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Abstract

Quantitative proteomics now provides abundance ratios for thousands of proteins upon perturbations. These need to
be functionally interpreted and correlated to other types of quantitative genome-wide data such as the corresponding
transcriptome changes. We describe a new method, 2D annotation enrichment, which compares quantitative data
from any two ‘omics’ types in the context of categorical annotation of the proteins or genes. Suitable genome-wide
categories are membership of proteins in biochemical pathways, their annotation with gene ontology terms,
sub-cellular localization, the presence of protein domains or the membership in protein complexes. 2D annotation
enrichment detects annotation terms whose members show consistent behavior in one or both of the data
dimensions. This consistent behavior can be a correlation between the two data types, such as simultaneous up- or
down-regulation in both data dimensions, or a lack thereof, such as regulation in one dimension but no change in the
other. For the statistical formulation of the test we introduce a two-dimensional generalization of the nonparametric
two-sample test. The false discovery rate is stringently controlled by correcting for multiple hypothesis testing. We also
describe one-dimensional annotation enrichment, which can be applied to single omics data. The 1D and 2D
annotation enrichment algorithms are freely available as part of the Perseus software.

Introduction
Mass spectrometry-based proteomics can now deliver
highly accurate data on hundreds of thousands of peptide
features in a single biological project [1]. Accurate com-
parative protein quantification is feasible for thousands
of proteins with methods based on stable isotopic label-
ing [2] but also in label free approaches [3]. Coverage of
these methods has already reached complete proteome
scale for the yeast model organism [4] and other pro-
teomes of similar or lower complexity. With further
improvements in the underlying technologies compre-
hensive quantification in human cells seems also likely to
be achieved soon. Therefore one can now carry out quan-
titative expression proteomics on a similar scale as for
nucleic acids with microarrays or more recently with
deep sequencing approaches [5].
The ability to perform side-by-side large-scale quantita-

tive profiling of the proteome ,transcriptome or genome

raises the question which classes of gene products show
concordant and which show discordant behavior between
the different levels of gene expression. For instance, one
general question in proteomics is how far absolute levels
of expression changes correlate between the transcrip-
tome and the proteome. In the hypothetical case of pure
transcriptional regulation the correlation between these
two levels would be near one, and would only be limited
by the technical limitations and imperfections of the
respective quantitative profiling technologies. Indeed,
while early investigations found low or no correlation
between proteome and transcriptome [6,7], recently
much higher levels of global correlation have been
reported [8,9].
While transcriptional regulation is generally a domi-

nant aspect of the entire expression cascade, there are
many known examples of posttranscriptional regulation
like micro-RNA controlled inhibition of transcripts [10]
and directed protein degradation [11]. Therefore it would
be desirable to have a method that highlights those pro-
teins or protein classes for which a differential behavior
is observed at different levels of the gene expression
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program. A straightforward manual approach is to make
a scatter plot of protein changes versus transcript
changes and look for single ‘off-diagonal data points’ or
whole ‘off-diagonal data point clouds’. This can be very
instructive and is indeed recommended as a first step of
data analysis. However, this quickly becomes very com-
plex and in any case it is desirable to have formal statisti-
cal criteria for assigning ‘interestingness’ to protein
classes in this scatter plot. As an example one may want
to have a p-value based approach for the question
whether the points in the scatter plot that correspond to
proteins in the proteasome core complex show a signifi-
cantly different distribution from all the other proteins.
Furthermore, if that is the case we would like to have
some sort of score for the proteasome that describes the
direction in the scatter plot in which the proteasome
components tend to deviate from the overall distribution
of all proteins. This directional score will then indicate
whether the statistically significant behavior of the peo-
teasomal proteins is the same between transcriptome and
proteome or if it is ‘off-diagonal’ i.e. differing between the
transcriptome and the proteome. Finally, in case we
repeat the p-value calculation over many complexes or
other annotation terms we need to take precautions for
multiple hypothesis testing. All the issues described
above are addressed by the 2D annotation enrichment
method introduced in this manuscript. In the following
sections we describe all the details of the method, illus-
trate its principles with relevant examples and give details
on how readers can apply it to their own data.

Materials and methods
The protein intensity data used in the explanation of the
1D annotation distribution in the Results section is
taken from a label-free proteome study of mouse den-
dritic cells to a depth of 5,780 proteins [3]. In that
study, cell sub-populations were obtained by Fluorescent
Activated Cell sorting (FACS), proteins were separated
by 1D SDS PAGE and digested with trypsin.
The yeast data used in the sub-section on 2D annotation

enrichment is obtained from de Godoy et al. [4] where
haploid and diploid cells were differentially labeled with
Lys8/Lys0 SILAC [2]. The microarray data for the compar-
ison is from Galitski et al [12]. The data was filtered as
described in [4]. For the proteome versus DNA copy num-
ber example, the proteomic as well as the comparative
genomic hybridization (array CGH) data is from Geiger
et al. [13]
In all cases peptides were analyzed on a nanoflow HPLC

system connected to a hybrid LTQ-Orbitrap or Orbitrap-
Velos mass spectrometer (Thermo Fisher Scientific).
Human and mouse data were searched against Interna-
tional Protein Index [14] (IPI) protein sequences while the

yeast data was searched against the protein translations in
the Saccaromyces Genome Database [15] (SGD).

Results
We start the description of the data analysis workflow at
the point where protein abundances or protein expression
ratios have already been calculated. While all examples
show proteomics data obtained with the MaxQuant soft-
ware [16,17] in combination with the Andromeda search
engine [18], this is not a prerequisite for the application of
the 2D annotation enrichment method. In fact, the quanti-
tative proteomics data could have been produced by any
other software or search engine. Similarly, data from other
levels of expression are not limited to any particular tech-
nology or software platform. Ideally the measurements
from the different technologies are done on the same sam-
ples, but this is not strictly necessary.
When reporting quantitative data for proteins from

shotgun proteomics data, care has to be taken in the
counting of independent protein identifications. The mea-
sured peptides may in some cases not be unique and map
to several proteins, which is called the protein interference
problem [19]. Only proteins that are distinguishable based
on the measured set of quantified peptides should be
counted as individual protein identifications. All redun-
dancy on the protein level should be removed, for example
by collapsing them to protein groups. This is a particularly
important point when performing annotation enrichment
analysis. For instance, assume that there are ten isoforms
of a particular protein reported as independent protein
identifications even though the quantified peptides for all
of them are the same. If one would keep all ten isoforms
as separate identified proteins their quantitative profiles
would perfectly correlate and their annotation terms
would be highly similar. This would obviously lead to irre-
solvable difficulties in statistical tests for contingency
between the quantitative expression data and the annota-
tion terms and would likely produce false positives. Here-
after we always refer to suitable groups of proteins in the
above sense when we use the word protein. MaxQuant
automatically performs this grouping and is furthermore
integrated with subsequent bioinformatic analysis in the
freely available Perseus software [20] which implements all
algorithms described below.

Matching proteins to other high-throughput data
When using MaxQuant, if several quantitative experi-
ments are combined or replicates were made these will
all be projected onto the same protein grouping over all
‘quantitative columns’. Therefore, the proteome data will
be in a convenient matrix form already, even for very
complex experimental designs. This will not be the case
when one wants to compare the proteome data with
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transcriptome data, for instance. Several probe sets of an
Affymetrix chip measure the same gene and there may
be several genes belonging to the same protein group.
For the matching we take a protein centric view. For
each protein in the protein group we determine all probe
sets that are annotated in the chip annotation file with a
UniProt identifier. It is not trivial to decide which Uni-
Prot identifiers to use for a group of proteins that are
indistinguishable by the measured peptides. A protein
group consists of proteins from the list of protein
sequences submitted to the search engine that cannot be
quantified independently based on the set of identified
peptides. In particular, if two proteins have identical sets
of identified peptides they will be grouped together. Also
if the set of identified peptides of one protein is comple-
tely contained in the set of identified peptides of another
protein, these two proteins will be combined in a protein
group as well. Proteins within a protein group are sorted
by the number of identified peptides in descending order.
For the remaining ambiguities we use the razor peptide
or parsimony concept, which means that the peptide is
assigned according to Occam’s razor principle to the pro-
tein group that most plausibly explains its existence,
which is the one which already has the most peptide
identifications assigned to it.
The number of probe sets matched in this way to every

protein group can vary now from zero to several. If none
is matching then no comparison can be made for this pro-
tein. If one is matching, then the quantitative information
for this probe set will be used. If several probe sets match
the point-wise median of their quantitative profiles is
taken. Expression data from other microarray types can be
matched in a similar way as long as the vendor provides
UniProt or other protein identifiers for the hybridization
probes. Deep RNA sequencing data is also easily matched,
for instance in the form of RPKM values [21] produced by
a suitable software. DNA copy numbers from comparative
genomic hybridization [22] are associated with the closest
protein coding gene for each hybridization probe. All copy
numbers that have the same nearest protein coding gene
are combined by taking their median value.
Note that for the quantitative analysis of expression

data (irrespective of which kind) it is usually advisable to
take the logarithm before proceeding with further steps.
This is true for ratios as well as for abundance data. Also
here before averaging expression profiles this is advisable,
even if the median is taken. This is because also for the
median an averaging can take place between the two cen-
tral numbers in case there is an even number of values.
The need for taking logarithms becomes immediately
apparent in the case of ratios. One would expect that the
average of a two-fold up-regulation and a two-fold down-
regulation should be no regulation. This is however not

the case if the ratios are averaged (2 + 1/2)/2 = 1.25 ≠ 1.
If logarithms (e.g. to the base two) are averaged the
desired result is obtained: (log(2) + log(1/2))/2 = 0. The
base of the logarithm does not matter in principle since
it can be absorbed in an overall factor multiplied to all
the data. However it is customary to use base two for
ratio data and base two or ten for abundance data.

Protein annotations
We base the annotation of proteins on UniProt identi-
fiers [23]. Also here, as was the case for the matching of
proteins to other ‘omics’ data, one has to take care of the
selection of UniProt identifiers for a particular protein
group. Since each of the proteins in a protein group
potentially can have different annotation terms it is a
non-trivial question which terms should be reported for
the protein group as a whole and then be used in the
enrichment analysis. Selecting only the annotation of the
protein with the most peptides (which is anyway not
necessarily a unique choice) might not always be the best
decision since only a shorter or ‘activated’ version of the
protein might carry the complete annotation. On the
other hand, including the annotation of all protein group
members may pick up false positives because there may
be proteins in the group only due to a single peptide and
not because of a genuine relatedness of the protein. We
found that a good compromise is to include the annota-
tion of all proteins in the protein group that have at least
half the number of peptides of the leading protein which
has the maximal number of peptides in the group. This
choice usually avoids the two pitfalls mentioned above.
One major source of annotation is the gene ontology [24]

(GO) which carries information on biological processes,
molecular functions and sub-cellular localization. We use
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [25] as a source for pathway membership infor-
mation and we infer the protein domain content from the
Pfam database [26]. For human data the Corum database
[27] is a well curated repository of protein complexes.
Expression in tissues (as a yes/no information) can also be
included as annotation. Annotation relating to the tran-
scripts or genes can also be included. For instance miRNA
binding sites in the three-prime region of the transcript
can be treated as categorical annotation. Even knockout
phenotypes, if they exist for the particular organism, can be
treated as an annotation. Indeed any kind of information
that can be summarized in terms that can be ascribed to
proteins can serve as a source of annotation, whose enrich-
ment in the process under study can be tested.

1D annotation enrichment
The 2D annotation enrichment algorithm works equally
well for 1D data, such as any quantitative proteomics
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experiment. We first describe the principle of the 1D dis-
tribution analysis, which also serves as a preparation for
the 2D algorithm. The input is a single column of numeri-
cal values assigning one numerical value to every protein.
These values are typically protein ratios or absolute pro-
tein abundances. They could also be derived quantities,
like average fold-changes between replicate groups or
p-values or test statistic resulting from a test for significant
changes in protein expression. If the column has missing
values then the respective proteins will be ignored in
further analysis.
We wish to test for every annotation term (such as

every protein complex or pathway) whether the corre-
sponding numerical values have a preference to be sys-
tematically larger or smaller than the global distribution
of the values for all proteins. In the schematic example
displayed in Figure 1 the total distribution of all log pro-
tein abundances in the mouse dendritic proteome is
shown in blue whereas proteins belonging to the Gene
Ontology Cellular Component (GOCC) categorization
‘ribosome’ are displayed as a green histogram. To test if
the ribosomal proteins are statistically significantly
enriched at high protein abundance values, we perform a
two-sample test for difference of means, where one

group consists of all proteins that are categorized as ribo-
somal and the other group contains all remaining pro-
teins. In our example of the ribosomal proteins only
testing for enrichment at large values makes sense, but in
general enrichment of annotation terms at small values
will also be of interest. For this purpose we perform a
two-sided test which results in significance if the protein
category is significantly enriched at large or at small
values. (If desired, the respective one-sided tests can also
be performed in the software implementation.)
To be independent of the shape of the distribution we

apply a non-parametric test which in particular does not
assume a normal distribution of the numerical values.
These properties single out the two-sided (two-sample)
Wilcoxon-Mann-Whitney test as the method of choice,
which we apply to all protein categorizations in a given
set of terms.
The Wilcoxon-Mann-Whitney test assesses whether

one of two observation groups tends to have larger
values than the other. The method works entirely with
the ranking of the values and checks in our case if the
proteins of interest tend to be ranked higher (or lower)
as a group relative to the ranking of all proteins. The
test statistic is

Figure 1 Histogram of log protein intensities for all mouse proteins quantified in dendritic cells in Luber et al[3](blue). The green
histogram indicates the ribosomal proteins within this distribution. They are significantly enriched at large values. Heights of the green bars
were multiplied by five for better visibility.
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R1 − n1(n1+1)
2

Where n1 is the size of group 1 and R1 is the sum of
ranks in group 1.
Technically, the Mann-Whitney test assumes indepen-

dence of the values, which is a good approximation in
our case, in particular since every peptide is used in
only one protein group for quantification. If non-unique
peptides were used in several protein groups, the inde-
pendence assumption would not hold.
The number of terms and therefore also the number of

hypotheses tested simultaneously can be quite large. For
instance, there are 9,732 different terms among the GO
molecular functions. This makes it important to adjust
for multiple hypothesis testing. We apply the Benjamini-
Hochberg method [28] and based on experience with the
results we employ by default a false discovery rate of 2%,
however this is an adjustable parameter that can be set
by the user. For those categories that are significant we
calculate a position score indicating where the center of
the distribution of values for the protein category is
located relative to the overall distribution of values. This
score is defined as

s = 2(R1 − R2)/n

where R1 and R2 are the average ranks within the
group under consideration and its complement (all
remaining proteins in the experiment), respectively and
n is the total number of data points. It is a number
between -1 and 1. A value near 1 indicates that the pro-
tein category is strongly concentrated at the high end of
the numerical distribution while a value near -1 means
that the values are all at the low end of the distribution.
For significant terms it is not possible that s reaches
zero exactly, but especially for larger categories that
show a slight but consistent trend it is possible to have
small absolute values of s. A moderately positive value
of s for a category with many members, for instance,
indicates that there is a significant collective shift
towards larger values for this category which however is
small in absolute terms and possibly not noticeable
when looking at individual proteins. Note that the meth-
od’s calculations are entirely based on information
within the measured proteome. Often, enrichment cal-
culations in proteomics against the whole genome are
problematic. By construction these problems are com-
pletely circumvented here.
In the ribosome example of Figure 1, the p-value is

2 × 10-37 and the s-value is 0.85, indicating that riboso-
mal proteins are strongly enriched among the most
abundant proteins.
When applied to ratios of protein abundances the

method described here is similar to the quantile-based
enrichment calculations introduced by Pan et al. [29]

There the distribution of protein ratios was subdivided
into bins and then all categories were tested for being
enriched in these bins. In contrast, the 1D annotation
enrichment developed here has the advantage that it is
not necessary to define a somewhat arbitrary positioning
of bin boundaries beforehand. Instead the distribution
of values is scanned for interesting sub-categories in an
unbiased way without using thresholds.

2D annotation enrichment
For the analysis of quantitative protein expression values
together with other high throughput data we would like
to generalize the method described above to the joint
distribution of two numerical quantities. To be specific
in the further discussion we will assume that the other
high throughput data to be analyzed together with pro-
teomic data is constituted by mRNA expression levels.
One may for instance be interested in the enrichments
of annotations in the plane spanned by protein abun-
dances and mRNA abundances. Similarly one may wish
to plot protein abundance ratios (e.g. from isotopic
labeling experiments) against mRNA abundance ratios
between the same samples. Figure 2 displays an example
where protein abundance ratios between haploid and
diploid yeast cells are plotted against the corresponding
mRNA ratios. It may also be of interest to compare
p-values for significant changes from a proteomics experi-
ment with p-values from the corresponding mRNA based
measurement series on the same samples. Any quantita-
tive values that are comparable at the proteomics and
mRNA (or other -omics) level and that are derived from
the same or similar samples can be used.
Also for the two-dimensional case, we want to avoid the

normality assumption and therefore wish to use a non-
parametric testing strategy. What is needed for the gener-
alization to two numerical dimensions is a replacement of
the Wilcoxon-Mann-Whitney test that works with two-
dimensional input data. All the remaining strategy can
then be taken over from the one-dimensional case. The
concept of rank sums that is used in the definition of the
test statistic for the Wilcoxon-Mann-Whitney test at first
appears to be tied to the one-dimensional case since only
in the one-dimensional case is it possible to define an
order of the data points in a meaningful way. For points in
a two-dimensional plane, in contrast, a natural order rela-
tionship does not exist. The situation is different for para-
metric tests, like Student t-test or analysis of variance
(ANOVA) where the generalization to the multivariate
case is straightforward and known as multivariate analysis
of variance (MANOVA) (see e.g. reference [30]), which is
is a statistical test procedure for comparing multivariate
population means of several groups. To solve our problem
of non-parametric tests in higher dimensions, we make
use of the circumstance that the Wilcoxon-Mann-Whitney
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test is equivalent to the simple Student t-test performed
on the ranks [31]. This is the case because the t-test statis-
tics calculated from the ranked data is a monotone func-
tion of the rank sum expression that is used for the
Wilcoxon-Mann-Whitney test statistic. Combining the
fact that the non-parametric test is equivalent to the para-
metric test on ranks and that ANOVA has a straightfor-
ward generalization to higher dimensions, we propose to
use the MANOVA test on the ranked multivariate data,
where the data is replaced by ranks in each dimension
separately.
The test statistic for the MANOVA test for two

groups in two dimensions are given here for reference.
It is proportional to

sxxd2
y + syyd2

x − 2sxydxdy

sxxsyy − s2
xy

where

dx = x̄1 − x̄2 and dy = ȳ1 − ȳ2

are the differences of the group means between group
1 and 2 in the x and y coordinartes, respectively,

sxx =
n1∑

j=1

(x1,j − x̄1)2 +
n2∑

j=1

(x2,j − x̄2)2

syy =
n1∑

j=1

(y1,j − ȳ1)2 +
n2∑

j=1

(y2,j − ȳ2)2

sxy =
n1∑

j=1

(x1,j − x̄1)(y1,j − ȳ1)+
n2∑

j=1

(x2,j − x̄2)(y2,j − ȳ2)

are the summed squares of the deviations from the
group means for x, y and mixed coordinates,

x̄1, x̄2, ȳ1, and ȳ2

are the means of groups 1 and 2 in x and y coordi-
nates,

n1 and n2

are the sizes of groups 1 and 2 and

x̄1,j, x̄2,j, ȳ1,j, and ȳ2,j

are the ranked values for x and y dimensions, sepa-
rated into group 1 and 2.

Figure 2 Yeast protein ratios vs. mRNA ratios between the haploid and diploid populations from de Godoy et al[4]. The data points in
red belong to the Gene Ontology (GO) biological process ‘pheromone-dependent signal transduction during conjugation with cellular fusion’.
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We define the resulting MANOVA test result as the 2D
annotation enrichment p-value. The FDR of this approach
can be controlled with the Benjamini-Hochberg method
in the same way as was done for the one-dimensional case.
After determining which annotation terms show a sig-

nificantly deviating protein/mRNA level distribution, we
calculate an s-score in analogy to the one-dimensional
case. Now the score is a number pair (sx, sy), the coordi-
nate-wise difference of average ranks used in the one-
dimensional case. It is confined to the square -1 ≤ sx ≤ 1
and -1 ≤ sy ≤ 1. The point (sx, sy) = (0,0) corresponds to
annotation terms that are not distributed differently from
the overall distribution of value pairs. The significance cut-
off creates an empty region around the origin. The
remaining parts of the rectangle can be subdivided into
eight regions corresponding to correlating, non-correlating
and anti-correlating regions (see Figure 3). For instance,
the green oval in the upper right corner contains annota-
tion terms whose members tend to be up-regulated on

protein as well as mRNA levels. Similarly, the other green
oval contains terms that show correlating down-regulation
on both levels. The blue regions correspond to terms that
are only up or down in either protein or mRNA level,
while the terms in the red regions show anti-correlating
behavior between proteins and transcripts. The exact lim-
its of the regions should not be taken literally in Figure 3
which only displays the general possible behaviors of
annotation terms. The exact subdivision usually becomes
clear in real examples by visual inspection of the scatter
plot of the score for all significant terms. A generalization
to multi-dimensions of ‘omics’ data is possible and will be
included in later releases of the software.
Figure 4 shows the result obtained for the haploid-to-

diploid protein and mRNA ratios in yeast displayed in
Figure 2. All terms which are significant with a false dis-
covery rate of 0.15 are shown. Pheromone-dependent sig-
nal transduction is located in the quadrant where both
scores are positive and can be found close to the diagonal.

Figure 3 Schematic representation of the 2D annotation enrichment score. The score is a number pair inside the displayed rectangle. Significant
terms will avoid a circular region around the origin. The green regions correspond to concordant up or down regulation. The blue regions
correspond to terms that are up or down in one direction, but not in the other, while the terms in the red regions show anti-correlating behavior.
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This indicates that components of the pheromone path-
way are up-regulated in haploid cells as messages as well
as proteins, as is expected from the biology of these
cell types (diploid yeast cannot mate). As can be seen in
Figure 2, not all members of the pheromone Gene Ontol-
ogy Biological Process (GOBP) terms are up-regulated.
Nevertheless, this annotation term is picked up by the 2D
annotation enrichment at the chosen FDR. Another inter-
esting example is the GOCC term ‘cell wall’ which is
located near the line of zero mRNA score but is high-
scoring in the protein direction. The abundance increase
of cell wall proteins can be ascribed to the different sur-
face-to-volume ratios of haploid and diploid cells and their
ratios were even found to be consistent with geometrical
considerations [4]. Here we see that this is predominantly
an effect of protein abundances and that there is only a

small effect on the mRNA amounts. Another interesting
case are the mitochondrial protein complexes around a
low proteome score of -0.8 that all have very different
transcriptome scores. This indicates that the copy num-
bers of the proteins involved in these complexes are tightly
controlled to have suitable amounts for their collaborative
roles in mitochondria. Apparently, the corresponding
amounts of messages are not adjusted to each other indi-
cating that the regulation does not happen at the tran-
scriptional stage.
Another example is shown in Figure 5 where protein

levels are compared to gene copy numbers in cancer cell
lines which show a tendency towards regional copy num-
ber variations along the chromosomes. At the protein
level, ratios were measured between the breast cancer
cell line of interest and a similar ‘normal’ cell line without

Figure 4 2D annotation enrichment based on the yeast protein and mRNA ratios displayed in Figure 2. ‘Pheromone-dependent signal
transduction’ is located near the diagonal with positive values for both scores. ‘Cell wall’ has only a small mRNA score but a large protein score.
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regional copy number variations. The corresponding
copy number ratios between the same cell types were
measured using comparative genomic hybridization
(array CGH). In Figure 5 the significant annotation terms
of the 2D annotation enrichment of the matched data is
shown. In addition to the usual annotation terms the
chromosome of each gene was also included (red dots).
As can be seen all functional annotation terms such
as biochemical pathways, protein complexes and sub-
cellular localizations are extended along the proteome
direction. The only terms with a major contribution in
the genome direction are the chromosomes themselves.
If the proteome changes had been one-to-one transla-
tions of the DNA dosage changes all terms should have
been arranged along the diagonal line x = y. Obviously
this is not the case, showing that substantial secondary
regulation is involved in setting the final protein levels,
presumably adjusting concentrations to the amounts sui-
table for proper functioning of pathways and complexes.

Software implementation
The 2D enrichment analysis is integrated into the Perseus
software package which will be described elsewhere.
Perseus is freely available and can be downloaded from
www.biochem.mpg.de/mann/tools/. All necessary pre-
processing and normalization steps can be found in
the ‘Processing’ menu in Perseus. The 2D enrichment ana-
lysis is located in the main menu under ‘Processing ®
Annotation ® 2D annotation enrichment’. Figure 6 shows

the parameter panel where values for the input parameters
can be specified. The analysis can be performed on multi-
ple pairs of ‘x-axes’ and ‘y-axes’. The respective quantita-
tive columns can be specified in the fields named
‘Columns1’ and ‘Columns2’. The number of columns in
these two fields must be equal and corresponding pairs of
columns will be analyzed together, i.e. the first column in
the first field together with the first column in the second
field, the second column in the first field together with the
second column in the second field, etc. If only one 2D
annotation enrichment should be performed there will be
only one entry in each of the two fields. The parameter
‘Use for truncation’ specifies that the list of significant hits
should be terminated with a p-value threshold or that a
Benjamini-Hochberg FDR should be applied. Under
‘Threshold value’ the actual value for this truncation is
supplied, either the p-value or the FDR. In case of FDR
it is specified as a value between 0 and 1, not as a
percentage.

Discussion
While replicates within one technology are usually best
done as ‘biological’ as possible to ensure that the findings
are robust and reproducible, for cross technology com-
parisons it is more desirable to have the equivalent of a
‘technical’ replicate. For instance, the cell populations
from which the transcriptome and the proteome are
measured should be as similar as possible, ideally aliquots
from the same sample so that one is sure that one

Figure 5 2D annotation enrichment for Comparative Genomic Hybridization (CGH) ratios (vertical) vs. protein ratios (horizontal) from
Geiger et al[13]. Significant complexes, pathways and gene ontology terms are all distributed along the proteome change direction. Only the
chromosome annotations have a major contribution in the vertical direction.
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samples the same cellular state on different levels of
expression. If desired, the whole measurement including
the proteome and the transcriptome can be repeated as
‘biological’ replicates. In the majority of cases, however,
the available data has not been recorded in this optimal
way. Of course the data analysis described here can still
be applied to this situation as well.
Often enrichment analysis in proteomics is performed

by calculating a p-value corresponding to a test if a cer-
tain annotation term is enriched in a certain set of pro-
teins relative to all genes in the genome. The results of
this kind of calculations have to be taken with caution,
especially in cases where the proteome coverage is far
away from saturation or completeness since apart from
the effect under investigation they are biased by which
proteins are measurable at all by the employed mass
spectrometric technology [32]. This may lead to see-
mingly significant p-values for large protein categories
only because the measurable and abundant proteins tend
to have more annotation. Another bias can come from
which proteins are expressed at all in the proteome

under study. We completely avoid this problem by basing
the enrichment calculations always on the protein popu-
lation that has been observed in the measurement.
Another issue of interest is the potential application of

corrections when multiple related terms are used for sta-
tistical comparisons. For example, terms in GO are
mutually dependent. In principle correction methods like
this can be applied to 1D and 2D annotation enrichment
as well and we might do so in the future. Note, however
that by not taking the hierarchy and relatedness of terms
into account the significant findings reported after multi-
ple hypothesis correction are on the conservative side,
since the number of effectively independent tests is lower
than the total number of terms which is used in the mul-
tiple testing correction. Therefore there is no danger of
over-reporting. On the contrary, at fixed FDR one might
miss a few significant terms which one would have
obtained with a method taking the relatedness into
account.
Many other tools for enrichment analysis already exist.

In Hauang et al. [33] the authors categorize existing

Figure 6 Parameter window of the 2D annotation enrichment in the Perseus software.
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tools into three classes: singular enrichment analysis
(SEA), gene set enrichment analysis (GSEA) and modu-
lar enrichment analysis (MEA). In this kind of classifica-
tion our 1D annotation enrichment belongs to the
GSEA class, because it is a ‘no-cutoff’ method. This
means that it is not necessary to define a set of regu-
lated proteins beforehand, thereby reducing arbitrary
factors in such a protein selection step. In contrast, 2D
annotation enrichment method is inherently novel since
it is the first enrichment method dealing with two
‘omics’ dimensions simultaneously.
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