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Abstract

Background: While a multitude of genotyping platforms have been developed for rice, the majority of them have
not been optimized for breeding where cost, turnaround time, throughput and ease of use, relative to density and
informativeness are critical parameters of their utility. With that in mind we report the development of the 1K-Rice

Custom Amplicon, or 1k-RiCA, a robust custom sequencing-based amplicon panel of ~ 1000-SNPs that are uniformly
distributed across the rice genome, designed to be highly informative within indica rice breeding pools, and
tailored for genomic prediction in elite indica rice breeding programs.

Results: Empirical validation tests performed on the 1k-RiCA showed average marker call rates of 95% with marker
repeatability and concordance rates of 99%. These technical properties were not affected when two common
DNA extraction protocols were used. The average distance between SNPs in the 1k-RiCA was 1.5 cM, similar to
the theoretical distance which would be expected between 1,000 uniformly distributed markers across the rice
genome. The average minor allele frequencies on a panel of indica lines was 0.36 and polymorphic SNPs estimated
on pairwise comparisons between indica by indica accessions and indica by japonica accessions were on average
430 and 450 respectively. The specific design parameters of the 1k-RiCA allow for a detailed view of genetic
relationships and unambiguous molecular IDs within indica accessions and good cost vs. marker-density balance
for genomic prediction applications in elite indica germplasm. Predictive abilities of Genomic Selection models for
flowering time, grain yield, and plant height were on average 0.71, 0.36, and 0.65 respectively based on cross-
validation analysis. Furthermore the inclusion of important trait markers associated with 11 different genes and QTL
adds value to parental selection in crossing schemes and marker-assisted selection in forward breeding applications.

Conclusions: This study validated the marker quality and robustness of the 1k-RiCA genotypic platform for genotyping
populations derived from indica rice subpopulation for genetic and breeding purposes including MAS and genomic
selection. The 1k-RiCA has proven to be an alternative cost-effective genotyping system for breeding applications.

Keywords: Single nucleotide polymorphism (SNP), Oryza sativa, Indica, SNP fingerprinting, Genomic selection, Marker-
assisted selection (MAS), Amplicon-based next generation sequencing, Breeding and genotyping
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Background
Rice (Oryza sativa) is the staple food for more than 3.5

billion people (Wang et al. 2018). To meet the future glo-

bal demand for rice an estimated additional 116 million

tons of it will be needed by 2035 (Seck et al. 2012). Based

on this assumption up to 1.5 to 2.4% yield increase per

year will have to be attained despite limiting water sup-

plies, reduced cultivation area, and fluctuating climatic

conditions (Seck et al. 2012; Ray et al. 2013). Recent stud-

ies indicated that rice yield increases have plateaued in dif-

ferent regions of the world (Ray et al. 2013). Overcoming

this yield stagnation requires great efforts and innovation

to improve the efficiencies in cultivation, management

and, not least of all, varietal development. Rice breeders

and geneticists need to capitalize on the latest methods

and tools to accelerate variety development and increase

the annual rate of genetic gains for multiple traits to main-

tain a stable food supply that meets the needs of a growing

population (Thomson et al. 2017).

Recent advances in next-generation sequencing (NGS)

and single nucleotide polymorphism (SNP) genotyping

promise to accelerate crop improvement provided they

are properly integrated and deployed into breeding pro-

grams (Thomson 2014). SNPs are the markers of choice

for most high-throughput genotyping applications. They

are abundant, co-dominant and evenly distributed along

the genome. High-throughput SNP genotyping platforms

have enabled rapid, routine and cost effective genotyping

solutions for targeted marker assisted selection (MAS)

on large effect QTLs or genes of interest (Ramkumar et

al. 2015; Kurokawa et al. 2016). Genome-wide SNP

genotyping combined with effective and precise sample

-tracking, −collection, and -DNA extraction is a power-

ful tool that can reshape breeding programs and facili-

tates increasing gain from selection. Genome-wide SNP

genotyping enables integrating targeted MAS and gen-

omic selection (GS) approaches into different breeding

strategies and contributes to increasing the efficiency of

multiple other breeding activities (Chen et al. 2016),

such as seed purity testing, pedigree verification, and

varietal identification (Tian et al. 2015).

NGS and array-based technologies are the two dominant

SNP detection systems for genome-wide genotyping. NGS

methods, commonly termed genotyping-by-sequencing

(GBS), range from whole genome re-sequencing (or skim

sequencing) (Scheben et al. 2018) to reduced representa-

tion sequencing (RRS) (Elshire et al. 2011). GBS-type tech-

nologies have been applied to a range of crops, providing

large data volume at a low cost per data point and are inde-

pendent of prior genomic information, genome size, gen-

ome organization or ploidy (Elshire et al. 2011). In rice,

GBS has been used to characterize bi-parental populations

(Spindel et al. 2013; Arbelaez et al. 2015), multi-parent

mapping populations (Bandillo et al. 2013), nested

association mapping populations (Fragoso et al. 2017), and

breeding populations (Begum et al. 2015; Spindel et al.

2015). Although NGS platforms have the advantage of

minimal ascertainment bias, they currently require com-

plex experimental protocols, sophisticated data analysis,

and bioinformatics pipelines to process raw sequence data

into useful genotypic matrices. This added capacity cost

currently limits the applicability of NGS platforms in many

public breeding programs (Chen et al. 2014).

Array-based genotyping platforms provide high-

medium- and low-density genome scans, robust high-

quality allele calling, easy handling, and simplified ana-

lysis to routinely generate genotypic datasets (Rasheed et

al. 2017; Scheben et al. 2018). Their main disadvantages

are lack of flexibility due to ascertainment bias, and, des-

pite a reasonable low cost per data point, a compara-

tively high cost per sample (Rasheed et al. 2017). A

number of low-, medium-, and high-resolution SNP ar-

rays have been developed for rice and their utility was

demonstrated across a range of applications. In the low

and medium density range this includes, but is not lim-

ited to, the 384-plex BeadXpress (Chen et al. 2011), the

GoldenGate 1536 SNPs (Zhao et al. 2010) and two Illu-

mina Infinium-based 6 K arrays, the RiceSNP6K (Yu et

al. 2014) and the C6AIR (Thomson et al. 2017). They

have been used for diversity analysis, QTL mapping,

marker assisted backcrossing (MABC) and pedigree veri-

fication among breeding lines. On the high density end,

the 700 K High Density Rice Array (HDRA700K)

(McCouch et al. 2016), two 50 K arrays (RiceSNP50K and

Affymatrix 50 K) (Chen et al. 2014; Singh et al. 2015) and

a 44 K array (GeneChip Rice 44 K) (Zhao et al. 2011) were

deployed mainly for genome-wide association studies

(GWAS) (Famoso et al. 2011; Crowell et al. 2016). These

arrays were developed to be highly informative across di-

verse germplasm including different rice subpopulations

and they were optimized to dissect (phylo-) genetic rela-

tionships and phenotype to genotype associations.

Less effort has been made in developing informative

high-throughput, and cost effective genotyping solution

specifically designed for applied breeding programs.

Large-scale application in rice breeding with emphasis on

population improvement strategies that integrate GS, ne-

cessitates routine genotyping of thousands of lines per

season at the shortest turnaround time possible to make

in-season decisions based on genomic estimated breeding

values (GEBV). Globalized breeding programs require

breeding populations to be evaluated at multiple locations

with different planting dates leaving a very small window

to sample, process and analyze genotypic data. The

current complexity of GBS technologies and cost of array

technologies are limiting in this context.

GS approaches are increasingly being adopted to accel-

erate the rate of genetic improvement of key agriculturally
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important species, including rice (Spindel et al. 2015; Gre-

nier et al. 2015; Monteverde et al. 2018). GS uses a ‘train-

ing population’ of individuals that have been both

genotyped and phenotyped to develop a model that takes

genotypic data from a ‘candidate population’ of untested

individuals and produces GEBVs (Jannink et al. 2010). A

major challenge in implementing GS in most plant breed-

ing programs is the cost of genotyping per sample. The

expected value of the information gained by genotyping

must exceed the cost of obtaining the genotypes (Boichard

et al. 2012). Studies that have evaluated the effect of the

number of markers on GS accuracies in closely related

breeding germplasm consistently show diminishing

returns from increasing marker number (Rutkoski et al.

2013; Gorjanc et al. 2017; Raoul et al. 2017). Provided high

levels of informativeness at each target locus, genotyping

at relatively low density could be an effective way to re-

duce cost with minimal impact on GS accuracy leading to

a greater return on investment from genotyping (Abed et

al. 2018). Sequencing of multiplex PCR-based amplicons

to capture high value SNPs may be an ideal low-density

genotyping platform for GS applications, featuring low

cost, robustness and scalability. Amplicon sequencing

technologies assay a polymorphic panel of hundreds to a

few thousand target SNP markers at the population scale

with demonstrated applicability in phylogenetics (Dupuis

et al. 2018), structure analysis (Andrews et al. 2016), and

QTL mapping (Onda et al. 2018). Moreover, targeted

amplicon sequencing effectively allows genotyping of

small amounts of low quality DNA, even derived from

dried herbarium samples (Beck and Semple 2015; Csernak

et al. 2017). Therefore high throughput in-field sampling

with minimal considerations on remote field stations is

suitable. Amplicon panels are available for both the Illu-

mina (Csernak et al. 2017) and the Ion torrent (Glotov et

al. 2015) platforms and aim at interrogating allelic diversity

at known loci of interest. The vast amount of genomic in-

formation available in rice, including a high quality refer-

ence genome (Matsumoto et al. 2005; Kawahara et al.

2013), 3010 re-sequenced varieties (Wang et al. 2018), de

novo assemblies’ within different rice subpopulations

(Schatz et al. 2014; Duitama et al. 2015) and high-density

genotypes of diversity panels (Huang et al. 2010; McCouch

et al. 2016), constitutes an ideal resource to accurately de-

sign custom amplicon panels with carefully selected, highly

informative SNPs uniformly distributed across the rice gen-

ome and tailored for specific breeding applications.

Here, we report the development of a 1000-SNP (1 K)

Rice Custom Amplicon assay, or 1k-RiCA, for the cost-

effective amplification and sequencing of a thousand

highly informative SNP sites in a 384-plex protocol that

has wide applicability, good repeatability, high accuracy

and high efficiency in genotyping breeding lines and

populations derived from the indica subspecies of Oryza

sativa. Furthermore we demonstrate applicability of 1k-

RiCA for indica diversity studies, and genomic predic-

tion for indica based breeding programs.

Materials and methods

Plant materials

Rice accessions genotyped with the 1k-RiCA and used

for analyses in this study are listed in Additional file 1:

S1. A set of 700 samples from a panel of 283 diverse in-

bred Oryza sativa rice lines replicated at different levels

was used to estimate the markers call rate, heterozygos-

ity, repeatability, concordance properties. Among the

283 diverse accessions, 185 have been classified in differ-

ent subpopulations according to structure analysis per-

formed by Wang et al. (2018) and McCouch et al.

(2016), and specific breeding germplasm source (IRRI ir-

rigated indica breeding program) with 150 known indica

lines, that grouped the subpopulations ind, ind1A,

ind1B, ind2, ind3, and indx, 24 japonica, grouping the

subpopulations trj, tej, temp, trop, and japx, 8 aus, 2 aro-

matic (subpopulation aro) and 1 admix. The remaining

98 unclassified lines came from a panel of 70 pigmented

‘black rice’ lines, and 28 were advanced lines from differ-

ent rice breeding programs. Consensus genotypes gener-

ated for the 283 accessions were used for principal

component (PCA). An additional PCA analysis solely on

O. sativa sp. indica lines was done with 177 diverse

indica rice accessions, 41 indica ‘black rice’ accessions

and 213 elite recombinant inbred lines (RILs) derived

from 11 elite-by-elite indica x indica bi-parental popula-

tions from the International Rice Research Institute

(IRRI) Favorable Environments Breeding Program

(FEBP). A set of 57 F1 plants from six families derived

from indica × indica, and indica × japonica crosses were

used to test the accuracy of the 1k-RiCA to call hetero-

zygous genotypes. The value of the 1k-RiCA for Gen-

omic Selection (GS) was tested using 353 indica elite

breeding lines derived from 30 elite-by-elite indica ×

indica bi-parental populations from IRRI’s FEBP in a

series of cross-validation experiments.

Design of the 1k-RiCA SNP assay

The 1K Rice Custom Amplicon assay or 1k-RiCA was

designed on Illumina’s TruSeq Custom Amplicon

(TSCA) 384 Index Kit technology (https://www.illumina.

com) using Illumina’s proprietary workflow. Initially 1,

554 genome-wide SNPs and 28 markers associated with

highly valuable traits were provided to Illumina for an

in-silico testing. Of the original 1,582 SNPs supplied to

Illumina, 967 uniformly distributed genome-wide and 28

trait markers were retained in the 1k-RiCA after the it-

erative TruSeq custom amplicon design and validation

process. The 967 genome-wide SNPs were selected from

two publically available resources, the Cornell_6K_
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Array_Infinium_Rice or C6AIR chip (Thomson et al.

2017) and the 3,000 rice genomes (Alexandrov et al.

2015; Mansueto et al. 2017; Wang et al. 2018). The 604

markers from the C6AIR data set were selected based

on their high call rates (> 95%) and high minor allele fre-

quencies (MAF ≥ 0.4) determined from genotypic data

available on 1,172 IRRI indica rice breeding lines and

indica released varieties genotyped with the C6AIR. The

remaining 363 markers from the 3,000 rice genomes were

selected to fill physical distance gaps not captured by the

C6AIR’s SNPs and filtered for high call rates (> 95%) and

high minor allele frequencies (MAF ≥ 0.4) estimated

across 1,174 indica landrace accessions and cultivated

indica varieties sequenced within the 3,000 rice genomes

dataset (Alexandrov et al. 2015; Mansueto et al. 2017, and

Wang et al. 2018).

The 28 trait-related markers linked to 11 different im-

portant trait associated genes/QTLs were obtained from

functional markers or markers demonstrated to be linked

and associated with the respective gene/QTL as reported

in the literature. These markers include one marker for

gelatinization temperature (GT); starch synthase IIa or alk

(Gao 2003, and Bao et al. 2006), three for apparent amyl-

ose content (AAC) associated with the Waxy gene alleles

wx, Wxt, Wxg1, Wxg2, and Wxg3 (Dobo et al. 2010; Teng et

al. 2017), one for the grain size locus GS3 (Takano-Kai et

al. 2009), one for rice tungro spherical virus (rtsv1) (Lee et

al. 2010), 19 for bacterial leaf blight, BLB resistance genes;

xa5 (Iyer and McCouch 2004; Dilla-Ermita et al. 2017),

Xa7 (Romer et al. 2009; Dilla-Ermita et al. 2017), xa13

(Chu et al. 2006), Xa21 (Peng et al. 2015), Xa4 (Li et al.

2001), and Xa23 (Wang et al. 2015), and three for submer-

gence tolerance; Sub1A (Septiningsih et al. 2009).

Genotyping and SNP calling

Genomic DNA (gDNA) was extracted from leaf tissue of

single plants using methodologies described in Dilla-

Ermita et al. (2017) and based on either using CTAB

(Murray and Thompson 1980), or KingFisher SBEadex

kits (https://www.thermofisher.com). DNA quality was

checked visually on 1% agarose gel, while DNA quantity

was assessed using PicoGreen® (https://www.biotek.com),

and Qubit 2.0 (https://www.thermofisher.com) fluoromet-

ric kits. The concentration of DNA was adjusted to be

close to 10 ng/μL for library preparation. 384-plex index-

ing and pooling was performed as instructed by the manu-

facturer (https://www.illumina.com). Sequencing was

performed using the MiSeq Sequencing-by-Synthesis

Technology System as specified by illumina® (https://

www.illumina.com). A custom SNP-calling pipeline de-

scribed in the Additional file 1: S2, was used to assign vari-

ants on the 1k-RiCA amplicons through alignment to the

Nipponbare rice genome MSU7 version (Kawahara et al.

2013). Final SNP data were merged with SNP map

information and encoded with the physical position and

chromosome number of the SNP markers in a Hapmap

format (International T, Consortium H 2003).

SNP filtering, repeatability, concordance and imputation

SNPs were removed if minor allele frequency (MAF) ≤

0.01; heterozygous calls ≥10%; and call rate (CR) ≤ 75%

using customs scripts written in R version 3.5.0 (R Core

Team 2018) and deposited in Github (https://github.

com/jdavelez/1k-RiCA-geno-filters/blob/master/jdave-

lez_1k-RiCA.R). For each SNP, heterozygosity was deter-

mined as the proportion of heterozygous calls among all

successfully called genotypes. SNP call rate was defined

as the proportion of successfully called genotypes among

all samples used in the study. Repeatability, or the de-

gree of consistent genotype calls between independent

samples from the same accession, was calculated among

38 different accessions that had 4 or more independent

replicates as R = 100 − el, where 100 is the maximum

value expressed in percentage of consistent genotype

calls between independent replicates, minus the mean

error rate per locus or el described by Pompanon et al.

(2005) and measured as the ratio between the number of

single-locus genotypes with at least one allelic mismatch

(ml) and the number of replicated single-locus geno-

typed (nl) compared to a reference genotype (el =ml/nl),

averaged across all replicated accessions. Concordance

rate or the degree of consistent genotype calls from

common SNPs assayed in two different genotyping plat-

forms for the same accession was measured as the pro-

portion of exact matched genotypes between common

SNPs genotyped using two different genotypic platforms,

1k-RiCA versus C6AIR or 1k-RiCA versus 3,000 ge-

nomes, in the same accessions. For further GS analysis,

the SNP filtered data was imputed in TASSEL v5.0

(http://www.maizegenetics.net/tassel) (Bradbury et al.

2007) using the LD KNNi imputation methodology with

a High LD Sites 30 and Number of nearest neighbors of

30 using a LinkImpute algorithm (Money et al. 2015).

Hierarchical clustering and principal component analysis

A hierarchical clustering analysis using Ward’s minimum

variance method (Sokal and Michener 1958; Murtagh

and Legendre 2014) was done using the R version 3.5.0

function ‘hclust’ (Murtagh and Legendre 2014; R Core

Team 2018) where Ward’s clustering criteria is imple-

mented and the dissimilarities are squared before cluster

updating. A dendogram graph was built in R using the

function ‘plot (asphylo())’ (R Core Team 2018). A princi-

pal component analysis (PCA) (Pearson 1901) was per-

formed and visualized using the R function ‘prcomp’

(Mardia et al. 1979, and R Core Team 2018). The num-

bers of optimal clusters (k-means) observed in the PCA

analysis was determined using the Silhouette method
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(Rousseeuw 1987) using the R function ‘silhouette’ from

the R package ‘cluster’ (Maechler et al. 2013).

Trait markers quality control evaluation

The ability of the 1k-RiCA trait markers to correctly

identify the samples with the desired and undesired al-

leles was determined using the SNP Quality Control

methods and variables described by Platten et al. (2019).

The variables used were: i) ‘Utility’ described by Platten

et al. (2019) as the “proportion (percentage) of a pro-

spective breeding pool across which a marker could be

used to introgress a QTL. This is equivalent to the pro-

portion of the pool which does NOT carry the donor al-

lele of a marker”, calculated as: #cultivars withOUT

favorable allele/Total # cultivars assesed, ii) ‘False Posi-

tive Rate’ (‘FPR’), or “the proportion known negative ge-

notypes incorrectly classified as having the target QTL

allele. Assayed as the number of known recipients iden-

tified as not having an unfavorable allele of the marker

(and thus incorrectly classified as having the target QTL

allele)”, calculated as: #recipients withOUT unfavorable

allele/Total # recipients, and iii) ‘False Negative Rate’

(‘FNR’) or “the converse of FPR, the proportion of

known target QTL genotypes incorrectly classified as

not having the desired QTL allele due to not having a fa-

vorable allele of the marker”, calculated as: #donor with-

OUT favorable allele/Total # donors. Utility, FPR and

FNR were measured and analyzed for each individual

trait marker and/or trait haplotypes for those traits with

more than one molecular marker associated with them.

F1-heterozygotes SNP calling concordance

To test the utility and accuracy of the 1k-RiCA to cor-

rectly called heterozygous genotypes, a set of 57 F1
plants derived from six different bi-parental crosses; 8

from IRRI 154 / A69–1 (indica / japonica, with 441

polymorphic SNPs), 14 from A-69-1 / IR 4630-22-2-5-1-

3 (japonica / indica, with 280 polymorphic SNPs), 19

from IR 4630-22-2-5-1-3 / CSR 28 (indica / indica, with

105 polymorphic markers), 4 from CSR 28 / MANAW

THUKHA (indica / japonica, with 342 polymorphic

SNPs), 10 from MANAW THUKHA / IRRI 154 (japon-

ica / indica, with 385 polymorphic SNPs), and 2 from

MS11 / A69–1 (japonica / japonica, with 395 poly-

morphic SNPs) were genotyped along with their parents.

For each bi-parental cross, a ‘predicted F1-genotype’ was

generated by combining the SNPs haplotype from each

homozygous parent into a genotypic profile of a pseudo-

F1 plant. The ‘predicted F1-genotype’ was compared with

the 1k-RiCA genotypes of each F1 plant and SNP con-

cordances were estimated by calculating the percentage

of exact genotypic calls that are similar between the ‘pre-

dicted’ and empirical F1 genotypes.

Genomic selection

Three hundred fifty-three elite indica breeding lines

from IRRI’s Favorable environment Breeding Program

(FEBP) and 6 different agronomical checks were selected

for genotyping with 965 polymorphic markers from

the1k-RiCA. These lines were derived from 30 different

bi-parental families of sizes varying from 1 to 36 individ-

uals, with an average of 12 plants per family. Phenotyp-

ing of these lines took place at IRRI’s - Los Baños

experimental station during the 2017 wet-season (WS)

and 2018 dry-season (DS), and PhilRice’s Nueva Ecija ex-

perimental station during 2017 WS. The lines were phe-

notyped using an augmented p-rep design (Williams et

al. 2011) with a replication of 1.2, for total 430 plots

evaluated on each yield trial. Plot sizes were of 6.48 m2

(6 rows × 27 hills) in Los Baños, and 5.4 m2 (5 rows × 27

hills) in Nueva Ecija.

The target traits evaluated were days to flowering
(‘FLW’), grain yield (‘GY’), and plant height (‘PH’). FLW
was recorded as the number of days after sowing, when
50% of the plants in the plot produced flowers. GY was
estimated from a 3.12 to 5 m2 plot harvested and
weighed and corrected for moisture content using the

formula: GY ¼ ð100−MC
86

Þ � ðGrain Weight in gr
3:12 m2

Þ � ð0:01Þ .
From this sample the grain yield per hectare was calcu-
lated. PH was the actual measurement in cm from soil
to the tip of the tallest panicle (International Rice Re-
search Institute 1996).

Mixed linear models using the function lmer() con-

tained in the R package ‘lme4’ (Bates et al. 2014) were

used to estimate BLUEs (Best Linear Unbiased Estimate)

and BLUPs (Best Linear Unbiased Predictor) for all

traits. Restricted Maximum Likelihood Estimation or

RMEL method was used to estimate the variance com-

ponents by setting the argument RMEL = TRUE in the

lmer() function. The model was fit according to: Yijk =

μ + gi + tj + r(t)jk + eijk. Where Yijk is the phenotypic obser-

vation on genotype i, in the trial j and in replicate k, μ, the

overall mean, gi, the genotype effect, tj, the trial effect,

r(t)jk, is the replicate within trial effect, and eijk the re-

sidual. To obtain BLUPs for the genotypes, except for the

overall mean, all the effects were considered random. To

obtain BLUEs for the genotypes, the overall mean and ge-

notypes were considered as fixed effects. Adjusted means

of accessions (BLUEs) were extracted for each trait to be

used as phenotypes in the genomic prediction models.

Broad sense heritability of accession means, H2, was cal-

culated for each trait using the formula of Hallauer et al.

(2010) as follows: H2 ¼
σ
2
g

σ2gþ
σ2gy
t
þ

σ2e
tr

. Where t represents the

mean number of trials in which accessions were tested and

r, the mean number of plots per accessions across trials.

Genotypes were assumed independent and identical
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distributed for estimating H2. Variance components

were estimated from a linear mixed model using ‘lmer4’

and the model Yijk = μ + gi + tj + r(t)jk + eijk, where Yijk is

the phenotypic observation on genotype i, in the trial j

and in replicate k, μ, the overall mean, gi, the genotype

effect, tj, the trial effect, r(t)jk, is the replicate within

trial effect, and eijk the residual. The argument RMEL

in the lmer() function was set TRUE to estimate the

variance components.

For the cross-validation studies six different genomic se-

lection models were used to estimate genomic estimated

breeding values (GEBVs) including ridge regression (Endel-

man 2011) and five Bayesian models; BayesA (scaled-t),

BayesB (gaussian mixture), BayesC (scaled-t mixture)

(Meuwissen et al. 2001; Habier et al. 2011), Bayesian Lasso

(BL) (Park and Casella 2008), and Reproducing Kernel Hil-

bert Spaces Regressions fitting the markers and pedigree re-

lationships (RKHS G+A) as random effects (Pérez and de

los Campos 2014). The model RKHS G+A implements a

reproducing kernel Hilbert space (Wahba 1990) regression

fitting two random effects, one representing a regression on

pedigree, a � Nð0;Aσ2
aÞ, where A is a pedigree-derived re-

lationship matrix, and one representing a linear regression

on markers, g � Nð0;Gσ2
guÞ where, G is a marker-derived

genomic relationship matrix. The ridge regression model

was tested using the R package ‘rrBLUP’ (Endelman 2011).

The Bayesian models were implemented using the R pack-

age ‘BGLR’ (Pérez and de los Campos 2014) and the default

prior parameters described in Pérez and de los Campos

(2014) with a thinning value of 5, and 12,000 iterations with

the first 2000 iterations discarded as burn-in. Trace plots as

described by Pérez et al. (2010) were used to visually check

conversion for some models selected at random. The sam-

ples residual variance data given by BGLR outputs can be

plotted using the following script; plot (scan(“varE.dat”),

type = “o”), where “varE.dat” is a vector of the residual vari-

ance. Additionally pedigree-BLUPs (Henderson 1975) using

the pedigree relationship matrix were estimated to compare

the performance of genomic selection models.

A 5-fold (k = 5) cross validation experiment using 4/5 of

the 353 lines as the training set to predict the remaining 1/

5 of the validation set was used. Each cross validation was

repeated 10 times using 10 independent partitioning of the

accessions into the training set and validation set. The pres-

ence of highly related individuals in the dataset could have

the effect of artificially inflating prediction abilities if the

closest individuals are randomly assigned to different folds,

and one of those folds are used a training. To control for

this possibility a stratified cross validation strategy was used

when designing the different folds by sampling individuals

randomly within families defined using the pedigree infor-

mation of the lines. The accuracy of each cross validation

experiment was computed as the mean value of the 10

Pearson correlations (Pearson 1901) between the observa-

tions and the cross-validated GEBVs, also known as the

predictive ability (Heslot et al. 2012).

Results
1k-RiCA SNP assay design

The 1k-RiCA was explicitly designed to be informative

for Oryza sativa L. ssp. indica rice germplasm (see Ma-

terials And Methods). Out of the total 995 SNPs in-

cluded and amplified in the 1k-RiCA, 604 markers were

made up from the C6AIR (Thomson et al. 2017), 363

markers from the ‘3000 rice genomes’ (Mansueto et al.

2017, and Wang et al. 2018), and 28 markers linked to

11 different ‘high-valued’ trait genes/QTLs (Fig. 1 and

Additional file 1: S3). Of the 995 SNPs, 482 markers lo-

calized within MSUv7 gene models (http://rice.plantbiol-

ogy.msu.edu), and 513 were located within intergenic

regions (Additional file 1: S3). The average physical dis-

tance between two adjacent markers across the whole

genome in the 1k-RiCA set was 372 kb, or ~ 1.524 cM

(SD = 1.2 cM), with 1 cM equal to ~ 244 kb (Chen et al.

2002). More than 50% of the markers are spaced from

each other at a distance of 293 kb (~ 1.2 cM) or less

(Additional file 2: Figure S1). The median SNP minor al-

lele frequency (MAF) estimated from 1k-RiCA genotypic

data on 431 indica accessions was 0.36 with 50% of the

markers having MAF between 0.28 and 0.44 (Additional

file 2: Figure S2).

The utility and accuracy of 28 markers associated with

11 different traits and designed for MAS strategies were

Fig. 1 1k-RiCA SNPs physical positions. Genome-wide physical position
distribution of 995 SNPs from the 1k-RiCA-assay across all rice
chromosomes. SNPs designed from the C6AIR (Thomson et al. 2017)

are represented in blue color, SNPs from the ‘3000 rice genomes’ are in
yellow (Mansueto et al. 2017, and Wang et al. 2018), and trait-markers

are in green
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evaluated using different Quality Control (QC) parame-

ters described by Platten et al. (2019). Based on the re-

sults of the ‘Utility’, ‘False Positive Rates’ (‘FPR’), and

‘False Negative Rates’ (‘FNR’) QC parameter 21 SNPs

were selected either to be used individually or as a

haplotype for MAS for 11 different traits. A detailed de-

scription of the analysis results and the allelic interpret-

ation for the selected SNPs is presented in Table 1.

Individual SNPs for the traits associated with the loci

GS3, xa5, Xa4, Xa21, rstv, and ALK are suitable for

MAS. In addition, two or more markers associated with

the loci Xa7, xa13, Xa23, sub1, and Wx for apparent

amylose content (ACC) can be used as haplotypes for

MAS applications (Table 1). More specifically, in the

case of AAC, the haplotypes from the SNPs chr06:1.766,

chr06:1.768, and chr06:1.769 can be used to differentiate

high (G-A-C / G-A-T), intermediate (G-C-C), and low

(T-A-C / T-C-C) ACC (Dobo et al. 2010).

SNP call, heterozygosity, repeatability and concordance

rate of the 1k-RiCA

SNP call rates and heterozygosity were empirically deter-

mined in the 1k-RiCA using 700 independent DNA

samples derived from 283 partially replicated rice acces-

sions. The mean call rate across all SNPs was 95% (or

0.95) (Additional file 2: Figure S3), and the mean hetero-

zygosity observed among SNPs was of 1.5% (or 0.015)

(Additional file 2: Figure S4). After removing 97 SNPs

with less than 75% call rates and 5 more SNPs with het-

erozygosity values higher than 10% a total of 895 SNPs

were kept for subsequent analysis in this set of samples.

The 1k-RiCA marker repeatability was measured on

38 different accessions replicated 4 or more times (Add-

itional file 2: Figure S5). The average SNP repeatability

observed on the replicated accessions genotyped with

the 1k-RiCA was of 99% (Additional file 2: Figure S6). A

thorough look at the 1% average genotyping mismatches

showed a bias on miscalled heterozygous based on the

inbred nature of these lines, accounting for 0.7% of the

observed 1% mismatches. After heterozygous calls were

removed and imputed the mean repeatability increased

to 99.7% (Additional file 2: Figure S6).

SNP concordance rate between the 1k-RiCA and Cor-

nell’s C6AIR, and the 1k-RiCA with the ‘3000 rice ge-

nomes’ were estimated and averaged across overlapping

SNPs in commonly genotyped samples. To compare the

1k-RiCA and the C6AIR platform calls, a set of 600

overlapping SNPs across 34 different accessions were ge-

notyped with both platforms. Concordance values across

samples ranged between 96.5 and 100% with an average

of 99.3%. Concordance of 271 overlapping SNPs between

1k-RiCA and the ‘3000 rice genomes’ data set was

assessed across 10 different accessions and ranged from

97.7 to 100% with a mean of 99.17%.

The SNP technical quality properties of the 1k-RiCA

were not affected when two different DNA extraction pro-

tocols, a modified CTAB (Murray and Thompson 1980)

and a King-Fisher Kit (http://www.thermofisher.com)

were tested in this study. The average SNP concordance

rate between samples extracted with CTAB and King-

Fisher Kit was 99.51% (Additional file 2: Figure S7).

Principal component analysis in O. sativa

A PCA using the 1k-RiCA was performed on 283 acces-

sions, with 150 known indica lines (ind), 24 japonica, 8

aus, 2 aromatic (aro), 1 admixture (admix), and 98 un-

determined (und) rice lines. The first principal compo-

nent (PC1) explained 57% of the total genetic variation

and separated the indica, aus, and the japonica varietals

(jap, temp, trop and aro) accessions (Fig. 2). The second

PC (PC2) explained ~ 20% of the total genetic variation

and differentiated the aus from the japonica varietals. In

addition, PC1 and PC2 captured a great portion of the

variation within the indica accessions (Fig. 2). The opti-

mal number of clusters estimated using Silhouette

method identified 3 groups based on the genetic vari-

ance explained by the 1k-RiCA (Additional file 2: Figure

S8A). One group contained the Japonica and aromatic

lines (jap, temp, trop, and aro), the second group clus-

tered aus, and indica lines (most of indica landraces,

and indica “black rice”) and the final group contained

most of the released and elite indica lines (Additional

file 2: Figure S8B).

The undetermined accessions (und) accessions were

then classified into two main groups ‘Japonicas’ (jap,

temp, trop), and ‘Indicas’ (ind) using the PC coordinates

from the PCA (Additional file 2: Figure S9). A manual

cross-reference search on 12 different ‘und’ lines using

publicly available data confirmed the predicted group

based on the PCA with their reported subpopulation

(Additional file 2: Table S1). Among the ‘und’ accessions

a set of 78 lines part of a black-pericarp diversity panel

was classified with 41 of them grouped as ‘Indicas’, and

37 as ‘Japonicas’ (Additional file 2: Figure S9). Black dots

('und' - undetermined), open maroon circles ('ind' -

indica), yellow stars ('admix' - admixture), ochre dia-

monds ('aus' - aus), blue trianges ('jap' - japonica), dark

blue squares ('trop' - tropical japonica), light blue dia-

monds (temp - temperate japonica), purple dots ('aro' -

aromatic).

Principal component analysis within indica lines

To further determine the ability of the 1k-RiCA to assess

the diversity within ‘Indicas’, a PCA was performed using

431 ‘Indica’ samples consisting of 177 diverse accessions,

41 ‘black rice’ accessions classified as ‘Indica’, and 213 lines

derived from seven different bi-parental families devel-

oped from crosses between elite ‘Indica’ rice lines (Fig. 3).
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The ‘Indica’ accessions were well distributed across the

first and second principal components (Fig. 3). The ‘black

rice’ samples were clearly separated from the bi-parental

families in the first PC that explained 36% total genetic

variance. ‘Black rice’ accessions grouped exclusively in the

upper left corner of the PC1 vs. PC2 scatter plot. This

cluster was mainly composed of ‘Indica’ landraces (Add-

itional file 2: Table S2) while the bi-parental populations

clustered in the opposite side of the first PC where most

of the modern IRRI breeding lines were located (Fig. 3,

and Additional file 2: Table S2). Within the bi-parental

families the 1k-RiCA further distinguished the structure

between the half-sibs families Family-1, Family-4, Family-5

and Family-7 that grouped closer to each other than the

other families Family-3, and Family-6 (Fig. 3).

Polymorphism rates across pairwise combinations

Genotypic data generated from 275 accessions geno-

typed with the 1k-RiCA representing the two main rice

sub-groups employed in rice breeding programs, ‘Indica’

(177 diverse lines and 41 ‘black rice’ ‘Indica’ accessions)

and ‘Japonica’ (57 accessions), were used in pairwise

comparisons to assess the number of polymorphic SNPs

within each group and across groups. Within the 218

‘Indica’ accessions the mean number of polymorphic

SNPs across all pairwise combinations was 395 with 50%

of the values ranging between 354 and 433 polymorphic

SNPs (Fig. 4A). The average median gap between two

SNP pairs across all possible cross combinations between

the ‘Indica’ accessions was 0.542 Mbp ranging between

0.01 Mbp to 15.55 Mbp. Within the ‘Japonica’ group the

median number of polymorphic SNPs was 97 (Fig. 4B)

with 50% of the values ranging from 79 to 114. The aver-

age median gap between the ‘Japonica’ accessions was 1.61

Mbp ranging from 0.08 Mbp to 25.68 Mbp.

When pairwise combinations were estimated for inter-

specific crosses between ‘Indica’ and ‘Japonica’ accessions

the median number of polymorphic SNPs observed was

465 (Fig. 4C). The average median gap between two SNP

pairs across all possible cross combinations between the

Fig. 2 Principal component analysis of 283 O. sativa accessions using
the 1k-RiCA genotypic data. Principal component analysis of 283 rice

accessions genotyped with 895 SNP markers using the 1k-RiCA.
Subpopulation classification for 185 accessions as indica (ind), aus (aus),

tropical japonica (trop), temperate japonica (temp), aromatic (aro), and
japonica (jap) was defined based of Wang et al. (2018) and McCouch et
al. (2016) classification

Fig. 3 Principal component analysis of 431 O. sativa S. indica accessions
using the 1k-RiCA genotypic data. PCA on 431 ‘Indica’ accessions

including 177 diverse lines (ind), 41 ‘black rice’ (black rice), and 213 lines
derived from 7 bi-parental families from IRRI’s Favorable Environments
Breeding Program (Family). Diverse lines were color and coded as open

maroon circles ('ind' - indica), as solid black squares ('black rice'). Elite
breeding lines were classified by family (‘Family’) based on their pedigree
data. Blue dots ('Family-1'), open blue triangles ('Family-2'),

open magenta diamonds ('Family-3'), open inverted brown triangles
('Family-4'), green crosses ('Family-5'), ochre dots ('Family-6') and yellow

diamonds ('Family-7')

Fig. 4 Polymorphic SNPs distribution across pairwise combinations of a)

indica x indica, japonica x japonica b), and c) indica x japonica. Distribution
of polymorphic markers between pairs of accessions from a) indica by
indica (ind by ind), b) japonica by japonica (jap by jap), and c) indica by

japonica (ind by jap) using 218 ‘indica’and 57 ‘japonicas’ accessions. The
average number of polymorphic markers for each class combination is

determined by a dotted line

Arbelaez et al. Rice           (2019) 12:55 Page 9 of 15



‘Indica’ × ‘Japonica’ accessions was 0.5 Mbp (0.004–

13.08 Mbp).

F1 genotypes

For each bi-parental family, F1-plant genotypes were

compared to the ‘predicted-F1’ progeny genotype. Across

the 55 F1 plants the average percentage of similarity with

the ‘predicted-F1’ was 99.22%, ranging from 97 to

99.87% (Additional file 2: Figure S10).

Genomic selection

Phenotypic data on the three traits used for cross valid-

ation of GS models, flowering time (FLW), grain yield

(GY), and plant height (PH), exhibited a Gaussian distribu-

tion (Additional file 2: Figure S11). Broad sense heritability

of accessions means, H2, was higher for PH (0.8), follow by

FLW (0.85), while GY (0.5) had the lowest H2. Average se-

lection predictive ability across 21 cross validation studies

involving six different genomic selection models and one

pedigree BLUP model on three traits were estimated. The

predictive ability across all eight models ranged from 0.69

to 0.73 for FLW, from 0.27 to 0.38 for GY, and from 0.63

to 0.66 for PH. The genomic selection model RKHS that

included the marker derived genomic and the pedigree de-

rived relationship matrixes (G +A) had the highest predict-

ive ability for GY and PH, while Bayes. A had the highest

predictive ability for FLW (Fig. 5). The pedigree BLUP esti-

mation method had the lowest predictive ability for FLW

and GY while ridge regression had the lowest predictive

ability for PH (Fig. 5).

Discussion

The 995 SNPs on the final 1k-RiCA assay are uniformly

distributed across the rice genome. The physical length

of the Nipponbare reference genome is 373,245, 519 bp

(http://rice.plantbiology.msu.edu) or 1,529.7 cM, with 1

cM equivalent to 244 kb (Chen et al. 2002). If 995

markers were uniformly distributed across all chromo-

somes they would be on average 1.53 cM apart. This

value does not differ from the empirical estimations for

the 1k-RiCA with a mean distance of 1.524 cM between

adjacent markers. Evident gaps, or regions without a

marker were found in the centromeric region of chro-

mosomes 2 and 7, the long arm of chromosomes 6 and

9, as well as the telomeric regions of chromosomes 11

and 12. These few regions where markers are less uni-

formly distributed could be addressed in the future since

this technology allows the introduction of additional tar-

get loci when new kits are designed. Uniformly distrib-

uted SNP sets have been reported to be useful for

breeding applications to develop interspecific popula-

tions (Orjuela et al. 2010), conduct QTL analysis,

characterize the genetic structure of rice populations

(Thomson et al. 2017), and implement genomic selec-

tion (Habier et al. 2009). Equidistant distribution maxi-

mizes detection ability of recombination events with the

given marker density and minimizes distance to causal

trait-contributing polymorphisms for QTL detection.

As opposed to classical genotyping-by-sequencing (GBS)

approaches (Elshire et al. 2011) the 1k-RiCA consistently

scores the same set of SNPs with SNP call rates average of

95%, resulting in identical genotype matrixes, which facili-

tates analyses across multiple runs without further bioinfor-

matics. While array based technologies provide similar

consistencies at higher densities, they are significantly more

expensive to run at a significantly lower throughput making

the 1k-RiCA more suitable for high throughput breeding

applications that rely on fast turnaround time for decision

making and benefit from a lower per-sample cost at the

sacrifice of SNP density.

Markers from the 1k-RiCA showed high levels of repeat-

ability across independently genotyped samples (> 99%) and

high concordance rates with the respective SNP alleles re-

ported for the same accession within the C6AIR and 3000

rice genomes datasets. The 1% genotypic mismatches ob-

served in the repeatability analysis was to a large portion

due to miscalled heterozygous loci in inbred lines and

Fig. 5 Prediction abilities of genomic selection models for FLW, GY
and PH based on 5 fold cross-validation using the 1k-RiCA. Average

predictive abilities across 5 fold stratified cross validations experiments
(k = 5) using 353 rice lines measured for flowering time (FLW), grain

yield (GY), and plant height (PH) for seven different statistical models;
Pedigree BLUP (Pedigree), BayesA, BayesB, BayesC, BayesLasso (Bayes
L), rrBLUP (ridge regression) and RKHS using genomic and pedigree

relationship matrices (RKHS G + A)
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through imputation this source of error was reduced to

0.3% increasing repeatability to 99.7%. Comparison of SNP

calls between 1k-RiCA and two different platforms, C6AIR

and 3000 rice genomes showed on average values of 99%

accuracy. These empirical results demonstrated the high

levels of repeatability, accuracy, and robustness of the 1k-

RiCA, which are comparable to those reported in TruSeq

Amplicon panels for cancer clinical testing (Simen et al.

2015; Misyura et al. 2016), and other genotyping platforms,

such as the C6AIR in rice (Thomson et al. 2017), and the

CottonSNP80K in cotton (Cai et al. 2017).

Quality of the 1k-RiCA did not differ when two different

DNA extraction protocols were compared. The cheap and

‘quick and dirty’ manual CTAB extraction method and

semi-automated magnetic bead-based DNA extraction and

purification yielded similar results, giving the 1k-RiCA an

additional advantage over reduced-representation sequen-

cing genotyping approaches which necessitate the use of

specific restriction enzymes, that tend to be sensitive to

contaminants often carried over by precipitation-based ex-

traction methods such as CTAB. The highly purified DNA

preparations using column- or magnetic-based systems re-

quired for reduced-representation sequencing genotyping

approaches, however, are significantly more expensive to

obtain and often not available to resource-limited breed-

ing programs.

The 1k-RiCA adequately captured the diversity present

in ‘Indica’ accessions. It was able to differentiate within

and between ‘Indica’ landraces and breeding populations

(Fig. 3). It did not, however, adequately differentiate be-

tween and within the aromatic, temperate, and tropical-

japonica subgroups (Fig. 2).

These limitations stem from the original design and

purpose of this platform, which was to capture the diver-

sity of ‘Indica’ lines of tropical rice breeding programs

across South Asia and South East Asia, including IRRI’s

FEPB. By filtering for high MAF within the ‘Indica’ sub-

group, many of the selected SNPs displayed low MAF or

even monomorphism within ‘Japonica’ subgroups and

hence did not contribute to power of discrimination.

The low average number of polymorphic rates between

‘Japonica’ and ‘Japonica’ comparisons (97) makes the 1k-

RiCA unsuitable for temperate and tropical japonica

breeding programs or diversity analyses. On the other

hand the 1k-RiCA showed similar average numbers of

polymorphic SNPs in pairwise combinations between

‘Indica’ and ‘Indica’ (395) and between ‘Indica’ and ‘Ja-

ponica’ (465) (Fig. 4), making it suitable for the analysis

of intra-specific breeding populations and inter-specific

populations between ‘Indica’ and ‘Japonica’ accessions.

The genotyping results of the F1 indica × indica, and

indica × japonica plants showed the 1k-RiCA accurately

called heterozygous genotypes. Considering that the

mean repeatability estimated in the study is about 99%,

the 1% of dissimilarities between predicted and F1 calls

can be explained by genotypic errors of the 1k-RiCA.

The ability to robustly call heterozygous genotypes

makes the 1k-RiCA suitable for genotyping segregating

populations, marker assisted backcrossing (MABC) and

genomic prediction in segregating populations.

A major challenge in implementing GS in public rice pro-

grams is the cost associated with genotyping. The expected

value of the information gained by genotyping must exceed

the cost of obtaining genotype information (Boichard et al.

2012). The most straightforward approach to reduce per-

sample genotyping cost is by reducing SNP density and in-

creasing multi-plexing of samples per NGS run to a point

that does not jeopardize prediction accuracies.

Testing the 1k-RiCA data as genotypic input for gen-

omic prediction in 21 cross-validation experiments using

six different GS, and one pedigree model demonstrated

its suitability for predicting complex traits such as flow-

ering time (FLW), grain yield (GY), and plant height

(PH). The genomic selection prediction abilities for

FLW (0.69–0.73), GY (0.27–0.38) and PH (0.63–0.66)

were comparable to those reported by Spindel et al.

(2015) for the same traits (FLW = 0.63, GY = 0.31, PH =

0.34), using 73,147 SNP markers, and rice materials from

the same breeding program. Furthermore, the observa-

tion that the RKHS G + A model was more accurate

than the pedigree BLUP model indicates that the

markers are effective in capturing the variation among

relatives due to Mendelian sampling, which is key for

being able to select within families effectively based on

prediction. Spindel et al. (2015) suggested that using ~ 1

SNP every 0.2 cM (~ 6 K SNPs) could be ideal for per-

forming selection in inbred rice breeding populations.

Grenier et al. (2015) estimated that in rice with a map of

18 Morgans, and effective population size (Ne) of ~ 50,

about 3,600 SNPs would be needed under an infinitesi-

mal model with additive effects and under the assump-

tions of evenly distributed QTLs on the chromosome for

genomic prediction purposes. However, in their empir-

ical confirmation study using a cross validation analysis

in upland rice, the greatest accuracies were achieved

with a matrix size of 1,700 SNPs, suggesting that the as-

sumptions presented in the simulation study did not ne-

cessarily apply. Furthermore a GS optimization study in

wheat has shown that 1,000 marker were enough to

reach the highest predictive ability for GS in a breeding

program (Cericola et al. 2017). Similar optimization re-

sults were also obtained for a GS study in barley where a

minimum marker set of 1,000 was found to be necessary

in order to decrease the risk of low prediction accuracies

(Nielsen et al. 2016). The predictive abilities obtained in

this study suggest that the marker density for the 1k-

RiCA may be sufficient and currently cost-effective for

the application of GS in elite rice indica germplasm.
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Alternatively the integration of imputation in the 1k-

RiCA could increase genomic prediction accuracies if

high density genotypic information is generated from

the parental material of GS tested population. Increases

in prediction accuracies using this approach have been

observed in simulation studies (Gorjanc et al. 2017) and

empirical studies in cattle (Wang et al. 2016), salmon

(Tsai et al. 2017), and rapeseed (Werner et al. 2018).

The introduction of 21 trait markers associated with 11

different traits of agronomic importance adds to the utility

of the 1k-RiCA. While it would not be cost effective to

run the 1k-RiCA solely for the trait information (single

SNP assay chemistry such as KASP would be cheaper), it

enables the application of marker assisted selection

(MAS) and trait profiling in conjunction with fingerprint-

ing. In breeding programs this facilitates the enrichment

of favorable alleles, while in diversity-type analyses it al-

lows for the assessment of presence/absence of a range of

traits. While some of the markers are diagnostic and can

be used individually others are only linked to the causal

polymorphism and are best used in combination as haplo-

types. The use of haplotypes adds to robustness, since sin-

gle linked markers might not be predictive in unknown

backgrounds, where linkage may be broken.

Apart rom direct use in MAS, the presence of these

markers opens the possibility of refining genome wide

prediction models. Using trait marker information as

fixed effect parameters has the potential to increase se-

lection accuracies as reported by Rutkoski et al. (2014)

for adult plant resistance to stem rust in wheat, by Spin-

del et al. (2015) for rice plant height and by Lopes et al.

(2017) in livestock. The 1k-RiCA can be used efficiently

by combining these two different molecular breeding ap-

proaches for traits associated with bacterial leaf blight,

grain physical and chemical quality traits, submergence

tolerance and other biotic stresses.
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