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Abstract: In this paper, we report the anisochrony of the fluorine atoms of a CHF2 group when

linked to a pyrazole ring. The pyrazole is part of (4S,7R)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7

-methano-2H-indazole also known as (4S,7R)-campho[2,3-c]pyrazole, which has two stereogenic

centers. Gauge-Independent Atomic Orbital (GIAO)/Becke, 3-parameter, Lee-Yang-Parr (B3LYP)/6

-311++G(d,f) calculated 19F chemical shifts of the minimum energy conformations satisfactorily agree

with the experimental data. The energy differences between minima need to consider solvent effects

(continuum model) to be satisfactorily reproduced.
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1. Introduction

Anisochrony in NMR is observed when a prochiral group is linked to a molecule possessing

a stereogenic center. In these conditions, the studied nuclei became diastereotopic [1–4]. In the

majority of cases, the literature reports concern 1H-NMR and often the protons of CH2X groups (e.g.,

benzyl groups) [5,6]. The phenomenon can be observed on the methyl groups of Me2X substituents

(e.g., isopropyl groups), with both 1H- and 13C-NMR [7]. Much less common is the observation of the

anisochrony of phenyl substituents in CPh2X groups, also with 1H- and 13C-NMR [8,9].

The observation of diastereotopic signals for other nuclei have been reported less often, but,

for instance 31P [10–18] is much more common than for 15N, where only one example has been

described [19]. Other seldom-explored nuclei are 2H [20], 3H [21], 7Li [22], and 17O [23].

In the present paper, we present our results concerning the observation of 19F diastereotopic

signals. In 1957, anisochronous signals were already observed for F2BrC–C*HBrPh, before the

phenomenon was clearly understood [24]. Since then, the phenomenon has been repeatedly described,

mainly for CHF2 groups [25–27], but also for CRF2 groups [28,29] as well as CRAr2 (Ar = meta and

para substituted with F atoms) and CR(CH2F)2 [30].

None of the examples reported in the preceding paragraph concern a chiral molecule containing

an N-CHF2 substituent. There are many examples of azoles bearing a C-CHF2 substituent, mainly

in agrochemistry [31–33], the field of N-CHF2 and N-CRF2 azoles is less studied although there are

several articles dealing with the structures presented in Figure 1.
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Figure 1. N-CHF2, N-CClF2, and N-CBrF2 azoles and benzazoles.

Imidazoles 1 and benzimidazoles 2 [34–36], pyrazoles 3 [37,38], indazoles 4 and 5 [35,39],

benzotriazole 6 [34–36] were reported. Related compounds 9–12 with CXF2 substituents are described

in reference [40].

The compounds we have prepared (Scheme 1) and studied, 13 and 14, are derivatives of

(4S,7R)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methano-2H-indazole also known as (4S,7R)-campho

pyrazole, a compound we have previously investigated [41–44].

Scheme 1. Synthesis of the N-difluoromethyl derivatives 13 and 14 of (4S,7R)-campho[2,3-c]pyrazole.

SCDA: sodium chlorodifluoroacetate.

2. Results and Discussion

2.1. Chemistry

As indicated in Scheme 1, compounds 13 and 14 were prepared for the first time by direct

difluoromethylation of camphopyrazole 15 with sodium chlorodifluoroacetate (SCDA) [45], according

to the Mehta and Greaney conditions [46] or by adding a phase transfer catalyst [47], in both cases

using N,N′-dimethylformamide as solvent and K2CO3 as base. Both isomers were obtained in an 85:15

ratio (see Experimental Section). The only other paper where the N-substitution of 15 was reported

(with 1,2-dichloroethane) yielded a 50:50 mixture of both isomers [48]. The structure elucidation of

compounds 13 and 14 was based on the close correlation of the 13C chemical shifts of the pyrazole ring

with those of a reference compound [48].

2.2. NMR Spectroscopy

In both configurational isomers, the fluorine atoms are diastereotopic, and two distinct signals

were observed for each one. From the spectra (Figures 2 and 3 and data given in Supplementary

Materials), 2J(1H-19F) and 2J(19F-19F) coupling constants can be measured.
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Figure 2. 19F-NMR spectrum of 13 in CDCl3 at 300 K with signals at −89.16 ppm (ddd, 2JF = 226.6,
2JH = 60.6, 6JH = 1.4), and −91.64 (dd, 2JF = 226.6, 2JH = 59.4); the red arrows correspond to the

amplification of the left and right side of the signal at −89.16 ppm.

Figure 3. 19F-NMR spectrum of 14 in CDCl3 at 300 K with signals at −90.80 ppm (dd, 2JF = 225.5,
2JH = 61.3), and −92.05 (dd, 2JF = 225.4, 2JH = 60.7).

The 2JFF SSCC (spin-spin coupling constant) in F-C-F compounds is very sensitive to structural

aspects, especially the C atom hybridization; for sp3 carbons range between 3.5 and 340 Hz [49].
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There are no 2JFF values published for N-azolyl derivatives, and thus the values we have measured

(about 225 Hz) are the only representatives of this kind of compound.

In 1H-NMR (see experimental part and Supplementary Material), the most interesting information

concerning the CHF2 group where when the anisochrony is larger (compound 13) the two 2JHF

couplings are different and when the anisochrony is smaller (compound 14) they are identical.

Moreover, the signal of the 9-CH3 group in compound 13 shows a long-distance 6JHF coupling of

1.4 Hz (also measured in the 19F-NMR spectrum, see Figure 2); in compound 14, this coupling is not

observed due to the additional bond (it would be a 7JHF).

2.3. Computational Results

We have calculated the energy of compounds 13 and 14 as a function of the torsion angle θ about

the N-(CHF2) bond (defined as H-C-N1-N2, 30-29-7-3 or 30-29-3-7). There are two minima (0 imaginary

frequencies)—one near 0◦ and the other near 180◦ (Figure 4).

Figure 4. The four minima.

According to the calculations, the 2-substituted isomer 14 is more stable than the 1-substituted

isomer 13 by 10.8 kJ·mol–1 (both in their minima; i.e., having 0 imaginary frequencies). Note that

in camphopyrazole, tautomer 2H is more stable than tautomer 1H [41,43,44] due to the Mills–Nixon

effect [50,51]; once again, tautomerism and isomerism behave similarly.

When the energy was calculated as a function of the torsion angle θ about the N-(CHF2) bond,

in both cases, the minimum energy conformation corresponds to θ = 0◦; i.e., the H atom of the CHF2

group eclipsing the “pyridine-like” N atom of pyrazole, the so-called syn-periplanar conformation

(Figure 5). The difference between the 0◦ and the 180◦ minima are for 13 15.7 kJ·mol–1 and for 14
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11.8 kJ·mol–1, and the transition states are for 13 23.6 (θ = 104.4◦) and 26.6 kJ·mol–1 (θ = 255.8◦) and for

14 23.5 (θ = 114.9◦) and 23.1 kJ·mol–1 (θ = 242.9◦).

This conformational preference can most probably be explained by the dominance of vicinal

hyperconjugation, with electron donation from the electron-rich sigma N-N bonding orbital into both

of the very electron deficient vicinal C-F anti-bonding orbitals [52–55].

A natural bond orbital (NBO) analysis shows that the energetic difference between the

conformations minima at 0◦ and 180◦ can be explained based on the stabilization due to the sum of the

charge transfer between the lone pair of the pyridine-like nitrogen and the σ* C-H bond and between

the σ N-N and the σ* C-F bonds. This stabilization amount is 6.6 kJ·mol–1 in the minima at 0◦ of 13

and 14, while in the minima at 180◦ it is between 1.1 and 1.0 kJ·mol–1, respectively.

Figure 5. Energy profiles in kJ·mol–1 vs. the dihedral angle θ.

Gauge-Independent Atomic Orbital (GIAO) calculated parameters (absolute shieldings)

accounted for the experimental results obtained by multinuclear NMR (1H, 13C, 15N and 19F) (see

Supplementary Materials). We will focus on the 19F chemical shifts (Table 1).

Table 1. Calculated (gas phase) and experimental 19F-NMR chemical shifts (CDCl3).

Comp. θ (◦) 19F (31) 19F (32) ∆δ (31–32) 19F (a) 19F (b) ∆δ (a–b) a

Calculated Values Experimental Values

13 –3.6 –93.18 –89.73 −3.45 –91.64 –89.16 −2.48
13 –179.3 –90.07 –98.52 +8.45
14 11.1 –92.83 –88.66 –4.17 –92.05 –90.80 –1.25
14 179.3 –85.73 –97.40 +11.67

a The sign is arbitrary because the assignment of a and b is also arbitrary.

The four experimental values (−91.6, −89.2, −92.0, −90.8, ppm) are close to the calculated ones

for 13 (0◦) (−93.2, −89.7 ppm) and for 14 (0◦) (−92.8, −88.7 ppm) than for the 180◦ assignment (−98.5,

−90.1, −97.4, −85.7 ppm). Assuming the simplification that only the two minima contribute to the

experimental values, a simple interpolation of the type Exp = a × (Calc. abs minima) + (1–a) ×

(Calc. second minima) lead to 13 = 91.8% of conformer θ ≈ 0◦ and 8.2% of conformer θ ≈ 180◦, and

14 = 81.6% of conformer θ ≈ 0◦ and 18.4% of conformer θ ≈ 180◦. This corresponds at 298.15 K to −6.0

and −3.7 kJ·mol−1, respectively—lower than the calculated differences between both rotamers, but

of the same sign. To see if the inclusion of solvent effects improves the agreement, we calculated the

differences of energy between minima in CHCl3 (Polarizable continuum model, PCM) obtaining for 13

and 14, −7.6 and −5.1 kJ·mol−1, respectively—much closer to the experimental results (the TS have
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very close values: 19.8 and 19.2 kJ·mol−1); the solvent slightly modifies the geometries, see θ values in

Table 2.

We have calculated the chemical shifts in CHCl3, obtaining the values reported in Table 2.

With these values, we have calculated that the difference of energies for 13 and 14 are −4.9 and

−4.3 kJ·mol−1, respectively, comparable to those obtained for the gas phase (−6.0 and −3.7 kJ·mol−1)

to be compared with −7.6 and −5.1 kJ·mol−1.

Table 2. Calculated (CHCl3) and experimental 19F-NMR chemical shifts (CDCl3).

Comp. θ (◦) 19F (31) 19F (32) ∆δ (31–32) 19F (a) 19F (b) ∆δ (a–b) a

Calculated Values Experimental Values

13 −4.0 −94.07 −90.23 −3.84 −91.64 −89.16 −2.48
13 −179.5 −91.97 −99.34 +7.37
14 11.2 −94.21 −90.68 −3.53 −92.05 −90.80 −1.25
14 179.4 −86.35 −97.99 +11.64

a The sign is arbitrary because the assignment of a and b is also arbitrary.

We have also calculated the 13C chemical shifts of the three carbon atoms of the pyrazole ring (C3,

C3a, C7a named C4, C9, and C11 in Figure 3). The results are reported in Table 3 and correlates well

with the experimental carbon signal shifts, and aided the assignment of the pyrazole ring carbons.

Table 3. Comparison of experimental and calculated 13C chemical shifts.

Comp. 13 exp. CDCl3 13 calc. Gas 13 calc. CHCl3 14 exp. CDCl3 14 calc. Gas 14 calc. CHCl3

C3 (C4) 134.3 133.2 134.4 117.9 117.3 118.2
C3a (C9) 132.1 133.0 133.9 130.2 132.3 133.6
C7a (C11) 153.6 153.7 155.2 169.1 167.5 169.3

3. Experimental Section

3.1. Chemistry

General

All chemicals cited in the synthetic procedure are commercial compounds. Melting points were

determined by differential scanning calorimetry (DSC) with a SEIKO DSC 220 C connected to a model

SSC5200H disk station. Thermograms (sample size 0.003–0.005 g) were recorded with a scan rate of

5.0 ◦C. Column chromatography was performed on silica gel 60 (Merck KGaA, Darmstadt, Germany),

70–230 mesh), and elemental analyses using a Perkin-Elmer 240 apparatus (Madrid, Spain).

Preparation of (4S,7R)-1-(Difluoromethyl)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methano-1H-inda

zole (13) and (4S,7R)-2-(Difluoromethyl)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methano-1H -indazole (14).

Procedure A from Ref. [46]. Into a 100-mL round-bottom three-necked flask equipped with

reflux condenser and magnetic stirring, 2 equivalents of sodium chlorodifluoroacetate (SCDA) and

1.5 equivalents of the base (K2CO3) were introduced. The vacuum was established for 15 min and

then purged with argon for another 15 min (this process was repeated three times). Six milliliters of

N,N-dimethylformamide (DMF) was added slowly with stirring and under an argon stream, and then

1 equivalent of (4S,7R)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methano-2H-indazole (15) dissolved in

2 mL of DMF was added from an addition funnel over 15 min. The flask was immersed in a silicone

bath previously heated to 100 ◦C and left stirring for 8 h. To control the temperature, a thermometer

was used which was connected to the heating plate and immersed in the silicone oil bath. After the

reaction time was completed, it was cooled to room temperature and EtOAc (15 mL) and water (15 mL)

were added to the mixture. The organic fraction was washed with brine, and the aqueous fraction was

extracted with EtOAc. The organic fractions were combined, dried over anhydrous MgSO4, and the
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solvent evaporated off. The yield of the reaction crude—in which both isomers are present in a ratio

(85% of 13: 15% of 14)—is quantitative. The purification was carried out by column chromatography

using dichloromethane/hexane (1:1) as eluent. Compound 14 was eluted first.

Procedure B from Ref [47]. Into a 100-mL round-bottom flask equipped with reflux condenser

and magnetic stirring, 2 equivalents of SCDA, 3 equivalents of the base (K2CO3), 1 equivalent

of (4S,7R)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methano-2H-indazole (15), and 0.3 equivalents of

tetraethylammonium bromide (TEAB) were dissolved in 10 mL of DMF and the mixture was stirred at

100 ◦C for 3 h. The resulting mixture was poured into water and extracted with EtOAc, the organic

extract containing again an 85:15 mixture of both isomers (overall yield 90%) was treated as previously

described in procedure A.

(4S,7R)-1-(Difluoromethyl)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methano-1H-indazole (13). m.p.: 45.4 ◦C;
1H-NMR: (400.13 MHz, CDCl3) δ = 7.27 (s, H3), 7.14 (dd, 2JF = 59.5, 2JF = 60.5, CHF2), 2.81 (d, 3J = 3.8),

2.05 (cm, H5ec), 1.03 (cm, H5ax), 1.81(cm, H6ec), 1.18 (cm, H6ax), 1.37 (dd, 6JF = 1.4, CH3-9), 0.92 (s,

CH3-10), 0.77 (s, CH3-11); 13C-NMR: (100.61 MHz, CDCl3) δ = 153.6 (dd, 3JF = 1.6, C7a), 134.3 (dd,
4JF = 2.3, C3), 132.1 (C3a), 111.6 (dd, 1JF = 246.0, 1JF = 248.7, CHF2), 63.2 (C8), 53.7 (C7), 47,6 (C4), 33.0

(C6), 27.4 (C5), 20.1 (CH3-11), 19.5 (CH3-10), 11.6 (dd, 5JF = 5JF = 1.4, CH3-9); 19F NMR: (376.50 MHz,

CDCl3) δ = −89.16 (ddd, 2JF = 226.6, 2JH = 60.6, 6JH = 1.4), −91.64 (dd, 2JF = 226.6, 2JH = 59.4); 15N-NMR:

(40.54 MHz, CDCl3) δ = −177.4 (dd, 2JF = 2JF = 27.9, N1), −79.9 (N2). Anal. calcd. for C12H16F2N2: C

63.70, H 7.13, N 12.38. Found: C 63.45, H 7.45, N 12.13.

(4S,7R)-2-(Difluoromethyl)-7,8,8-trimethyl-4,5,6,7-tetrahydro-4,7-methano-1H-indazole (14). m.p.: 40.7 ◦C;
1H-NMR: (400.13 MHz, CDCl3) δ = 7.28 (s, H3), 7.11 (dd, 2JF = 2JF = 60.9, CHF2), 2.79 (d, 3J = 4.1),

2.10 (cm, H5ec), 1.22 (cm, H5ax), 1.88 (cm, H6ec), 1.35 (cm, H6ax), 1.29 (s, CH3-9), 0.97 (s, CH3-10)),

0.65 (s, CH3-11); 13C-NMR: (100.61 MHz, CDCl3) δ = 169.1 (dd, 4JF = 4JF = 2.2, C7a), 130.2 (C3a),

117.9 (C3), 111.2 (dd, 1JF = 246.4, 1JF = 246.5, CHF2), 60.4 (C8), 50.1 (C7), 46.9 (C4), 33.3 (C6), 27.2

(C5), 20.4 (CH3-11), 18.9 (CH3-10), 10.4 (CH3-9); 19F-NMR: (376.50 MHz, CDCl3) δ = −90.80 (dd,
2JF = 225.5, 2JH = 61.3), −92.05 (dd, 2JF = 225.4, 2JH = 60.7); 15N-NMR: (40.54 MHz, CDCl3) δ = −177.2

(dd, 2JF = 2JF = 24.9, N2), N1 not detected. Anal. calcd. for C12H16F2N2: C 63.70, H 7.13, N 12.38.

Found: C 63.37, H 7.48, N 11.98.

3.2. NMR

NMR spectra were recorded on a Bruker (Bruker Biospin GmbH, Rheinstetten, Germany) DRX

400 (9.4 Tesla, 400.13 MHz for 1H, 100.61 MHz for 13C and 40.54 MHz for 15N using a 5-mm

inverse-detection H-X probe equipped with a z-gradient coil, at 300 K. Chemical shifts (δ in ppm) are

given from internal solvent, CDCl3 7.26 for 1H and 77.0 for 13C and for 15N, nitromethane (0.00) was

used as external reference. Signals were characterized as s (singlet), d (doublet), and cm (complex

multiplet) and the J coupling constants are given in Hz.

Typical parameters for 1H-NMR spectra were spectral width 4800 Hz and pulse width 9.5 µs at

an attenuation level of 0 dB. Typical parameters for 13C-NMR spectra were spectral width 21 kHz,

pulse width 12.5 µs, at an attenuation level of −6 dB and relaxation delay 2 s, WALTZ-16 was used for

broadband proton decoupling; the Free Induction Decays (FIDs) were multiplied by an exponential

weighting (lb = 1 Hz) before Fourier transformation.

Inverse proton detected heteronuclear shift correlation spectra, (1H-13C) gs-HMQC, and

(1H-13C) gs-HMBC were acquired and processed using standard Bruker NMR software and in

non-phase-sensitive mode. Gradient selection was achieved through a 5% sine truncated shaped

pulse gradient of 1 ms.

Selected parameters for (1H-13C) gs-HMQC and (1H-13C) gs-HMBC spectra were spectral width

4800 Hz for 1H and 20.5 kHz for 13C, 1024 × 256 data set, number of scans two (gs-HMQC) or four

(gs-HMBC) and relaxation delay 1 s. The FIDs were processed using zero filling in the F1 domain and

a sine-bell window function in both dimensions was applied prior to Fourier transformation. In the
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gs-HMQC experiments, Globally Optimized Alternating Phase Rectangular Pulse (GARP) modulation

of 13C was used for decoupling. Selected parameters for (1H-15N) gs-HMQC, and (1H-15N) gs-HMBC

spectra were spectral width 3500 Hz for 1H and 12.5 kHz for 15N, 1024 × 256 data set, number of scans

four, relaxation delay 1 s, 37–60 ms delay for evolution of the 15N-1H long-range coupling. The FIDs

were processed using zero filling in the F1 domain and a sine-bell window function in both dimensions

was applied prior to Fourier transformation.
19F-NMR spectra were recorded on the same spectrometer (376.50 for 19F) using a 5 mm

Quattro Nucleus Probe (QNP) direct-detection probehead equipped with a z-gradient coil, at 300 K.

Chemical shifts (δ in ppm) are given from CFCl3 as external reference (one drop of CFCl3 in CDCl3
(0.00)). Typical parameters for 19F NMR spectra were spectral width of 55 kHz, pulse width of

13.75 µs at attenuation level of −6 dB and relaxation delay of 1 s. WALTZ-16 was used for broadband

proton decoupling 19F{1H}, the FIDS were multiplied by an exponential weighting (lb = 1 Hz) before

Fourier transformation.

3.3. Computational Details

Calculations were carried out at the B3LYP/6-311++G(d,p) level [56,57]. Subsequent frequency

calculations verify that the structures obtained correspond to energetic minima (imaginary frequencies = 0)

or to transition states (imaginary frequencies = 1). In the optimization process, the 0◦ and 180◦ angles

get slightly modified (Tables 1 and 2). These resulting geometries have been used for the calculation of

the absolute chemical shieldings with the GIAO method [58,59]. Solvent effects were calculated within

the PCM approximation (continuum model) [60–62]. All the calculations have been performed with the

Gaussian-09 package [63].

Equations (1)–(4) [64–66] have been used to transform absolute shieldings into chemical shifts:

δ1H = 31.0 − 0.97 × σ1H, (reference TMS, 0.00 ppm) (1)

δ13C = 175.7 − 0.963 × σ13C, (reference TMS, 0.00 ppm) (2)

δ15N = −152.0 − 0.946 × σ15N, (reference TMS, 0.00 ppm) (3)

δ19F = 162.1 − 0.959 × σ19F, (reference CFCl3, 0.00 ppm) (4)

The natural bond orbital (NBO) method [67] has been used to obtain the stabilizing charge-transfer

interactions in complexes using the NBO-6 program [68].

4. Conclusions

In summary, we have found a new and original example of diastereotopic fluorine

atoms, measured two values of 2JFF in an original environment and successfully carried out

GIAO/B3LYP/6-311++G(d,p) calculations of 19F chemical shifts that agree with the calculated energies

of the two minima of the potential energy curve when solvent was taken into account.

Supplementary Materials: Supplementary materials are available online: Tables S1–S3 and Figures S1–S14.
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