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Abstract: We recently described a unique plasma metabolite profile in subjects with pediatric acute-
onset neuropsychiatric syndrome (PANS), suggesting pathogenic models involving specific patterns
of neurotransmission, neuroinflammation, and oxidative stress. Here, we extend the analysis to a
group of patients with autism spectrum disorder (ASD), as a consensus has recently emerged around
its immune-mediated pathophysiology with a widespread involvement of brain networks. This
observational case-control study enrolled patients referred for PANS and ASD from June 2019 to May
2020, as well as neurotypical age and gender-matched control subjects. Thirty-four PANS outpatients,
fifteen ASD outpatients, and twenty-five neurotypical subjects underwent physical and neuropsy-
chiatric evaluations, alongside serum metabolomic analysis with 1H-NMR. In supervised models,
the metabolomic profile of ASD was significantly different from controls (p = 0.0001), with skewed
concentrations of asparagine, aspartate, betaine, glycine, lactate, glucose, and pyruvate. Metabolomic
separation was also observed between PANS and ASD subjects (p = 0.02), with differences in the
concentrations of arginine, aspartate, betaine, choline, creatine phosphate, glycine, pyruvate, and
tryptophan. We confirmed a unique serum metabolomic profile of PANS compared with both ASD
and neurotypical subjects, distinguishing PANS as a pathophysiological entity per se. Tryptophan
and glycine appear as neuroinflammatory fingerprints of PANS and ASD, respectively. In particular, a
reduction in glycine would primarily affect NMDA-R excitatory tone, overall impairing downstream
glutamatergic, dopaminergic, and GABAergic transmissions. Nonetheless, we found metabolomic
similarities between PANS and ASD that suggest a putative role of N-methyl-D-aspartate receptor
(NMDA-R) dysfunction in both disorders. Metabolomics-based approaches could contribute to the
identification of novel ASD and PANS biomarkers.

Keywords: autism spectrum disorder; pediatric acute-onset neuropsychiatric syndrome; metabolomics;
biomarkers’ evaluation; pathways analysis
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1. Introduction

Pediatric acute-onset neuropsychiatric syndrome (PANS) is a heterogeneous disorder
characterized by the acute onset of obsessive-compulsive disorder and/or severe eating
restriction, with at least two concomitant cognitive, behavioral, affective, or somatic symp-
toms (e.g., anxiety, irritability/depression [1,2], sensorimotor abnormalities, and enuresis).
PANS onset is thought to be triggered by post-infectious immune mechanisms [3–7] in-
volving the release of neuroinflammatory mediators within the central nervous system
(CNS) [2,8]. Currently, PANS remains a controversial entity because of its heterogeneous
presentation, complex constellation of psychiatric and/or somatic and motor symptoms,
and its intrinsic autoimmune/inflammatory nature [9].

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with shared
genetic and environmental influences. Although several pieces of the aetiological puzzle
of ASD are still missing, a consensus has recently emerged around its immune-mediated
pathophysiology with a widespread involvement of brain networks [10,11].

On the other hand, genetic risk factors, leading to dysregulation of immune pathways,
could play a role in PANS. A very recent paper [12] identified ultra-rare variants in 11 genes,
separable into two broad functional categories regulating both the peripheral immune
responses and the brain microglia (PPM1D, CHK2, NLRC4, RAG1, and PLCG2) and
the synaptogenesis (SHANK3, SYNGAP1, GRIN2A, GABRG2, CACNA1B, and SGCE).
These last genes are involved in the pathogenesis of neurodevelopmental disorders and,
in particular, of ASD [13], suggesting a multifactorial and probabilistic role of genetic
and environmental factors (different kinds of stressors such as infections) in both PANS
and ASD.

Several commonalities between ASD and PANS stem from overlapping clinical and
immunological features, which result in a more challenging diagnostic path. Therefore,
specific biomarkers are desirable to support clinicians in the diagnostic process.

In this scenario, metabolomics could offer the opportunity to screen new biomolecules
as potential biomarkers as it allows the quantification of an array of metabolites through
two sensitive and specific methodologies: nuclear magnetic resonance (NMR) [14] and
mass spectrometry (MS) [15]. Attempts to identify metabolomic biomarkers in several
distinct brain disorders have revealed intriguing results [14–18].

As for ASD, serum and urine metabolomics have identified biomarkers attributable to
gut dysmicrobism, amino acid metabolism, and mitochondrial dysfunction [19,20] while,
regarding PANS and metabolomics, this field appears to not be sufficiently explored, with
little reported evidence [21,22].

With increasing consideration given to immune-mediated hypotheses of neurodevel-
opmental disorders such as ASD [22], we aimed to compare the serum metabolic profile of
patients affected by PANS and ASD to find specific fingerprints that could be useful in the
classification of the patients and to explore pathophysiological mechanisms still unclear for
both disorders.

2. Materials and Methods
2.1. Study Design

We collected serum samples of patients affected by PANS and ASD and healthy
subjects. Firstly, we compared the hydrophilic metabolic profile (including amino acids,
sugars, biogenic amines, fatty acids, and organic acids) of the ASD patients to the control
class to evidence a specific pathological pattern with respect to a normal condition. Then,
we compared the ASD and PANS metabolic profiles to find common and specific features
that could be useful in the correct classification of the patients and to explore the specific
pathophysiological aspects of the two conditions. We also planned to evaluate a possible
linear correlation between the metabolic profile and psychodiagnostic scales.
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2.2. Participants and Ethical Aspects

The study was conducted in accordance with the Declaration of Helsinki [23] and
was approved by the Cagliari University Hospital Ethics Committee. Informed consent
for study participation and data publication was obtained from patients’ parents or legal
guardians. Patients and controls were enrolled from June 2019 to May 2020 at the outpatient
service of the Child and Adolescent Neuropsychiatric Unit, “G. Brotzu” Hospital Trust,
Cagliari.

Diagnosis of PANS was confirmed by two child psychiatrists based on NIMH 2010
criteria [2]. Patients with ASD were diagnosed according to DSM-5 criteria and subject to
the Autism Diagnostic Observation Schedule-Second Edition (ADOS-2). The control group
(HC) included 25 neurotypical children living in the same geographic area and matched for
age and gender.

Extensive physical, neurological, and psychiatric examinations were performed, as
well as laboratory tests including a complete blood count, renal and liver function testing,
mineral panel, thyroid indices, and inflammation markers to exclude metabolic or systemic
diseases.

The exclusion criteria were as follows: (I) autoimmune diseases or cancer; (II) other
medical or neurological/psychiatric diseases; (III) active treatment with steroids or non-
steroidal anti-inflammatory drugs; and (IV) a lack of written informed consent from parents
or legal guardian or withdrawn consent from patients themselves.

2.3. Psychiatric Evaluation

All patients enrolled were studied by a large panel of standardized scales and question-
naires to assess symptoms and clinical severity: the Pediatric Anxiety Rating Scale (PARS),
Pediatric Acute Neuropsychiatric Symptom Scale (PANSS), Children’s Yale-Brown Obses-
sive Compulsive Scale (CYBOCS), Yale Global Tic Severity Scale Score (YGTSS), Children’s
Global Assessment Scale (C-GAS), Universidade Federal de Minas Gerais Sydenham’s
Chorea Rating Scale (USCRS), and Full Scale Intelligence Quotient (FSIQ) assessed by
Wechsler Intelligence Scale for Children (4th Edition) (WISC-IV). The results are reported
in the Supplementary Materials.

2.4. Sample Preparation and Data Analysis

Blood samples (10 mL by venipuncture) were collected after an overnight fast (12 h)
and centrifuged at 2500× g for 10 min at 4 ◦C. Sera, stored at −80 ◦C until analysis, were
analysed as described in our previous study (Murgia et al., 2021) [18]. Details are reported
in the Supplementary Materials.

3. Results

Among 119 consecutive outpatients referred for PANS (n = 52) and ASD (n = 67), 70
were excluded (mostly for active treatment with psychiatric or anti-inflammatory drugs).
Therefore, 34 PANS and 15 ASD outpatients were recruited. Demographic details are
reported in Table 1. More in detail, the number of subjects for each class, the percentage
of females and males, and data about their age (mean, standard deviation, and range) are
reported.

Table 1. Demographic data of the enrolled patients.

Classes n Female/Male
Age

Mean Value SD Range

PANS 34 10/24 9.1 2.90 5–16
ASD 15 0/15 9 4.28 3–17

Controls 25 9/16 12 2.17 8–17
PANS = pediatric acute-onset neuropsychiatric syndrome; ASD = autism spectrum disorder; SD = standard
deviation.
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The 1H-NMR analysis allowed the identification of 44 hydrophilic metabolites, includ-
ing amino acids, fatty acids, sugars, and biogenic amines.

Initially, principal component analysis (PCA) was performed using the whole bins
dataset (ASD, PANS, and controls sample). Hotelling’s T2 test identified one strong PANS
outlier, which was ruled out (Figure S1). Subsequently, supervised models (PLS-DA and
OPLS-DA) were performed to compare firstly ASD with HC and then PANS with ASD
classes (Figure 1). Separation of the samples consistent with clinical diagnoses was observed
and the models were validated with the respective permutation test (Table 2).
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Figure 1. Supervised models of the analysed classes. (A,B) ASD (blu circles) vs. control subjects (grey
circles) with the respective volcano plot. (C,D) PANS (red circles) vs. ASD (blue circles) patients
with the respective volcano plot. ASD = autism spectrum disorder; PANS = pediatric acute-onset
neuropsychiatric syndrome.

Table 2. Statistical parameters of the multivariate models and the respective permutation test.

Models

Models R2X R2Y Q2 p-Value Permutation Test:
Intercept R2\Q2

ASD vs. Controls 0.49 0.61 0.49 0.0001 0.29/−0.22
ASD vs. PANS 0.41 0.51 0.25 0.02 0.32/−0.18

ASD = autism spectrum disorder; PANS = pediatric acute-onset neuropsychiatric syndrome; R2X, R2Y, Q2 = the
variance and the predictive ability established to evaluate the strength of the models; p-value = probability value.

As the ASD group was composed entirely of male subjects, a novel comparison was
conducted by excluding females from HC and PANS groups to test for gender-driven
biases, although separation resulted from identical variables (Figure S2).

The most relevant variables were identified for each model through the volcano plot
analysis and the corresponding VIP-value. Variables with VIP > 1 were identified and
subject to univariate analysis with Mann–Whitney U-test.

With a cut-off of p < 0.05, asparagine, aspartate, betaine, glycine, lactate, glucose, and
pyruvate showed the greatest differences between ASD and HC, while arginine, aspartate,
betaine, choline, creatine phosphate, glycine, pyruvate, and tryptophan exhibited the
largest differences between PANS and ASD groups (Figure 2).
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Subsequently, these metabolites were selected for receiver operating characteristic
(ROC) curve analysis (Table 3).
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Table 3. Statistical parameters of the univariate analysis from the comparisons between PANS and
ASD patients and ASD and controls. Mann–Whitney U-test and ROC curves were performed.

Serum Samples

Metabolites ASD p-Value p-Value
Corrected

ROC-CURVE
AUC Std.

Error CI p-Value

ASD vs. Controls

Asparagine − 0.006 0.06 0.77 0.07 0.6–0.9 0.007
Aspartate + 0.0008 0.1 0.82 0.07 0.7–0.9 0.001

Betaine + 0.02 0.06 0.71 0.08 0.5–0.9 0.02
Glucose − 0.03 0.01 0.66 0.08 0.5–0.8 0.09
Glycine − <0.0001 0.1 0.96 0.02 0.9–1 <0.0001
Lactate + 0.02 0.03 0.72 0.08 0.5–0.8 0.02

Pyruvate − 0.04 0.1 0.70 0.08 0.5–0.9 0.04

ASD vs. PANS

Arginine + 0.0003 0.004 0.82 0.06 0.7–0.94 0.0005
Aspartate + 0.002 0.02 0.82 0.06 0.7–0.95 0.001

Betaine + 0.001 0.005 0.71 0.08 0.54–0.88 0.01
Choline + 0.006 0.01 0.76 0.07 0.61–0.90 0.007

Creatine Phosphate − 0.01 0.74 0.07 0.59–0.88 0.01
Glycine − <0.0001 0.005 0.85 0.05 0.74–0.96 0.0001

Pyruvate − 0.002 0.70 0.08 0.52–0.87 0.04
Tryptophan + 0.01 0.02 0.73 0.08 0.56–0.9 0.021

ASD = autism spectrum disorder; PANS = pediatric acute-onset neuropsychiatric syndrome; p-value = probability
value; ROC-CURVE = receiver operating characteristic curve; AUC = area under the ROC-CURVE; Std. er-
ror = standard error; CI = confidence interval.

MetaboAnalyst was used to characterize both altered pathways and enrichment analyses
in each group. When comparing ASD and HC, glycolysis/gluconeogenesis balance, pyruvate,
alanine, aspartate and glutamate, glycine, and serine and threonine metabolism were the
most altered (Figure 3A,B). When comparing PANS and ASD, glycine, serine and threonine
metabolism, arginine biosynthesis, arginine and proline, alanine, aspartate and glutamate
metabolism, the urea cycle, and ammonia recycling were the most altered (Figure 4A,B).
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Finally, to test a possible linear correlation between the metabolic profile and psy-
chodiagnostic scales (PARS, PANSS, CYBOCS, YGTSS, C-GAS, WISC-IV, and USCRS), PLS
multivariate models were performed for PANS and ASD classes (Figure 5).
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clinical parameters. Clinical parameters were assessed by PARS (Pediatric Anxiety Rating Scale),
PANSS (Pediatric Acute Neuropsychiatric Symptom Scale), CYBOCS (Children’s Yale-Brown Ob-
sessive Compulsive Scale), YGTSS (Total Yale Global Tic Severity Scale score), C-GAS (Children’s
Global Assessment Scale), WISC-IV (Wechsler Intelligence Scale for Children), and USCRS (UFMG
Sydenham’s Chorea Rating Scale). ASD = autism spectrum disorder; PANS = pediatric acute-onset
neuropsychiatric syndrome; R2 = coefficient of determination. Dots represent patients.

YGTSS was omitted for the ASD class because only two patients exhibited concurrent
tic disorders. PLS showed weak correlations for all of the Y parameters in the PANS
group, except for the PANSS scale, while strong correlations were identified between the
metabolomic profile of ASD metabolomic and clinical scores of C-GAS, WISC-IV, and
USCRS (Table 4).

Table 4. Statistical results of the PLS correlation analysis.

Class

Clinical Parameters

PARS
R2

PANSS
R2

CYBOCS
R2

YGTSS
R2

C-GAS
R2

TIQ
R2

USCRS
R2

PANS 0.4 0.7 0.4 0.2 0.3 0.2 0.3
ASD 0.5 0.6 0.5 - 0.8 0.8 0.9

Statistical parameters of the PLS correlation analysis between the complete metabolic profile of PANS and autism
spectrum disorder patients and their corresponding psychodiagnostic scales scores. R2 statistic indicates the
goodness-of-fit measure for linear regression models; that is, the percentage of variance in the dependent variable
collectively explained by the independent variable. R2 measures the strength of the relationship between the
independent variable (the complete metabolic profile in each group) and the dependent variable (psychodiagnostic
scales scores) on a convenient 0–100% scale, where, in this case, 100% = 1. Footnote: PANS = pediatric acute-onset
neuropsychiatric syndrome; PARS = Pediatric Anxiety Rating Scale; PANSS = Pediatric Acute Neuropsychiatric
Symptom Scale; CYBOCS = Children’s Yale-Brown Obsessive Compulsive Scale; YGTSS = Total Yale Global Tic
Severity Scale score; C-GAS = Children’s Global Assessment Scale; WISC-IV = Wechsler Intelligence Scale for
Children; USCRS = UFMG Sydenham’s Chorea Rating Scale.

4. Discussion

The aim of the present study was to investigate similarities and specificities in the
metabolomic signature of two developmental neuropsychiatric disorders (i.e., ASD and
PANS), showing different clinical features, but potentially similar physiopathological
mechanisms.

The results of the present study show that metabolomic fingerprint was detectable
in ASD subjects compared with HC. In particular, asparagine, aspartate, betaine, glycine,
lactate, glucose, and pyruvate exhibited the greatest differences. Conversely, arginine,
aspartate, betaine, choline, creatine phosphate, glycine, pyruvate, and tryptophan are the
most discriminant metabolites between ASD and PANS (Figure 2).

Considering the common and the specific metabolic features of ASD and PANS classes,
we can summarize that asparagine and glycine appeared to be significantly decreased in
both ASD and PANS sera and that impaired glucose metabolism appears to be a key feature
of ASD, while a decreased tryptophan concentration, previously identified as a significant
feature of metabolomic profile of PANS [18], was not observed in ASD subjects.

4.1. Decrease in Glycine (Gly) and Asparagine Concentrations Is a Shared Biomarker of ASD
and PANS

In accordance with other reports [24,25], in our previous work, we found Gly serum
levels to be significantly lower in PANS [18] than in healthy controls. Interestingly, now, we
found an even greater distinction between ASD patients and healthy subjects. The reduction
in Gly bioavailability in ASD subjects is supposed to be related to malabsorption induced
by gut dismicrobism and the inflammatory disruption of the intestinal barrier [26,27].
Analogous mechanisms involving inflammation and changes to the intestinal microbiota
leading to reductions in Gly concentration have also been suggested in PANS [28]. Through
the inhibition of the nuclear factor kappa B (NF-kB) pathway and the synthesis of pro-
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inflammatory cytokines (IL-6, TNF-α, and IL-8), glycine has both in vitro and in vivo
anti-inflammatory properties [29]. Thus, its reduced concentration could contribute to a
pro-inflammatory state in both PANS and ASD [30].

It should be considered, however, that an increase in urinary Gly has been found in
distinct samples of autistic children [31,32], suggesting that Gly regulation may be more
complex than solely gut bacterial alterations and inflammation. During neurodevelopment,
Gly receptors promote the spontaneous activity of striatal medium spiny neurons and
support the maturation of glutamatergic inputs [33]. Rare variants in the alpha 2 subunit
of the Glycine receptor have been observed in some autistic subjects [34], confirming a
possible functional role for abnormal glycinergic signaling in autism [35].

Gly is a pivotal neurotransmitter in several human psychiatric disorders and experi-
mental models [36,37]. 1H-NMR analysis showed that Gly was significantly decreased in
the plasma and urine of neuroleptic-naïve schizophrenia patients at their first outset. After
6 weeks of risperidone therapy, serum Gly increased in parallel with symptomatic ame-
lioration, presumably owing to its potentiating effect on N-methyl-D-aspartate receptors
(NMDA-R) [38] and modulation of dopaminergic signaling [39]. Similarly, low serum Gly
was found in untreated patients with major depressive disorder, with the clinical improve-
ment associated with increasing Gly levels [40]. Alterations to glycinergic transmission
were also described in a metabolomic characterization of an anxiety-trait mouse model [41].
Being central to the regulation of locomotor behavior and related disorders such as Tourette
disorder [42] and impaired glycinergic tonic inhibition in crucial brain regions [43], Gly is
widely distributed in prefrontal and limbic cortices and has been related to temporal lobe
epilepsy and ASD [44]. Gly exerts most of its biological effects through co-agonism of glu-
tamate in binding excitatory cation-selective NMDA-R, widely distributed in CNS [39,45].
Consequently, it is feasible that a reduction in available glycine would primarily affect the
NMDA-R excitatory tone, overall impairing downstream glutamatergic, dopaminergic,
and GABAergic transmissions [39]. NMDA-R dysfunction at the hippocampal level could
contribute to cognitive disturbances or the so-called “brain fog” phenomenon recently
described in PANS subjects [46]. Here, the Gly metabolomic profile was strongly correlated
with the cognitive evaluation in ASD (Table 3), reinforcing the idea that glycine imbalance
could be related to cognitive impairment.

In our study, asparagine concentration also appeared to be significantly decreased
in both ASD and PANS [18]. As asparagine and aspartate concentrations trended in op-
posite directions in ASD when compared with controls, it is plausible that a reduction in
asparagine concentration is independent of aspartate metabolism. Asparagine is associated
with the inhibition of inflammation, cell growth, and autophagy [47,48]. An asparagine
deficit in both ASD and PANS could lead to detrimental effects on inflammatory home-
ostasis, suggesting its potential “inflammatory signature” for both groups. It should be
considered, however, that the increase in serum asparagine in ASD patients has also been
reported [49,50]; distinct ethnic backgrounds of the patients or different measurement
methodologies (i.e., HPLC) could explain these differences.

4.2. Impaired Glucose Metabolism Appears to Be the Key Feature of ASD

To date, metabolomic literature relating to ASD mainly consists of studies examining
urine samples, showing perturbations in amino-acid-related and mitochondrial metabolic
pathways [19]. We found decreased glucose and pyruvate concentrations and increased lac-
tate as crucial and specific fingerprints of ASD, in keeping with other blood-based studies
(i.e., glucose-alanine and urea cycle dysfunction) [51]. Glucose dysfunction (i.e., decreased
plasma glucose and increased alanine and lactate) was found in other neuropsychiatric
conditions such as neuroleptic-naïve schizophrenia, suggesting that increased glycolysis
and/or cellular uptake of these metabolites may be a common feature of a multitude of
psychiatric disorders [38]. [18F]-fluorodeoxyglucose PET studies in ASD show many CNS
areas with decreased metabolic rates when compared with controls [52]. Very recently, de-
creased insulin sensitivity was found in an ASD cohort compared with HC [53], suggesting
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that insulin resistance could be primarily located in highly insulin-sensitive brain areas,
thereby reducing neuronal glucose uptake and causing mitochondrial dysfunction, lactate
overproduction, increased oxidative stress, and reduced availability of neuroprotective
factors such as BDNF [54].

4.3. Decreased Tryptophan Concentration Is a Relevant Feature of PANS, but Not of ASD

Previously, we reported significantly lower serum tryptophan levels in PANS patients
than controls, hypothesizing a pathophysiological role for tryptophan metabolism in
PANS [18], as in other psychiatric disorders [55–57], including, though controversially,
ASD [58,59]. In the present study, we found no differences in tryptophan concentration
between ASD and HC, suggesting that decreased serum tryptophan could be indicative of
a discriminating pathophysiological facet of PANS.

Aside from 5-HT and melatonin biosynthesis, the predominant pathway of tryptophan
metabolism in humans is the kynurenine pathway, which is upregulated under infectious
and/or inflammatory conditions, where as much as 60% of the CNS kynurenine pool
originates from the blood [60]. Indeed, kynurenine metabolites can cross the blood–brain
barrier and enter the CNS [61,62], with neurotoxic effects, inducing microglial activation
and neuroinflammation [63], contributing to the outset of symptoms. Moreover, kynurenine
itself exerts pro-apoptotic action during immune activation, decreasing the T-helper 1 (Th1)
pool and the cross-inhibitory effect on Th2 cell differentiation [64].

Experimentally, a PANS-like phenotype can be induced in rats by inoculating the stria-
tum with quinolinic acid, a kynurenine metabolite [65]. Quinolinic acid exerts neurotoxic
effects through excessive NMDA-R agonism, reactive oxygen species (ROS) formation,
lipid peroxidation, mitochondrial damage, and apoptosis in neurons, astrocytes, and oligo-
dendrocytes, which, in turn, trigger an inflammatory state [66,67]. Finally, as 5-HT is a
precursor of melatonin, tryptophan deficiency could be an upstream contributory factor to
sleep disturbances (e.g., ineffective sleep, periodic limb movements, REM-sleep without
atonia, insomnia, and parasomnias), enumerated among PANS symptoms [46,68].

As reported and discussed in a previous paper [18], and concurrently with the existing
literature, tryptophan metabolism may play a central role in the pathogenesis of affective,
motor, and cognitive symptoms more in PANS than in ASD subjects.

5. Conclusions and Limitations of the Study

Biomarkers may represent both diagnostic predictors and key pathophysiological
targets, potentially playing a crucial role in defining innovative therapeutic approaches.
Through 1H-NMR metabolomics, we “sampled” a downstream biological system at the
common final pathway level to overcome the complexity of the upstream etiological events
(e.g., infections and autoantibodies).

The main limitation of this approach is the significant clinical and biological hetero-
geneity of subjects with ASD [69,70]. Molecular genetics studies have identified a few
hundred ASD risk genes [71,72] that may significantly amplify the difficulties in identifying
reliable biomarkers for the disorder. ASD susceptibility genes, however, appear to converge
in a discrete number of biological pathways [72]: several lines of evidence suggest that
many of these biological pathways (and thus many genes) are shared, at least in children
and adolescents, among different psychiatric disorders [73–76]. Interestingly, many genes
implicated in ASD appear to converge into classical cytokine signalling pathways, suggest-
ing the presence of an immunological-inflammatory environment in the pathogenesis of
ASD [72,77].

A recent study performed on 516 very young ASD children (18 to 48 months of age)
evidenced specific metabotypes detected in different subgroups of ASD, measuring the
ratio between glutamine, glycine, and ornithine, and the branched-chain amino acids
(BCAAs), which appeared to be a key feature of the ASD disease [78]. We did not identify
alteration to BCAA metabolism; we recruited a relatively small sample of patients, which
did not allow for stratification depending on the ASD subtype.
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However, our results are in line with former evidence, suggesting PANS and, at least
in part, ASD as immune-mediated disorders, although other biological mechanisms may
play crucial roles in both disorders.

Further investigations are needed to clarify the translational value of amino acids’
serum level in the pathophysiology of brain dysfunction and their role in ASD and in PANS.
Consistently with previous studies on amino acid dysregulation and the stratification
of ASD patients based on the identification of “metabotypes” [78], our study lays the
foundation for discovering metabolic tests facilitating the PANS diagnosis. For both
ASD and PANS, the identification of “metabotypes” could bring the research towards the
discovery of new targeted therapeutic interventions.

Furthermore, both analogous and diverse mechanisms of glucose dysfunction in
ASD and other overlapping neuropsychiatric disorders such as schizophrenia should be
addressed (e.g., whether central or peripheral and whether involving insulin or counter-
regulatory hormones).

Finally, a larger ASD cohort and the use of mass spectrometry to identify undetected
metabolites (lipophilic compounds) are warranted to support the present findings and
interpretation.
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