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ART ICLE Open Ac ce s s

1q21.1 distal copy number variants are associated
with cerebral and cognitive alterations in humans

Abstract
Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple
neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a
high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain
structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-
CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088
non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized
methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only)
between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects
of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and
cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct
cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and
somewhat larger in deletion carriers—the latter potentially mediated by ICV or cortical surface area. These results shed
light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on
specific brain structures and effect on cognitive function.

Introduction
Inter-individual differences in brain structure are

highly heritable1, but identifying the genes that con-

tribute to brain development is challenging. Genome-

wide association studies (GWAS) of brain anatomical

structures indicate the influence of many single-

nucleotide polymorphisms (SNPs) with small effect

sizes2,3, but the links to brain function remain weak.

Evidence is emerging that some rare copy number var-

iants (CNVs)—that is, regions of the genome that are

either deleted or duplicated—are associated with both

substantial brain size and shape differences; for example,

the 7q11.234,5, 22q11.26,7, 15q11.28–11 and 16p11.2

proximal12–14 and distal CNVs15. Many of these CNVs

also have a wide-ranging phenotypic impact, including

poorer cognitive abilities8,16–18 and increased risk of

neurological or neurodevelopmental disorders. The

strong impact of these CNVs on brain structure

and behaviour make them valuable for studies of the

molecular mechanisms contributing to aberrant human

neurodevelopment.

The 1q21.1 distal CNV has a known large effect on head

circumference, as evident from a high prevalence of micro-

and macrocephaly in deletion and duplication carriers,

respectively19–21. This, along with its position in a region

that is rich in genes unique to the human lineage (i.e. absent

in primates)22,23, makes the 1q21.1 distal CNV particularly

interesting for the study of aberrations in human brain

structure. However, its relatively low frequency, 1 in ~3400,

(deletions) and 1 in 2100 (duplications)8,16, has hampered

the study of its effects on brain structure.

1q21.1 distal deletion and duplication carriers are both

at higher risk for several neurodevelopmental disorders

including schizophrenia24,25, intellectual disability (ID),

developmental delay, speech problems, autism spectrum
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disorders, motor impairment19,26–28 and epilepsy26,29, in

addition to the separate risk for the duplication carriers

for ADHD30, bipolar disorder and major depression31,32.

Further, general cognitive ability (IQ) was lower in car-

riers in a small clinical study19 and in the UK Biobank33.

In addition, 1q21.1 distal CNVs display a positive dose

response on head circumference19–21, height and

weight34,35 and are associated with various somatic dis-

eases and traits, including bone and muscle deviations34

and cataract36 (deletion only), diabetes36 (duplication

only) and heart disease36–39 (both). Conversely, several

studies report carriers without any clinically evident

phenotypes19,38 and considerable heterogeneity40,41, sug-

gesting incomplete penetrance and variable expressivity.

The Df(h1q21)+/− mouse, deleted in the syntenic 1q21.1

distal region, displays some phenotypes similar to human

CNV carriers, including reduced head-to-tail length and

altered dopamine transmission in response to psychosti-

mulants, as seen in people with schizophrenia42.

The 1q21 region in humans is rich in low copy number

repeats20,43 and contains several recurrent CNVs with

differing breakpoints21,37. Thus, gene estimates vary, but

the core interval encompasses at least 12 protein-coding

genes including several human-specific genes such as

HYDIN221,37, NOTCH2NLs22,23 and the DUF1220/Old-

uvain domain-containing NBPF-encoding genes44–46—the

two latter were recently shown to have evolved as a two-

gene unit47. Particularly interesting in the context of brain

development are the recently characterized NOTCH2NL

genes, absent in human’s closest living relatives and

shown to prolong cortical neurogenesis22,23.

Despite the strong effects on neurodevelopmental traits

and disorders, the impact of the 1q21.1 CNVs on human

brain structure is largely unknown. Here, we present the

first large-scale systematic neuroimaging study of 1q21.1

distal CNV carriers, investigating brain structure in

>37,000 individuals including 28 deletion and 22 dupli-

cation carriers. We mapped the effect of the 1q21.1 distal

CNV on subcortical volumes, intracranial volume (ICV)

and global and regional measures of mean cortical

thickness and surface area. We investigated variation in

cognitive task performance and supplemented with

exploratory mediation analysis of the brain on cognition

in the UK Biobank. Given prior findings19–21,48, we

explored a dose-dependent effect of copy number on

brain structures and decreased cognitive performance for

both 1q21.1 distal deletion and duplication carriers in

comparison to non-carriers.

Materials and methods
Sample description

The brain structural sample comprises a total of 39

cohorts with genotyping and magnetic resonance imaging

(MRI) data—38 from the ENIGMA-CNV consortium in

addition to a subsample of the UK Biobank49 (project ID

#27412). Demographic characteristics for each cohort are

described in Supplementary Table 1 with a reference to

participants’ collection and datasets including individual

inclusion and exclusion parameters. Extended informa-

tion on diagnosis and family information can be found in

Supplementary Note 1 and age distribution of the cohorts

in Supplementary Fig. 1. All participants gave written

informed consent and sites involved obtained ethical

approvals. The main 1q21.1 distal sample consisted of 28

deletion carriers, 22 duplication carriers and 37,088 non-

carriers (Table 1) from 13 different datasets and 15 scan-

ner sites with various ascertainments (family, clinical and

population studies, case–control study for psychiatric

disease) collected up until 30 September 2019. Non-

carriers were defined as having no CNVs known to cause

neurodevelopmental diseases (as defined in Supplemen-

tary Table 2). In the meta-analysis, an independent Ice-

landic sample from deCODE Genetics consisting of two

deletion carriers and five duplication carriers in addition

to 1150 non-carriers was added.

Genotyping and QC

The genotypes were obtained by genotyping with

commercially available platforms, performed at partici-

pating sites for each cohort (Supplementary Table 1).

Individuals were excluded exclusively based on quality

control (QC) parameters from the CNV calling. No

exclusion was done due to ancestry in the primary ana-

lysis, but the effect of ancestry was evaluated in a separate

analysis (see below).

CNV calls and validation in the core ENIGMA-CNV sample

Almost all cohorts had CNVs called and identified in a

unified manner as described previously15. In brief, CNVs

were called using PennCNV50 and appropriate population

frequency (PFB) files and GC (content) model files

(Supplementary Table 3 and Supplementary Notes 2 and

3). Samples were filtered and CNVs identified based on

standardized QC metrics15 (Supplementary Notes 2 and

3). The 1q21.1 distal region was well covered by all arrays

(Supplementary Fig. 2). CNVs overlapping the region of

interest (1q21.1 distal and 1q21.1 distal and proximal)

were identified with the R package iPsychCNV, visualized

and manually inspected.

Image acquisition and processing

All brain measures were obtained from structural T1-

weighted MRI data collected at participating sites around

the world and analysed with the standardized image ana-

lysis, FreeSurfer, quality assurance and statistical methods

as per the harmonized neuroimaging protocols developed

within ENIGMA23 and ENIGMA3 (http://enigma.ini.usc.

edu/protocols/imaging-protocols/). Further detail on data
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processing is provided in Supplementary Note 4. Details

on study, scanner, vendor, field strength, sequence,

acquisition parameters and FreeSurfer versions used are

outlined in Supplementary Table 4.

Statistical analysis

Imaging data processing and CNV calling were per-

formed locally and de-identified CNV and imaging data

were provided for a central mega-analysis. One of a pair

of duplicates was kept. Relatives were removed from

the sample used for the main analysis. In addition, we

conducted a number of sensitivity analyses to test the

robustness of the results (Supplementary Note 5 and

Supplementary Tables 5–8). Individuals with a mini-

mum overlap of 0.4 to regions with known pathogenic

CNVs (Supplementary Table 2) were excluded from the

analysis regardless of copy number status as were indi-

viduals from scanner sites without 1q21.1 distal CNV

carriers.

Brain measures were normalized in R v3.3.2 by an

inverse normal transformation of the residual of a linear

regression on the phenotype correcting for covariates as

done previously15. For the primary analysis, covariates

were age, age2, sex, scanner site and ICV. In the analysis of

ICV, ICV was not included as a covariate. These final

covariance-corrected values were used in downstream

analysis and are reported for each measure. For compar-

ison between groups, normalization was carried out

including only the groups addressed (deletion and non-

carriers, duplications and non-carriers) except for the

deletion versus duplication comparison, where values

from normalization of the entire dataset were used due to

the low numbers.

For the copy number dosage effect analysis (i.e. the effect

on brain structure of 1q21.1 distal copy number variation),

a linear regression on the copy number status of the indi-

viduals (deletion= 1, normal= 2, duplication= 3) was

performed using the following model: covariance-corrected,

Table 1 Demographic data.

ENIGMA-CNV deCODE

del nc dup P del nc dup P

n 28 37,088 22 2 1150 5

Sex, male (%) 15 (54%) 17,912 (48%) 9 (41%) 1 (50%) 511 (44%) 2 (33%)

Age (mean (SD)) 41.7 (19.0) 61.1 (12.8) 55.4 (12.7) <0.001 53.5 (2.1) 44.8 (12.4) 46.4 (16.5)

Children (age <18 years) 4 (14%) 665 (1.8%) <0.001 0 0 0

Known diagnosis (%) 11 (39.3%) 2424 (6.5%) 7 (32%) <0.001 238 (21%) 2 (40%)

Disease type (%)

ADHD 1 (~0%) 181 (16%) 2 (40%)

Autism 2 (0.2%)

Bipolar disorder 7 (0.6%)

Clinically recruited (no diagnosis) 6 (21.4%) 4 (18%)

Dyslexia 1 (3.6 %)

F-ICD-10 diagnosis (UK Biobank) 858 (2.3%) 1 (4%)

G-ICD10 diagnosis (UK Biobank) 1 (3.0%) 1439 (3.8%) 1 (4%)

MDD 1 (~0%)

Multiple diagnosesa 2 (7.2%) 1 (4.5%)

Persistent depressive disorder 1 (~0%)

SCZ 1 (3.6) 124 (0.3) 48 (4.2%)

Scanner sites 11 15 8 2 2 1

Datasets 9 13 7 1 1 1

ADHD attention deficit disorder, clinically recruited in clinical NDD study but without a diagnosis, MDD major depressive disorder, SCZ schizophrenia, del deletion
carrier, nc non-carriers, dup duplication carrier, P P value, AvPD avoidant personality disorder, OCD obsessive-compulsive disorder, DPD dependent personality
disorder, STPD schizotypal personality disorder, NS non-significant.
P value is based on a χ

2 test for categorical values and ANOVA for continuous values.
aFirst deletion carrier: agoraphobia, AvPD, OCD, DPD, other substance-related disorder, conduct disorder. Second deletion carrier: specific phobia, social phobia, MDD,
AvPD, STPD. Duplication carrier: social phobia, OCD, MDD, AvPD.
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normalized brain measure ~ copy number (deletion= 1,

non-carrier= 2, duplication= 3). For comparison between

groups, a two-sample, two-sided t test assuming equal

variance in all carrier/non-carrier groups was employed

(R v3.3.2) where deletion or duplication carriers were

compared either to each other or to non-carriers. To cor-

rect for the multiple comparisons, we calculated the num-

ber of independent outcome measures through the spectral

decomposition of a correlation matrix using MatSpDlite

(https://neurogenetics.qimrberghofer.edu.au/matSpDlite/)

of the three global, seven subcortical and 68 regional cor-

tical measures. Based on the ratio of observed eigenvalue

variance to its theoretical maximum, the estimated

equivalent of independent measures was 36. Thus, we set

the significance threshold at α= 0.05/36= 0.0014. We

report the uncorrected P values throughout the manuscript.

Effect size is calculated as the absolute effect size (the

difference in mean between the two copy number groups

in the t test—which, in this case, equals Cohen’s D as the

standard deviation of the normalized brain measures is

one) and the estimate of beta in the linear regression.

Plots were generated using R library ggplot2 v2.2.151.

Regional cortical visualization was done with the R

package ggseg v1.5.1.

In a novel analysis, the independent Icelandic data were

processed and analysed as the main dataset. We meta-

analysed the results using the R package metafor v2.0.0, as

previously15.

Cognitive task performance data

We downloaded behavioural performance measures

on seven cognitive tests (the pairs matching task, the

reaction time task, reasoning and problem-solving tests,

the digit span test, the symbol digit substitution test and

the trail making A and B tests) from the UK Biobank

repository, performed by at least 10% of the participants.

The results were processed following the general

approach by Kendall et al.16. For more details, see

Supplementary Note 6. For the analysis of the seven

cognitive measures, we set the significance threshold

to α= 0.05/7= 0.007.

Mediation analysis

Mediation analyses were done with the R package

mediation v4.4.7. Brain measures were normalized as

described above and cognitive tasks were corrected for

age, age2 and sex prior to input into the analysis. We

report the proportion of the total effect of the CNV on

cognitive task performance mediated by the brain mea-

sures (‘path ab’/‘path c’), with P values calculated

through quasi-Bayesian approximation using 5000 simu-

lations. We set the significance threshold at α= 0.05/

((2+ 4) × 6)= 1.4 × 10−3 given the test of two structures

for deletion and four for duplication carriers on six

cognitive tests. The digit span test was excluded since no

1q21.1 CNV carriers had results from both this cognitive

test and brain structural data.

Results
Sample characteristics

The main 1q21.1 distal (146.5–147.4Mb, hg19) brain

structural dataset consisted of 28 deletion and 22 dupli-

cation carriers and 37,088 non-carriers (derived from the

same scanner sites as the CNV carriers) from ENIGMA-

CNV and UK Biobank (Table 1, separate demographics in

Supplementary Table 9). The age of CNV carriers was

lower (41.7 ± 19.0 (deletions), 55.4 ± 12.7 (duplications),

respectively) than that of non-carriers (61.1 ± 12.1)

(Table 1). Eleven deletion carriers and seven duplication

carriers had a known neurological, neurodevelopmental

or psychiatric diagnosis or had been recruited in a clinical

CNV study. The remaining carriers either did not have an

established diagnosis or were recruited in studies from

which diagnostic information was unavailable (Table 1

and Supplementary Table 10). Of the 37,088 non-carriers,

6.5% (2425) had an established neurological, neurodeve-

lopmental or psychiatric disorder.

1q21.1 distal CNV associated with global cortical surface

structures

For our main dataset, there was a significant positive

association between the number of 1q21.1 distal copies

and ICV (β= 1.47, P= 2.8 × 10−25) as well as cortical

surface area (β= 0.81, P= 1.1 × 10−8) (Fig. 1 and Sup-

plementary Table 5) at a significance threshold of P <

0.0014 after correction for age, age2, sex, scanner site

and ICV. In contrast, a significant negative copy number

dosage effect was identified for the caudate (β=−0.49,

P= 6.9 × 10−4) and hippocampal volumes (β=−0.56,

P= 1.3 × 10−4). T tests indicated a decrease in ICV

(Cohen’s D=−1.84 (−17%), P= 1.6 × 10−22) for dele-

tion carriers and an increase for duplication carriers

(Cohen’s D= 0.90 (+10%), P= 2.3 × 10−5), respectively,

compared to non-carriers (Supplementary Table 6). For

a raw value plot of ICV, see Supplementary Fig. 3. The

cortical surface area dosage effect was primarily driven

by the deletion carriers with a significantly lower total

cortical surface area (Cohen’s D=−1.13 (−23%), P=

2.1 × 10−9) and the dosage effect on caudate and hip-

pocampus was primarily driven by duplication carriers

with significantly smaller caudate (Cohen’s D=−0.71

(−16%), P= 0.0012) and hippocampal (Cohen’s D=

−0.92 (−15%), P= 4.1 × 10−5) volumes than non-

carriers (Fig. 1 and Supplementary Table 7). Adding an

independent Icelandic dataset with two deletions, five

duplications and 1150 non-carriers (Table 1) in a meta-

analysis strengthened the majority of the dosage results

(Supplementary Fig. 4 and Supplementary Tables 11 and 12)
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and revealed additional significant between-group differ-

ences in nucleus accumbens, caudate and putamen (Sup-

plementary Table 12).

A number of sensitivity analyses were run on the main

dataset, namely:

(a) Matching each carrier with one non-carrier for age,

sex, scanner site and ICV or age, sex, scanner site;

(b) including only: (i) non-affected individuals

(i.e. excluding individuals with a known

neurodevelopmental or neurological disorder

Fig. 1 Cortical surface area and ICV show a positive dosage effect and caudate and hippocampus a negative dosage effect to copy

number in the 1q21.1 distal region in our main sample (ENIGMA-CNV and UK Biobank). Boxplots of subcortical volumes, cortical surface area
and mean cortical thickness and ICV are shown. Deletion carriers (del) in red, non-carriers (nc) in grey and duplication carriers (dup) in blue,
respectively. The normalized brain values are presented. Boxplots represent the mean. Copy number dosage effect is noted at the bottom of each
panel. Significant differences after correction between groups are noted as *P < 0.0014, **P < 0.00014, ***P= 0.000014. Centre line represents the
median, box limits are the upper and lower 25% quartiles, whiskers the 1.5 interquartile range and the points are the outliers. All analyses were
corrected for age, age squared, sex, scanner site and ICV (except for ICV).
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diagnosis; (ii) adults (age ≥ 18); (iii) non-affected

adults; (iv) children (age < 18); (v) ENIGMA-CNV

or (vi) UK Biobank;

(c) controlling for ancestry;

(d) excluding ICV as a covariate or;

(e) including first- and second-degree relatives (see

Supplementary Note 5 for methods).

These analyses validated the overall effects (Supple-

mentary Tables 5 and 6).

The 1q21.1 distal CNV is associated with regional brain

structures

The largest dosage effects for the regional cortical sur-

face area were found in the frontal lobes followed by the

cingulate cortex—with additional significant effects in

three regions of the parietal and temporal lobes (Fig. 2 and

Supplementary Table 7). Likewise, through t tests, the

largest effects in both deletion and duplication carriers in

comparison to non-carriers were observed in the frontal

and cingulate cortices (Fig. 2 and Supplementary Table 8).

For regional cortical mean thickness, we identified sig-

nificant negative dosage effects in the superior temporal

region and significant positive dosage effects for the

pericalcarine region (Fig. 2 and Supplementary Tables 7

and 8). Similarly, significant increases in mean cortical

thickness were observed in deletion carriers versus non-

carriers in the pars triangularis and superior temporal

regions and a significant decrease in the pericalcarine

region (Fig. 2 and Supplementary Table 8). All regional

results were corrected for age, age2, sex, scanner site and

ICV. Sensitivity analyses similar to those performed for

subcortical regions confirmed the robustness of the

results (Supplementary Tables 7 and 8).

1q21.1 distal CNV associated with cognitive performance

and mediation by brain structures

Deletion and duplication carriers had different cognitive

profiles in comparison to non-carriers when testing for

association in seven different neuropsychological tests

available from the full UK Biobank sample: deletion car-

riers had significantly poorer performance in three tests:

symbol digit substitution, trail making B and pairs

matching, while duplication carriers had significantly

poorer performance in two tests: reaction time and the

reasoning and problem-solving task (Table 2).

Testing the effect of brain structures on cognitive tests

in UK Biobank participants, larger ICV and total surface

area were associated with better performance on almost

all tests (Table 3 and see Supplementary Table 13 for

sample size details). A larger hippocampus was associated

with better performance for symbol digit substitution,

trail making A and B (Table 3) and a larger caudate was

associated with higher performance on the trail making

A (Table 3).

Fig. 2 Results from the t tests and linear regression of 1q21.1 copy number variation on regional cortical surface area and cortical

thickness. First and third rows: Effect sizes (Cohen’s d for the t tests, beta coefficient for the dosage/linear regression). Second and fourth rows:
Statistical significance in –log 10 of the P value. Significant areas in rows 1 and 3 are marked with black lines with increasing thickness for increasing
significance (P < 0.0014). The column names indicate the comparisons with del= deletion carriers, nc= non-carriers, dup= duplication carriers.
All measures were corrected for age, age2, sex, scanner site and ICV.
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Next, we tested whether the brain structures sig-

nificantly associated with 1q21.1 distal CNV carriers

might mediate the effect of the CNV on cognition. For

two of the three tests associated with deletion carrier

status, there were significant mediation effects (sig-

nificance threshold 1.4 × 10−3): cortical surface area and

ICV accounted for 5 and 10%, respectively, of the poorer

performance of deletion carriers on symbol digit sub-

stitution, and 7 and 17%, respectively, of their poorer

performance on the trail making B test (Table 3).

Discussion
Our main finding was a significant positive dosage effect

in humans of 1q21.1 distal copy number on ICV and

cortical surface area, with the largest differences in frontal

and cingulate cortical surface area. We also identified a

significant negative dosage effect on caudate and hippo-

campal volumes. A number of sensitivity analyses con-

firmed the robustness of the results. Both 1q21.1 distal

deletion and duplication carriers showed poorer cognitive

performance, although on different tests, with an indica-

tion that decreased ICV/cortical surface area might

mediate the effect in deletion carriers.

The 1q21.1 distal CNV causes copy dosage effect on brain

structures

We found a strong effect of the 1q21.1 distal CNV on

the total cortical surface area, while no overall effect on

mean cortical thickness was observed. A specific increase

in the size of the cortical surface area with little effect on

cortical thickness is observed throughout mammalian

evolution including the primate lineage leading to

humans52. This possibly reflects that cortical thickness

and surface area appear to be driven by distinct genetic

processes53. This pattern may be the result of an increased

number of symmetric or self-renewing cell-division

cycles, leading to an expansion of the neural progenitor

pool and subsequently to an increase in the number of

cortical neurons—in line with the radial unit hypothesis52.

Interestingly, although not significant, mean cortical

thickness tended to decrease in deletion carriers in the

frontal cortical surface areas with the highest effect sizes,

resembling a pattern found in lissencephaly54. This could

suggest that large regional decreases in cortical surface

area correlate inversely with mean cortical thickness.

The biomechanical forces of brain growth are thought to

form the expansion of the cranium so that the skull grows

in harmony with the expanding brain55. Thus, the positive

copy number dosage effect on cortical surface area may

directly trigger the effect on head circumference19–21 and

ICV of 1q21.1 distal carriers due to modifications in

pressure. Altered mechanical pressure might also cause

the negative copy number dosage effect on the hippo-

campus and caudate volumes, effects on subcortical

volumes also observed in a UK Biobank exploratory study

on six individuals with a 1q21.1 distal duplication56.

Human-specific genes may affect the cortical surface area

and cross-species effects

The positive copy number dosage effect on brain

structure with the same direction as for weight and

height34,35 likely results from altered gene expression as

observed in 1q21.1 distal CNV cell lines48. In an inde-

pendent experiment on fetal tissue, we also observed

dynamic expression patterns of the genes in the 1q21.1

interval consistent with potential roles in cortical neuro-

genesis and development (Supplementary Note 7 and

Supplementary Figs. 5 and 6).

GWAS based on the hg19 genome assembly have not

identified hits in the 1q21.1 genomic region for ICV57,

total cortical or regional surface area53,58. Assembly of the

1q21.1 region59 and thus gene discovery is complicated

due to the presence of numerous low copy number

repeats20,43 and has been faulty until the GRCh38 genome

Table 2 1q21.1 CNV deletion and duplication carriers show deficits in specific cognitive functions.

Test Suggested domain n del vs. nc dup vs. nc

del nc dup Cohen’s D (SE) P Cohen’s D (SE) P

Pairs matching Working memory 119 468,709 186 −0.36 (0.09) 7.3E− 05** 0.03 (0.01) 0.7

Reaction time Simple processing speed 115 464,648 181 −0.12 (0.06) 0.18 −0.23 (0.07) 2.1E− 03

Reasoning and problem solving Fluid intelligence 29 154,490 71 −0.48 (0.19) 9.2E− 03 −0.33 (0.12) 5.3E− 03

Digit span Numeric memory 12 47,569 27 −0.27 (0.14) 0.36 0.14 (0.07) 0.47

Symbol digit substitution Complex processing speed 24 111,900 28 −0.78 (0.2) 1.4E− 04** 0.04 (0.02) 0.83

Trail making A Visual attention 23 98,495 27 −0.29 (0.15) 0.16 −0.14 (0.07) 0.45

Trail making B Visual attention 23 98,494 27 −0.87 (0.21) 3.1E− 05*** −0.19 (0.1) 0.33

n sample size, del deletion carriers, dup duplication carriers, nc non-carriers, SE standard error, P P value.
Multiple comparison-corrected significant findings (P < 0.007) are indicated in bold and with *<0.007, **<0.0007 and ***<0.00007.
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assembly. This may explain the lack of GWAS hits in

the region.

Candidates for a dosage-dependent amplifier of the

CNV-associated brain phenotypes are the recently iden-

tified human-specific NOTCH2NL genes that confer

delayed neuronal differentiation and increased progenitor

self-renewal22,23—in line with the radial unit hypothesis52.

The areas with the highest regional effect sizes overlap

with the areas of the highest expression of NOTCH2NLA

and C in utero22 in concordance with an early

Table 3 Mediation analysis of brain structures over the association between 1q21.1 distal CNV carrier status and

performance in the cognitive tasks in the UK Biobank.

Path B—effect of brain structure

on cognition

Deletion Duplication

Estimate (SE) P Prop. mediated P Prop. mediated P

Pairs matching

Caudate 0.0023 (0.0053) 0.66 3.5E− 03 0.85

Hippocampus 0.005 (0.0052) 0.34 9.8E− 03 0.68

SurfArea 0.031 (0.0055) 1.9E− 08 −0.07 0.65 −4.4E− 03 0.9

ICV 0.027 (0.0054) 4.3E− 07 −0.12 0.64 −0.07 0.51

Reaction time

Caudate −0.0016 (0.0054) 0.77 −2.3E− 03 0.67

Hippocampus 0.01 (0.0053) 0.053 0.01 0.04

SurfArea −0.0095 (0.0056) 0.091 0.02 0.13 7.3E− 04 0.78

ICV 0.029 (0.0055) 2.4E− 07 −0.1 0.07 −0.03 2.4E− 03

Reasoning and problem solving

Caudate −0.0059 (0.0091) 0.51 5.7E− 03 0.55

Hippocampus 0.0031 (0.0089) 0.73 −9.6E− 05 0.95

SurfArea 0.052 (0.0094) 2.6E− 08 0.06 0.250 −7.4E− 04 0.97

ICV 0.15 (0.0092) 3.7E− 59 0.25 0.24 0.18 0.04

Symbol digit substitution

Caudate 0.0011 (0.0077) 0.88 −4.2E− 03 0.83

Hippocampus 0.04 (0.0075) 6.5E− 08 −0.01 0.82

SurfArea 0.055 (0.0079) 3.8E− 12 0.05 2.4E− 03 6.9E− 04 0.99

ICV 0.066 (0.0079) 3.6E− 17 0.1 4.0E− 04 0.13 0.68

Trail making A

Caudate 0.034 (0.0084) 5.7E− 05 4.4E− 04 1

Hippocampus 0.04 (0.0081) 1.0E− 06 3.0E− 03 0.97

SurfArea 0.046 (0.0086) 1.1E− 07 0.09 0.19 1.1E− 03 0.98

ICV 0.059 (0.0085) 6.1E− 12 0.21 0.20 −0.01 0.99

Trail making B

Caudate 0.021 (0.0083) 0.012 −0.01 0.79

Hippocampus 0.04 (0.008) 6.9E− 07 −0.01 0.86

SurfArea 0.082 (0.0085) 6.4E− 22 0.07 8.0E− 04 8.9E− 03 0.92

ICV 0.11 (0.0084) 1.2E− 36 0.17 1.2E− 03 0.16 0.73

Path B is the effect of the brain structure on cognition overall including all 1q21.1 deletion and duplication carriers (4–13 CNV carriers in each group) and non-carriers
(n= 10,501–30,924; for exact numbers, see Supplementary Table 13). Each calculation included 5000 simulations.
The significance value for multiple comparisons (1.4 × 10−3) are in bold
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developmental effect such as the macrocephaly observed

in utero in a 1q21.1 distal duplication carrier38. Our

observations of a 2% reduced skull diameter in the 1q21.1

deletion mouse (Supplementary Fig. 7 and Supplementary

Notes 8 and 9) and recent findings of decreased total

brain volume focused on the temporo-parietal and sub-

cortical areas in the deletion mouse60 suggest that genes

overlapping between human and mice (nine of ten mice

genes are syntenic to the human region42) and not specific

to humans are also involved in the altered skull and brain

morphology. However, although diameter and volume are

not directly comparable, the 17% decrease in ICV in

human 1q21.1 deletion carriers would still point towards a

substantial role of human-specific genes or genes with

altered functions in comparison to mice. This underlines

the need for additional data to disentangle which specific

genes are involved in the skull and brain structural phe-

notypes. Of note, we also observed shorter bones overall

in the 1q21.1 deletion mice (Supplementary Fig. 8 and

Supplementary Note 9), expanding on previous head-to-

tail length data42, and lower bone mineral density in

female mice (Supplementary Fig. 9 and Supplementary

Note 9), which mirror bone characteristics from human

deletion carriers34 increasing the number of observed

cross-species effects between the 1q21.1 mice and human

1q21.1 deletion carriers.

1q21.1 distal CNV deletion and duplication carriers show

deficits in different cognitive functions

Our findings of widespread lower performance across

several tests in different domains for both carrier groups in

the volunteer-based UK Biobank sample are in line with

cognitive results from a recent study33 and support that

cognitive function in CNV carriers largely without a neu-

rodevelopmental diagnosis may still be compromised8,16.

Interestingly, the frontal and cingulate regions61, with the

greatest cortical effect sizes for distal 1q21.1, correlate

particularly with cognitive function and have gone through

the greatest expansion during human development and

evolution62. Our analyses indicated that the decreases in

cognitive task performance are partially mediated by the

observed differences in ICV and cortical surface area,

reflecting the positive correlation between brain volume

and intellectual function in line with previous findings63.

The decrease in performance for several cognitive tasks in

duplication carriers despite a larger ICV and cortical sur-

face area suggests that the positive correlations may only be

applicable within a certain narrower range. Interestingly,

recent genetic analysis of NOTCH2NL in archaic and

modern humans revealed ongoing adaptive evolution

towards a lower dosage of the protein64, suggesting nega-

tive effects of excessive NOTCH2NL protein.

Our brain structural findings in 1q21.1 distal CNV

carriers overlap with brain alterations in associated

disorders: for example, ADHD65, autism spectrum dis-

orders66, schizophrenia67, bipolar disorder68, major

depressive disorder69 and subtypes of epilepsy70, but the

exact overlaps differ between carrier groups. Of note,

1q21.1 distal deletion and duplication carriers display

direct, opposite effects on several brain structures, while

at risk for the same neurodevelopmental diseases. Other

pathogenic CNVs also display overlapping disease risk

and similar opposite copy number effects6,8–15 including

effects on the cortical surface area in 22q11 and 16p11.2

proximal CNV carriers6,12–14. These CNVs impact dif-

ferent genes, but may converge on the same downstream

pathways altering cortical surface area formation, similar

to what has been reported for behavioural and neuro-

cognitive phenotypes28.

This also suggests that other risk factors interplay to

cause disease. It also supports that subgroups within

neurodevelopmental disorders can be defined based on

genetic profile and brain structural differences.

We demonstrate large effects of 1q21.1 distal CNVs on

brain structure and cognition in humans including a

mediation effect. These findings provide insight into

molecular mechanisms involved in critical stages of

human brain development and mapping of gene dosages

to brain structural fingerprints.
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