Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368
H. S. Yathirajan, ${ }^{\text {a }}$ A. M. Vijesh, ${ }^{\text {a }}$
B. Narayana, ${ }^{\text {a }}$ B. K. Sarojini ${ }^{\text {b }}$ and Michael Bolte ${ }^{\mathrm{c} *}$
${ }^{\text {a }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, ${ }^{\mathbf{b}}$ Department of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, and ${ }^{\text {c }}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$
R factor $=0.061$
$w R$ factor $=0.154$
Data-to-parameter ratio $=14.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,3-Dibromo-1-(3-bromo-2-thienyl)-3-(4-fluoro-phenyl)propan-1-one

Geometric parameters of the title compound, $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{3} \mathrm{FOS}$, a chalcone derivative, are in the normal ranges. The bromo substituents at the central $\mathrm{C}-\mathrm{C}$ single bond are trans to each other.

Comment

We have previously reported the crystal structures of (2E)-1-(3-bromo-2-thienyl)-3-(4,5-dimethoxy-2-nitrophenyl)prop-2-en-1-one (Yathirajan, Sarojini, Narayana, Ashalatha \& Bolte, 2006), (2E)-1-(3-bromo-2-thienyl)-3-(2,5-dimethoxyphenyl)-prop-2-en-1-one (Yathirajan, Sarojini, Narayana, Bindya \& Bolte, 2006), (2E)-1-(3-bromo-2-thienyl)-3-(4-chlorophenyl)-prop-2-en-1-one (Yathirajan, Ashalatha et al., 2006) and (2E)-1-(3-bromo-2-thienyl)-3-(4-methoxy-2,3,6-trimethylphenyl)-prop-2-en-1-one (Yathirajan, Narayana et al., 2006). The crystal structure of 2,3-dibromo-1-(2,4-dichlorophenyl)-3-(4,5-dimethoxy-2-nitrophenyl)propan-1-one was reported in the preceding paper (Yathirajan et al., 2007). In continuation of our studies of chalcones and their derivatives, the title chalcone dibromide, (I), was prepared by the bromination of the chalcone, and its crystal structure is reported.

A perspective view of compound (I) is shown in Fig. 1. Bond lengths and angles can be regarded as normal [Cambridge Crystallographic Database, Version 5.28, November 2006, updated January 2007 (Allen, 2002); Mogul, Version 1.1 (Bruno et al., 2004)]. The Br substituents at the central $\mathrm{C}-\mathrm{C}$ single bond are trans to each other and the carbonyl group is coplanar with the thienyl ring (Table 1). The two rings are almost coplanar [dihedral angle $5.4(6)^{\circ}$].

Experimental

(2E)-1-(3-Bromo-2-thienyl)-3-(4-fluorophenyl)prop-2-en-1-one $(3.11 \mathrm{~g}, 0.01 \mathrm{~mol})$ was treated with bromine in acetic acid (30%) until the orange colour of the solution persisted. After stirring for half an hour, the contents were poured on to crushed ice. The resulting solid mass was collected by filtration. The compound was dried and recrystallized from ethanol. Crystals of (I) suitable for structure determination were obtained from acetone by slow evaporation

Received 23 March 2007
Accepted 26 March 2007
(yield 80%; m.p. $353-355 \mathrm{~K}$). Analysis for $\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{3} \mathrm{FOS}$: found (calculated): C 33.03 (33.15), H 1.67(1.71), S 6.70\% (6.81\%)

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{8} \mathrm{Br}_{3} \mathrm{FOS}$	$V=1440.3(3) \AA^{3}$
$M_{r}=470.98$	$Z=4$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=11.8008(14) \AA$	$\mu=8.55 \mathrm{~mm}^{-1}$
$b=7.5062(8) \AA$	$T=173(2) \mathrm{K}$
$c=16.758(2) \AA$	$0.22 \times 0.20 \times 0.19 \mathrm{~mm}$

Data collection

Stoe IPDSII two-circle

diffractometer
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
$T_{\text {min }}=0.188, T_{\text {max }}=0.203$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.154$
$S=0.98$
2524 reflections

> 6024 measured reflections 2524 independent reflections 1826 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.075$ 172 parameters H-atom parameters constrained

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{Br} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 3$	$-178.4(5)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 11-\mathrm{S} 1$	$-2.0(11)$

H atoms were found in a difference map but were refined using a riding model, with $\mathrm{C}_{\text {aromatic }}-\mathrm{H}=0.95 \AA$ or $\mathrm{Csp} p^{3}-\mathrm{H}=1.00 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest residual electron density peak is located $0.89 \AA$ from atom S1 and the deepest hole is located $0.85 \AA$ from atom Br1.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in

Figure 1
The molecular structure of compound (I), with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

HSY thanks the University of Mysore for research facilities.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. \& Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.
Yathirajan, H. S., Ashalatha, B., Narayana, B., Bindya, S. \& Bolte, M. (2006). Acta Cryst. E62, o4551-o4553.
Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. \& Bolte, M. (2007). Acta Cryst. E63, o2196-o2197.

Yathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. \& Bolte, M. (2006). Acta Cryst. E62, o5010-o5012.

Yathirajan, H. S., Sarojini, B. K., Narayana, B., Ashalatha, B. V. \& Bolte, M. (2006). Acta Cryst. E62, o3964-o3965.

Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. \& Bolte, M. (2006). Acta Cryst. E62, 04048-o4049.

[^0]: (C) 2007 International Union of Crystallography All rights reserved

