, and incrementally
added processes. For the second stage of testing, we executed the same processes, and
walked over different terrains. We began with level ground, and graduated to succes-
sively more difficult terrain. Figure 4 shows an obstacle course that the integrated system
traversed more than 30 times, and the elevation map built by the perception system.

Figure 4: Obstacle course

The obstacle course consists of a small obstacle (upside down basket, lower right), a box (right) too tall
for the leg to step over, a “steeplechase™ arrangement of pylons (center) lying on the ground, two larger
obstacles (left and upper center) separated by about 1m, and a dozen or so smaller obstacles.

The perception system built this elevation map from approximately five range images acquired at different
positions. The labels indicaie metric units in the global reference frame, where 0 <X<3andd < ¥ <12,
The map resolution is 10cm.



Other Activities

Mobile Manipulator Testbed — At the Mobile Manipulator Testbed we developed and tested
advanced TCA features such as monitors, task tree management, temporal constraints,
exception handling, and resource allocation. Using these features, a Hero robot successfully
demonstrated several tasks: cup collection, retrieval of printer output, delivering objects
to workstations, recharging its battery, using on-board reflexive procedures to detect and
react to imminent collisions. We also achieved substantial progress toward a number of
other capabilities, including navigation based on sonar, leaming to approach and recognize
objects, and learning stimulus—response action rules.

Simulator — We developed a simulation system on a Titan supercomputer (Figure 5). Capa-
bilities include three-dimensional solid and kinematic models of the six-legged Ambler,
generation and display of synthetic terrain (rocks, hills, craters, etc), and acquisition of
synthetic range images of terrain.

Figure 5: Simulated Ambler on synthetic terrain



