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Abstract— We propose a Deep Convolutional Neural Network
(CNN) architecture for computing a Compensatory Reserve
Metric (CRM) for trauma victims suffering from hypovolemia
(decreased circulating blood volume). The CRM is a single
health indicator value that ranges from 100% for healthy
individuals, down to 0% at hemodynamic decompensation –
when the body can no longer compensate for blood loss. The
CNN is trained on 20 second blood pressure waveform segments
obtained from a finger-cuff monitor of 194 subjects. The
model accurately predicts CRM when tested on data from 22
additional human subjects obtained from Lower Body Negative
Pressure (LBNP) emulation of hemorrhage, attaining a mean
squared error (MSE) of 0.0238 over the full range of values,
including those from subjects with both low and high tolerance
to central hypovolemia.

I. INTRODUCTION

Hemorrhage is the leading cause of death from trauma

[1]. Early intervention to prevent hemodynamic collapse is

complicated by physiologic mechanisms that compensate for

blood loss, maintaining, or nearly maintaining standard vital

signs such as systolic blood pressure despite ongoing blood

loss. New metrics of health status for trauma victims are

required to enable timely and effective treatment, particularly

when medical resources are limited and patients triage must

be prioritized.

To study hemodynamic compensation, a human model of

hemorrhage was developed using a technology called Lower

Body Negative Pressure (LBNP), in which the lower half

of a healthy test subject’s body is placed into a pressure

chamber and subjected to negative atmospheric pressure [2].

Blood is drawn to the lower extremities, reducing central

blood volume and emulating hemorrhage. When negative

pressure is released, the subject quickly recovers. LBNP

studies of hypovolemia have led to the development of the

concept of Compensatory Reserve [3] describing the body’s

ability to compensate for blood loss. Compensatory Reserve

is reported as 100% reserve for healthy individuals, down to

0% reserve at the point of hemodynamic decompensation.

In this paper we present the development of a computa-

tional model for estimating a Compensatory Reserve Metric

(CRM) from blood pressure waveforms based on Deep

Convolutional Neural Networks (CNNs). Unlike techniques

that require significant feature engineering, painstakingly

extracting dozens [4] or hundreds or even thousands [5] of
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biological or statistical parameters from waveforms , deep

CNNs automatically learn the relevant features from the

waveforms themselves. While CNNs have been amazingly

successful in recent years at image analysis [6], they are

notorious for having a voracious appetite for training data.

It is worth noting that this technique develops an effective

CRM model from a dataset of only 222 human subjects.

II. METHOD

A. LBNP Experimental Data

The LBNP dataset was provided by the U.S. Army In-

stitute of Surgical Research (USAISR) under a protocol

approved by the Institutional Review Boards (IRBs) of both

the USAISR and the Mayo Clinic. The dataset included

physiologic recordings of 16 different signals from 222

subjects undergoing the LBNP protocol. Data for all sub-

jects included continuous measurements of heart rate (HR)

obtained from a standard lead-II electrocardiogram (ECG),

peripheral capillary oxygen saturation (SpO2) obtained using

a Near Infrared Spectroscopy (NIRS) system, capnogram

(or end tidal CO2), the applied negative pressure in mmHg,

and beat-to-beat systolic (SBP) and diastolic (DBP) blood

pressures, measured noninvasively using an infrared fin-

ger photoplethysmograph (PPG; Finometer R© Bood Pressure

Monitor, TNO-TPD Biomedical Instrumentation, Amster-

dam, The Netherlands). The Finometer R© blood pressure cuff

was placed on the middle finger of the left hand, which was

laid at heart level and calibrated with a standard manual

brachial blood pressure cuff. Recordings ranged from 9 to

60 minutes in duration with data acquired at 500 samples

per second.

The experimental protocol applied progressively stepwise

LBNP while subjects were in a supine position. LBNP

experiments began with five minutes of baseline recording,

without application of LBNP (i.e., 0 mmHg), followed by

five minute periods with chamber pressures set at −15, −30,

−45, and −60 mmHg, with additional decreases of −10

mmHg every five minutes until the onset of hemodynamic

decompensation. In accordance with the IRB, the maximum

level of LBNP exposure wast 5 minutes at −100 mmHg.

No subject completed five minutes at −100 mmHg (i.e., all

subjects reached hemodynamic decompensation). For each

subject, the end point of the experiment was defined at the

point of decompensation, i.e., identified as systolic arterial

pressure (SAP) < 80 mmHg (class III shock) concurrent

with reporting of symptoms such as bradycardia, gray-out

(loss of color vision), tunnel vision, sweating, nausea, or
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dizziness. Upon reaching this endpoint, the chamber vacuum

was immediately released to ambient pressure, returning

the subject to their baseline physiological status by rapidly

restoring the central circulatiing blood volume.

The top panel of Figure 1 shows the applied LBNP and

continuous systolic blood pressure recordings obtained from

the Finometer R© over the duration of the experiment for one

subject. The inclusion of SBP highlights the need for the

development of this algorithm. Shock is usually described

clinically by severe hypotension, or SBP < 90 mmHg [7],

though using this metric and similar standard vital signs

can be misleading to the process of diagnosis. The figure

shows that SBP remains within normal clinical values over

the course of progressive central hypovolemia because it is

tightly regulated by various compensatory mechanisms. It

is therefore obvious that if the progression of hypovolemia

is not arrested, the reserve to compensate is depleted and

decompensation occurs. At decompensation, the SBP plum-

mets, signaling the exhaustion of compensatory feedback

mechanisms. It is clear from the recording in Figure 1 that

tracking a signal that represents the underlying compensatory

response provided by the CRM algorithm developed in this

paper, a signal that changes immediately at the onset of

blood loss, will avoid delays in recognition of the impending

“crash” of SBP.

We selected 216 subjects with complete Finometer R©

waveform recordings for this model development. Although

no demographic information was available, we know from

the LBNP experimental results that the subjects were a

mixture of high tolerance and low tolerance individuals

[8], [2], where low tolerant individuals fail to complete

the LBNP protocol through -60 mmHg and high tolerant

indidividuals do complete this step. The machine learning

algorithm developed in the following sections automatically

accounts for high and low tolerance by predicting CRM as

a percentage of the subject’s individual tolerance.

B. Machine Learning Framework

We created a software framework for managing experi-

mental data and running machine learning experiments. The

216 subjects were divided into training and test sets of 194

and 22, respectively. Defining training and test in terms of

individual subjects is necessary, as we have observed over

fitting (high variance) in cases where validation waveforms

were selected from the pool of all subjects. Machine learning

regression algorithms were trained to estimate CRM, in the

range of 100% at baseline down to 0% at decompensation,

from blood pressure waveform samples.

Supervised training of a regression algorithm to estimate

CRM requires a training target, which must be calculated

from the experimental data. Compensatory reserve cannot be

directly measured, but we can define CRM training targets

from the experimental data, defining the subject’s CRM as

100% during the first five minutes of baseline recordings

(i.e., LBNP of 0 mmHg) and defining CRM as 0% at the

point of decompensation. This percentage represents the

abstract concept of an individual subject’s remaining capacity

Fig. 1. Linear and Step Training Target Calculations for Subject A157

to compensate, or the capacity to protect against central

hypovolemia, such that the reserve to compensate can be

defined as the difference between the maximal response and

the baseline state [9]. This exploits a key feature of this

experimental dataset, in which all subjects were taken to

the point of decompensation, discovering their individual

tolerance to LBNP. With the endpoints defined, we can

properly label each point in time with a target CRM for

supervised machine learning. We can model decreasing CRM

either as a linear function over the duration of the LBNP

experiment, or as a series of steps corresponding to the

applied LBNP. As an example, linear and stepped training

targets for subject A157 are plotted in the bottom panel of

Figure 1, along with the corresponding applied LBNP and

SBP in the top panel. The point of decompensation at 28.9

minutes was derived from the release of LBNP. Note that the

model is trained only on data before decompensation, as the

target CRM is not known during recovery.

Once the endpoint and training targets were defined,

the recorded Finometer R© waveforms were truncated to the

experiment length and divided into equal segments. Segments

lengths of 20 seconds captured several heart beats and

respiration cycles. Each waveform segment was associated

with a step-wise CRM training target, as well as the subject

identifier and a binary flag marking the point of decompen-

sation. The last two were required for post-training analysis

to compute area under the receiver operating characteristic

curve using the Generalized Estimating Equation approach

(GEE) [10].

The resulting training data included 30,075 training sam-

ple waveforms and 3,290 testing samples, based on the

194 and 22 subjects in the respective training and test sets.

As each waveform sample is a one-dimensional time series

data structure, 1-D Convolutional Neural Networks (CNNs)

were trained using 90% of the training data, reserving 10%
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for validation, which drove architecture selection. The loss

function was mean squared error (MSE) comparing the

predicted CRM to the training target for each waveform

segment. Once a “good” architecture was found, it was re-

trained on the entire training set and its fitness was evaluated

with the reserved test data.

C. CNN Architecture Selection

Convolutional Neural Networks were trained and tested

using Python and Keras, with the Tensorflow back end.

The Keras library enabled relatively simple demonstrations

of modestly complex CNN models that performed well for

predicting CRM from LBNP blood pressure waveforms. A

number of hand crafted models were evaluated, with varying

numbers of convolutional layers, max pooling and dropout

layers, with varying success.

However, the best architectures for 1-D CNN analysis of

biologic waveforms are not obvious. In order to explore a

number of possible architectures, we employed the hyperopt

package [11] to find good values for the number of layers,

numbers of filters, kernel sizes, and other parameters. Hyper-

opt is a Python library for optimizing over awkward search

spaces with real-valued, discrete, and conditional dimen-

sions. We chose Tree of Parzen Estimators (TPE) to explore a

high dimensional parameter space, where discrete parameters

could be random choice or random integer, and real-valued

parameters could be derived from uniform or log, normal,

or log-normal distributions. The layers and characteristics of

the CNN were defined in terms of a hyperspace of these

parameters, employing the layer stack shown in Figure 2.

First Convolution Layer

Conv/Pool Layer 1

Conv/Pool Layer 2

Conv/Pool Layer 3

Fully Connected (FC) Layer

Second FC Layer

Linear Layer

Conv/Pool Layer n

Input Waveform

Fig. 2. Parameterized Layer Structure of Convolutional Neural Network

The first convolutional layer was defined separately from

the other layers, as it must adapt to specific characteristics of

the waveform data, and may have different kernel size and

stride from the rest of the model. The bulk of the network

is a block of convolutional/pooling layers, with the same

kernel size and stride, and an increasing number of filters

for each layer. Within this group, the convolution layer is

followed by optional batch normalization [12], an optional

residual layer [13], then parameterized pooling and dropout.

The convolution layer group was followed by one or two

fully connected layers and a final linear unit to compute

CRM. Global model parameters included learning rate, L2

regularization factor, batch size, choice of optimizer, dropout

probability, pooling type, and activation function.

Approximately one thousand candidate architectures were

trained for 100 epochs and evaluated using mongodb for

parallel execution on a Cray Urika GX supercomputer. It

was clear from evaluating the results that several parameters

should be fixed, and not subject to further optimization.

For example, the swarm plot in Figure 3 has one point

per trial, , grouped by pooling type, and shows that the

optimizer developed a preference for max pooling over

average pooling. This preference was validated by examining

the training loss scores grouped by pooling type. It was

also determined that batch normalization should always be

included, the ‘Nadam’ optimizer should be used, and the

activation function should always be the Rectified Linear

Unit (relu).
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Fig. 3. Pooling type chosen by hyperopt over 1,000 trials, indicating a
strong preference for “max” pooling

The hyper parameter search space was modified according

to the results of the first thousand trials, and an additional two

thousand candidate architectures were evaluated. From those

evaluations, the 120 architectures with the best validation

scores were analyzed to select the best overall hyperparame-

ters. From that analysis, we derived a CNN architecture from

parameters in Table I

TABLE I

HYPER PARAMETER VALUES FOR CRM CNN

Parameter Value

First Conv Layer Filters 12

First Conv Layer Kernel Size 6

First Conv Layer Pool Size 4

Number of Conv/Pool Layers 7

Conv Filters Start 6

Conv Filters Multiplier 1.50

Conv Kernel Size 12

Conv Pool Size 3

Residual Layers None

FC Layer 1 Units 565

FC Layer 2 Units 517

L2 Weight Regularization 0.00037

Learning Rate 0.000135

Batch Size 100
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III. RESULTS

The resulting Convolutional Neural Network was recon-

structed using Python and the Keras library. The model was

re-trained on the entire training set of 194 subjects and

30,075 waveform samples for 200 epochs to produce a CRM

model with MSE of 0.0236 and R
2 score of 0.8670. The

CRM model was run on the test data of 22 subjects and

3,290 waveform samples to produce CRM scores for those

LBNP experiments. The predictions were compared to the

target CRM scores for the test subjects, yielding an overall

MSE of 0.0238 and R
2 score of 0.8903. Predicted CRM

and the stepped target CRM are plotted in Figure 4 for

two test subjects; one high tolerance and one low tolerance.

In this example, the low tolerance individual is distinctly

different in his/her time to decompensation, compared to

the high tolerage individual (25 vs 70 minutes, respectively).

The CRM closely matches the stepped target, as would be

expected from the low error score. Computed CRM for the

high tolerance subject (A042) shows several spikes, both

positive and negative, shortly after changes in LBNP. We

found that these anomalies in the CRM were not caused by

algorithm instability, but were in fact related to anomalies

in the blood pressure waveform recordings, such as the one

shown in Figure 5, during the baseline recording phase of

the LBNP experiment. It is not clear from the waveform

data if this anomaly is a true reflection of the subject’s

physiology, or if it was an artifact of the instrumentation and

data collection, but it is clear that the algorithm can detect

sudden changes in the blood pressure waveforms, whatever

the cause.

Fig. 4. Computed CRM compared to Stepped Training Target for One
High Tolerance Subject (A042 - top panel) and One Low Tolerance Subject
(A243 - bottom panel)

We applied the Generalized Estimating Equation method

(GEE) to produce a Receiver Operating Characteristic (ROC)

area under the curve (AUC) for the point of decompensation

of 0.8910, as shown in Figure 6. This ROCAUC produced

by the 1D CNN of the present study compares favorably

with ROCAUCs generated from a previous machine-learning

Fig. 5. Anomaly in Finometer R© Blood Pressure Waveform for Subject
A042 at 72 Seconds

algorithm of 0.90 for predictions of decompensation in an ex-

perimental human model of progressive central hypovolemia

[14], [15], 0.79-0.83 for bleeding trauma patients [16], [17],

[18], and 0.81-0.90 in humans with controlled blood loss

[19], [20], [21]. This metric focuses only the CRM algorithm

performance at the single point of decompensation, while

the mean squared error (MSE) computed over the entire

experiment is indicative of algorithm performance during a

progressive hypovolemic episode.

Fig. 6. Receiver Operating Characteristic (ROC) Curve for CRM Prediction
of Decompensation Event. Area Under the Curve (AUC) = 0.8910

IV. CONCLUSIONS

A CNN model has been developed to compute Com-

pensatory Reserve Metric in real time from blood pres-

sure waveforms collected via Finometer R© finger cuff. The

CNN architecture was defined by parameters derived from

thousands of candidate model trials. Performance of the

model is robust compared to other techniques, and did not

require extensive feature engineering. Further, this algorithm
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is accurate for distinguishing subjects with low tolerance

from subjects with high tolerance to central hypovolemia.

Future efforts will focus on demonstrating this model’s

accuracy, sensitivity and specificity on new data collected

under different human experimental protocols as well as

patients with a variety of conditions that will allow for

“teaching” the algorithm to be diagnostic. We also will

evaluate techniques for optimizing the algorithms to enable

deployment in laboratory and clinical settings, as well as

portable devices for field applications.
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