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2:1:1 Resonance in the Quasi-Periodic Mathieu Equation
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Abstract. We present a small ε perturbation analysis of the quasi-periodic Mathieu equation

ẍ + (δ + ε cos t + ε cos ωt)x = 0

in the neighborhood of the point δ = 0.25 and ω = 0.5. We use multiple scales including terms of O(ε2) with three time scales.
We obtain an asymptotic expansion for an associated instability region. Comparison with numerical integration shows good
agreement for ε = 0.1. Then we use the algebraic form of the perturbation solution to approximate scaling factors which are
conjectured to determine the size of instability regions as we go from one resonance to another in the δ − ω parameter plane.
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1. Introduction

The following quasi-periodic Mathieu equation,

ẍ + (δ + ε cos t + ε cos ωt)x = 0 (1)

has been the topic of a number of recent research papers [1–7]. In particular, the stability of Equation (1)
has been investigated. (For given parameters (ε, δ, ω), Equation (1) is said to be stable if all solutions
are bounded, and unstable if an unbounded solution exists.) A stability chart for ε = 0.1 is shown in
Figure 1. This chart was obtained in [1] by numerical integration of Equation (1). A striking feature
of this complicated figure is that various details appear to be repeated at different length scales. For
example, the shape of the instability regions around the point δ = 0.25 and ω = 1 appear to be similar
to those near the point δ = 0.25 and ω = 0.5, except that the latter regions are smaller in scale. The
purpose of this work is to investigate this similarity, and to obtain a scaling law which relates these
two regions. Our approach will be based on approximate solutions obtained by perturbation methods.
In the case of the instability regions near the point δ = 0.25 and ω = 1, a perturbation analysis has
been performed in [5], giving approximate closed form expressions for the transition curves separating
regions of stability from regions of instability. For example, the following approximate expression was
derived for the largest of the local instability regions near δ = 0.25 and ω = 1, see Figure 2:

ω = 1 + ε

(
S ±

(
1

2
+ δ1

S

))
+ O(ε2) (2)



196 R. Rand and T. Morrison

Figure 1. Stability diagram of Equation (1) from [1]. White regions are unstable, black regions are stable.

Figure 2. Transition curves near δ = 0.25 and ω = 1 based on Equation (2) from [5]. Compare with Figure 1.

where

δ = 1

4
+ δ1ε and S =

√
4δ2

1 − 1 (3)

In the present work we use a different perturbation method to obtain a comparable approximate
expression for the largest of the local instability regions near δ = 0.25 and ω = 0.5. By comparing the
two expressions we are able to determine scaling factors which relate their relative sizes.
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The title of this paper is explained by noting that Equation (1) may be viewed as an oscillator with
natural frequency

√
δ which is parametrically forced with frequencies 1 and ω. Near the point δ = 0.25

and ω = 0.5, the three frequencies are in the ratio of 2:1:1.

2. Perturbation Method

We use the method of multiple time scales on Equation (1), with the goal of obtaining an approximate
expression for transition curves in the neighborhood of δ = 0.25 and ω = 0.5. To accomplish this, we
found it necessary to go to O(ε2) and to use three time scales:

ξ = t, η = εt, and ζ = ε2 t (4)

As usual in this method [8] the dependent variable x becomes a function of ξ , η, and ζ , giving a new
expression for the second derivative of x in Equation (1):

d2x

dt2
= ∂2x

∂ξ 2
+ 2ε

∂2x

∂ξ∂η
+ ε2 ∂2x

∂η2
+ 2ε2 ∂2x

∂ξ∂ζ
+ O(ε3) (5)

We expand x , ω, and δ as a power series of ε:

x = x0 + ε x1 + ε2 x2 + · · ·
ω = 1

2 + εω1 + ε2ω2 + · · ·
δ = 1

4 + εδ1 + ε2 δ2 + · · ·
(6)

and substitute these series into Equations (1), (5) and collect terms in ε. Using subscripts to represent
partial differentiation, we obtain:

ε0 : x0,ξξ + 1

4
x0 = 0 (7)

ε1 : x1,ξξ + 1

4
x1 = −2x0,ξη − δ1x0 − x0, cos ξ

−x0 cos

(
ξ

2
+ ω1η + ω2ζ

)
(8)

ε2 : x2,ξξ + 1

4
x2 = −2x0,ξζ − x0,ηη − 2x1,ξη − δ2x0 − δ1x1

−x1 cos ξ − x1 cos

(
ξ

2
+ ω1η + ω2ζ

)
(9)

We write the solution to Equation (7) in the form

x0(ξ, η, ζ ) = A(η, ζ ) cos
ξ

2
+ B(η, ζ ) sin

ξ

2
(10)

where A and B are as yet undetermined slowly varying coefficients. Substituting Equation (10) into
Equation (8) and removing secular terms gives the following equations on A and B:

Aη =
(

δ1 − 1

2

)
B

(11)
Bη = −

(
δ1 + 1

2

)
A
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Equations (11) have the solution:

A(η, ζ ) = A1(ζ ) cos
S

2
η + A2(ζ ) sin

S

2
η (12)

and a similar expression for B(η, ζ ). Here S =
√

4δ2
1 − 1 and A1 and A2 are as yet undetermined slowly

varying coefficients.
Having removed secular terms from Equation (8), we may solve for x1, which may be written in the

abbreviated form:

x1(ξ, η, ζ ) = C(η, ζ ) cos
ξ

2
+ D(η, ζ ) sin

ξ

2
+ periodic terms (13)

where the first two terms on the RHS of Equation (13) are the complementary solution of Equation (8)
involving as yet undetermined slowly varying coefficients C(η, ζ ) and D(η, ζ ). The “periodic terms”
represent a particular solution of Equation (8). Although the expressions for these are too long give
here, we note that they consist of sinusoidal terms with arguments

3

2
ξ ± S

2
η, ω1η + ω2ζ ± S

2
η, and ξ + ω1η + ω2ζ ± S

2
η (14)

Next, we substitute the expressions for x0 and x1, Equations (10) and (13), and the expressions for A and
B, Equation (12), into the x2 equation, Equation (9), and eliminate secular terms. This gives equations
on C and D which may be written in the following form:

Cη =
(

δ1 − 1

2

)
D + periodic terms

(15)
Dη = −

(
δ1 + 1

2

)
C + periodic terms

Although the expressions for the ‘periodic terms’ are too long to give here, we note that they consist of
sinusoidal terms with arguments

S

2
η,

(
2ω1 ± S

2

)
η + 2ω2ζ, and

(
2ω1 ± S

2

)
η − 2ω2ζ (16)

Note that Equations (15) on the arbitrary coefficients C, D of x1 are similar in form to the Equations
(11) on the arbitrary coefficients A,B of x0, except that the C-D eqs. are nonhomogeneous. Thus our

next step is to remove secular terms from Equations (15). Since S =
√

4δ2
1 − 1, we see that the periodic

terms in Equations (15) which have argument S
2 η are resonant. For general values of ω1, these are the

only resonant terms. However, if ω1 = S/2, then some of the other periodic terms in Equations (15)
will be resonant as well, because in that case (2ω1 − S

2 )η = S
2 η.

We first consider the case in which ω1 does not equal S/2. Eliminating secular terms in Equations
(15) turns out to give the following equations on the slow flow coefficients A1 and A2 which appeared
in the expressions for A and B, Equation (12):

A1ζ = −p A2

(17)
A2ζ = p A1
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where

p = δ1

(
24δ2 − 24δ2

1 − 7
)

12 S
(18)

Since all solutions to Equations (17) are periodic and bounded, no instability is possible.
We next consider the resonant case in which ω1 = S/2. Elimination of secular terms in Equations (15)

gives:

A1ζ = −p A2 + q (−A1 sin 2ω2ζ + A2 cos 2ω2ζ )

(19)A2ζ = p A1 + q (A2 sin 2ω2ζ + A1 cos 2ω2ζ )

where p is given by Equation (18), and where q is given by the following equation:

q = 1

2
+ δ1

S
(20)

As we show in the next section, Equations (19) exhibit unbounded solutions. Parameter values for which
unbounded solutions occur in (19) correspond to regions of instability in the stability diagram.

3. Analysis of the Slow Flow

In order to investigate the stability of the slow flow system (19), we write it in the form:

u̇ = −pv + q(−u sin �t + v cos �t)

(21)
v̇ = pu + q(v sin �t + u cos �t)

where A1, A2, 2ω2 and ζ have been replaced respectively by u, v, � and t for convenience.
We begin by transforming (21) to polar coordinates, u = r cos θ , v = r sin θ :

ṙ = −qr sin(�t − 2θ )
θ̇ = p + q cos(�t − 2θ )

(22)

Next we replace θ by φ = �t − 2θ :

ṙ = −qr sin φ

(23)
φ̇ = � − 2p − 2q cos φ

Writing Equations (23) in first order form,

dr

dφ
= −qr sin φ

� − 2p − 2q cos φ
(24)
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we are easily able to obtain the integral:

r = const√
� − 2p − 2q cos φ

(25)

Equation (25) represents a curve in the u–v plane. If the denominator of the RHS vanishes for some
value of φ, then the curve extends to infinity and the corresponding motion is unstable. This case
corresponds to the existence of an equilibrium point in the φ equation (the second of Equations (23)).
In the contrary case in which the denominator of the RHS of Equation (25) does not vanish, the motion
remains bounded (stable) and the φ equation has no equilibria. Thus the condition for instability is that
the following equation has a real solution:

cos φ = � − 2p

2q
(26)

The transition case between stable and unstable is given by the condition:

� − 2p

2q
= ±1 ⇒ � = 2p ± 2q (27)

Substituting Equations (18),(20) and using � = 2ω2, Equation (27) becomes:

ω2 = δ1

(
24δ2 − 24δ2

1 − 7
)

12 S
±

(
1

2
+ δ1

S

)
(28)

where S =
√

4δ2
1 − 1. In addition, for resonance we required that

ω1 = S

2
(29)

Thus we obtain the following expression for transition curves near δ = 0.25 and ω = 0.5:

ω = 1

2
+ ε

S

2
+ ε2

(
δ1

(
24δ2 − 24δ2

1 − 7
)

12 S
±

(
1

2
+ δ1

S

))
+ · · · (30)

where

δ = 1

4
+ εδ1 + ε2δ2 + · · · (31)

Equation (30) gives a value of ω for a given value of δ, the latter defined by δ1, δ2 and ε. However, for a
given value of ε, any value of δ close to 0.25 can be achieved in the form 1/4 + εδ1, that is by choosing
δ2 = 0. So in our numerical evaluation of Equations (30) and (31), we take δ2 = 0. See Figure 3 where
the transition curves (30) are displayed for ε = 0.1 along with the results of previous work, Equation
(2), already displayed in Figure 2 cf. Figure 1.
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Figure 3. Transition curves near δ = 0.25 and ω = 0.5 based on Equation (30). Also shown for comparison are the transition
curves near δ = 0.25 and ω = 1 based on Equation (2) from [5]. Compare with Figures 1 and 2.

4. Discussion

We now have asymptotic approximations for corresponding instability regions at two points in the
δ − ω parameter plane, and we wish to compare them. Based on an expansion about the point δ = 0.25
and ω = 1, we have Equation (2) from [5]. And from the work presented in this paper, we have
Equation (30), valid in the neighborhood of δ = 0.25 and ω = 0.5. We repeat these expansions here
for the convenience of the reader, using the subscript A for Equation (2), and the subscript B for
Equation (30):

ωA = 1 + ε

(
S ±

(
1

2
+ δ1

S

))
+ O(ε2) (32)

ωB = 1

2
+ ε

S

2
+ ε2

(
δ1

( − 24δ2
1 − 7

)
12 S

±
(

1

2
+ δ1

S

))
+ O(ε3) (33)

Note that although these expansions are truncated at different orders of ε, both are the lowest order
approximations which respectively yield two transition curves (as represented by the ± sign), and which
therefore allow the thickness of the associated instability region to be computed.

We compare these two expressions in two ways: 1) the centerline of the region, and 2) the thickness
of the region.

The respective centerlines are given by the following approximations:

ωA = 1 + εS + O(ε2) (34)

ωB = 1

2
+ ε

S

2
+ O(ε2) (35)
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From these we may conjecture that the scaling of the centerline in the ω direction goes like ω0, being the
ω value of the point of expansion. That is, in the case of Equation (34), ω0 = 1, while for Equation (35),
ω0 = 1/2, and we observe that the two curves have comparable shape, but that they are stretched in the
ω direction in proportion to their values of ω0.

Moving on to the question of the thickness of the two instability regions, these are obtained by
subtracting the expressions for the upper and lower transition curves, and are given by the following
approximations:

thicknessA = 2ε

(
1

2
+ δ1

S

)
+ O(ε2) (36)

thicknessB = 2ε2

(
1

2
+ δ1

S

)
+ O(ε3) (37)

We see that once again the two expressions have the same general form, but that the smaller region
is a factor of ε thinner than the larger region. This leads us to the conjecture that this is due to the
difference in the order of the resonance. For example, this would lead to the guess that the comparable
instability region associated with the point δ = 0.25 and ω = 1/3 (which would correspond to a 2 : 2

3 : 1
resonance) would have a similar equation for its thickness, but with an ε3 in the leading term.

5. Conclusions

We have presented a small ε perturbation analysis of the quasi-periodic Mathieu equation (1) in the
neighborhood of the point δ = 0.25 and ω = 0.5. We used multiple scales and found that we needed
to go to O(ε2) and use three time scales in order to obtain a minimal representation of an instability
region. Comparison with numerical integration of Equation (1) showed good agreement for ε = 0.1.

We used the perturbation approximation to estimate the scaling of instability regions as we go from
one resonance to another in the δ − ω parameter plane. This is an interesting use of perturbation
approximations. A comparable result could not be easily achieved by purely numerical methods. For
example, inspection of Figure 1 would lead us to conclude that the instability region near δ = 0.25 and
ω = 1 is much thicker than the comparable region near δ = 0.25 and ω = 0.5. However, it would be
difficult to conclude using only numerical results that the ratio of thicknesses was approximately ε, as
we showed in this work.
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