
Computational Psycholinguistics — Chapter 2 (Daelemans & De Smedt) 

1 

2 COMPUTATIONAL MODELLING IN ARTIFICIAL INTELLIGENCE 

Walter Daelemans and Koenraad de Smedt 

Chapter prepared for: 
De Smedt, K. (1996). Computional models of incremental grammatical encoding. In A. 
Dijkstra & K. de Smedt (Eds.) (1996). Computational psycholinguistics: AI and connectionist 
models of human language processing (pp. 24-48). London: Taylor & Francis, 1996. 
 
© 1996 Taylor & Francis 
Nonfinal prepublication copy. Do not quote from this version. 
 



Computational Psycholinguistics — Chapter 2 (Daelemans & De Smedt) 

2 

2 COMPUTATIONAL MODELLING IN ARTIFICIAL INTELLIGENCE................................. 1 
2.1 Introduction ......................................................................................................... 3 
2.2 Symbol manipulation ........................................................................................... 4 
2.3 Architectures........................................................................................................ 5 
2.4 Knowledge representation formalisms.................................................................. 6 
2.5 Some modelling principles................................................................................... 6 

2.5.1 Procedural/declarative representations................................................. 6 
2.5.2 Type/token .......................................................................................... 7 
2.5.3 Search ................................................................................................. 8 
2.5.4 Planning .............................................................................................. 9 

2.6 AI paradigms and formalisms for knowledge representation................................. 9 
2.6.1 Structured knowledge representation ................................................. 10 

Semantic or associative networks .................................................... 10 
Frames ............................................................................................ 11 
Inheritance ...................................................................................... 11 
Marker Passing and Spreading Activation ....................................... 12 
Conceptual dependency structures and conceptual graphs ............... 13 

2.6.2 Production systems............................................................................ 13 
2.6.3 Logic................................................................................................. 14 

2.7 Grammar formalisms ......................................................................................... 15 
2.7.1 Phrase structure grammars and automata ........................................... 15 
2.7.2 More expressive formalisms.............................................................. 18 

2.8 Advantages and disadvantages of symbolic systems........................................... 20 
2.9 Epilogue: finding your way in AI and CL........................................................... 21 
2.10 References ....................................................................................................... 22 



Computational Psycholinguistics — Chapter 2 (Daelemans & De Smedt) 

3 

2.1 Introduction 

Artificial Intelligence (AI) is a branch of computer science in which methods and techniques 
are developed that permit intelligent computer systems to be built. These systems allow the 
simulation of different aspects of human and animal cognition, including perception, action, 
communication, problem solving, and learning. Whether these systems are really intelligent is 
a controversial issue which will not concern us here (see for example Copeland, 1993, for an 
overview). What is more important is that AI stimulated researchers in cognitive psychology 
to be more explicit in their theories about mental processes. By the very fact that AI enabled 
machines to somehow carry out linguistic and other cognitive tasks, researchers could no 
longer ignore the possibilities of computer models as a precise reflection of ideas about how 
humans carry out such tasks. Put briefly, AI instigated the use of a computational vocabulary 
and provided programming methods and tools for building working models of language 
processing and other aspects of cognition. 

AI approaches to natural language are often referred to as computational linguistics (CL) 
or natural language processing (NLP) although not all computational linguists see their work 
as belonging to AI. For some computational linguists, the linguistic aspect is the most 
important: the goal of the implementation of a natural language processing program is not so 
much a simulation of human language processing, but rather as a test of linguistic theory with 
respect to its principles, consistency, correctness, and linguistic coverage. For other 
computational linguists, the computer science aspect is more important: natural language 
processing presents complex information processing problems and therefore the challenge is 
to arrive at efficient solutions to these problems by means of powerful mathematical and 
computer processing techniques. 

From our point of view, the problem with some AI models of language processing is 
therefore that they do not seek to account for the characteristics of psycholinguistic processes 
in humans, but rather are meant to be in line with linguistic theory and with the state of the art 
in computer science. Moreover, AI researchers often also pursued the construction of working 
systems that can be applied to solving practical problems, for example spelling and grammar 
checking, machine translation, human-computer communication, etc. These systems, the 
products of language technology or linguistic engineering, are designed only for special 
practical purposes. They are based on designs that disguise fundamental problems in 
modelling aspects of language processing, and are therefore of no real psychological interest 
(Garnham, 1994). 

But even if many AI models of language processing are not particularly suited or intended 
as psycholinguistic models, the large body of AI research is not to be dismissed as irrelevant 
for computational psycholinguistics for two reasons. First, even if AI researchers have 
somewhat different goals than psycholinguists have, they also have to face the same 
fundamental problems, so there is no reason why AI solutions should always be wrong or 
irrelevant from a psycholinguistic point of view. On the contrary, to a certain extent there has 
been some cross-fertilization between AI and psychology. Second, the rich repertoire of 
modelling techniques provided by AI has proven practical and useful in building 
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computational models of language processing that are of psychological interest, as witnessed 
in several chapters in Parts II and III of this volume. The aim of the current chapter is to 
support the readers’ understanding of the models presented in those chapters by introducing 
the essentials of the AI methods that underlie those models. 

While AI has assimilated many different computational methods including the 
connectionist approaches discussed in Chapter 3, the current chapter will be restricted to 
traditional or mainstream AI, which is based on symbol manipulation. The next section will 
explain this basis. Then the chapter will briefly introduce some of the architectures, 
modelling principles, and formalisms offered by AI. It concludes with a discussion of the 
shortcomings of AI and a brief guide to the literature. 

2.2 Symbol manipulation 

AI considers linguistic and other intelligent tasks as problems requiring the acquisition, 
representation and use of knowledge. Consequently, the use of knowledge representation and 
manipulation is central in AI. Much of the research in AI has led to theories of problem 
solving and knowledge representation in general, while language processing tasks such as the 
production and interpretation of utterances are often seen as particular instances of more 
general problem classes. The main research questions include the following. Which 
knowledge sources are necessary; which strategies should be used in processing; and how can 
all of this be represented and stored so as to be executed by a computer? The answers of 
traditional AI are based on symbolic representations of knowledge, and on processing as 
symbol manipulation. 

The fact that computers can be seen as general symbol manipulators and not just number 
crunchers is due to Allen Newell, for which he received the 1975 Turing Award. With 
Herbert Simon, he formulated the Physical Symbol System Hypothesis (PSSH), a central 
hypothesis in both AI and Cognitive Science (Newell, 1980). According to the PSSH, mental 
processes are no more than the operations of a physical system that is capable of 
manipulating symbols. Not only human brains, but also computers have these capacities. The 
PSSH projects the mental onto the physical as follows. Mental concepts (including linguistic 
concepts, such as phonemes and words) are represented by physical symbols. The term 
physical means that the symbols should be implemented in some sense in physical reality, for 
example as electric states in a computer memory. Relations between concepts are represented 
by structures (groupings) of physical symbols. Mental functions are represented by physical 
processes notated as programs that manipulate physical symbol structures. 

Programs are themselves represented as symbol structures, so that they can be 
manipulated by other programs or even by themselves. Because of this recursion, learning 
can be explained within this framework: the mind can change itself in useful ways by 
manipulating its own mental structures and programs through learning. According to the 
PSSH, the manipulation of symbol structures is both necessary and sufficient for cognition. A 
consequence of the PSSH is that cognition is independent from its physical realization. In 
other words, the hypothesis holds regardless of whether physical symbols are located in the 
human brain as networks of neurons, or implemented in a computer as pointers to memory 
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locations on a silicon chip. More detailed, layered views on computation and cognition based 
on symbol manipulation have been put forward in the literature (Newell, 1982; Pylyshyn, 
1989; Steels, 1990; Marr, 1982). 

2.3 Architectures 

AI approaches complex tasks by decomposing them into subtasks so as to make the 
modelling of the task more manageable. Figure 1.1 in Chapter 1 provides an overview of 
comprehension and production of natural language and their possible decomposition into 
modules representing subtasks. In how far these modules are autonomous, and in how far 
they interact with one another, are topics of much debate. This debate goes on not only in AI, 
but also in connectionism, where there has recently been a move towards more modular 
architectures, e.g. CALM (see Chapter 3). One extreme is a strictly sequential architecture, 
where the different modules are accessed in sequence: output of one component is input to 
the next component.  The other extreme is to have no modules at all, but to have an integrated 
system where knowledge at all levels acts together. 

Clearly, other kinds of architectures exhibiting some limited form of interaction between 
the different modules have been proposed to address certain processing issues. In the area of 
sentence comprehension (see Chapter 8), for instance, a strictly sequential architecture is 
problematic. Possible syntactic structures can run into the hundreds or thousands for normal 
sentences, due to the combinatory explosion of several individual lexical and structural 
ambiguities. However, these often be resolved as a natural side-effect of solving semantic 
ambiguities. Therefore, a sequential ‘syntax first’ strategy, in which all possible syntactic 
parses are computed first and are then input to the semantic component, is impractical. 
Instead, a tighter interaction has been pursued by CL researchers as well as psycholinguists. 

One possible interaction consists of a form or turn taking between modules in an 
interleaving architecture. This is realized, for example, in the interplay between syntax and 
semantics in the UNIFICATION SPACE (see Chapter 8). Another architecture consists of a 
direct feedback from a module to the previous one. This is for example the case in the 
sentence generator POPEL, where a module responsible for conceptualizing interacts with one 
for formulating (see Chapter 11). In blackboard architectures, modules do not communicate 
directly, but via a common channel called the blackboard. In object-oriented designs, objects 
representing parts of modules communicate with other objects via message passing. 
Parallelism can be exploited by letting a module start processing before the output of the 
previous one is complete. A parallel architecture has been proposed for some models of 
incremental sentence production discussed in Chapter 11. 

Entirely different kinds of interactions are present in connectionist architectures. Localist 
connectionist systems enable direct interaction between symbols through weighted links, 
within and across modules. Distributed connectionist systems allow many symbols to be 
represented by different patterns of activity in a group of cells, thus making even the 
representation of symbols a matter of interaction. Chapter 3 provides a more in depth 
discussion of connectionism. 
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2.4 Knowledge representation formalisms 

Within each module, the AI approach aims at putting together the necessary knowledge and 
methods needed for that module to accomplish its task. This information needs to be captured 
in a formalism for the representation and manipulation of knowledge. At this point, it is 
useful to reflect on the role of formalisms in AI in general and in linguistic models in 
particular. A formalism is a description language with a syntax and (ideally) unambiguous 
semantics that provides a bridge between the computer program and the theory. 

A formalism consists of two parts. A data organization part consists of a language for 
describing domain entities, properties and relations involved. In a language processing model, 
this could contain knowledge about words and grammar rules, among other things. A second 
part, the inference part, determines methods for how the data can be used to carry out a task. 
Specific methods include logical resolution, if-then rule application, inheritance, etc., which 
will be discussed below. 

In a trivial sense, most implemented representation formalisms are equivalent, because 
they can express any computation. In general, it will therefore always be possible to translate 
the knowledge represented in one formalism into another formalism. However, representation 
formalisms differ in the kinds of abstractions they promote, and thus differ in the ease of use 
for particular problems. AI has therefore been oriented toward the development of formalisms 
that are expressive and offer powerful abstraction mechanisms, for example, to classify 
information in a minimally redundant way. In addition, practical considerations of economy, 
readability, uniformity, and ease of maintenance (see for example Daelemans, De Smedt, and 
Gazdar, 1992) may be criteria for choosing one formalism over another. 
However, the preference of certain representations over other ones should be theoretically 
motivated. Conflicts may occur. For example, a model of the lexicon that is linguistically 
felicitous removes as much redundancy as possible, but this economy is not necessarily 
psychologically felicitous (Stemberger & MacWhinney, 1986). The criteria of psychological 
realism on the one hand and linguistic abstraction on the other hand can thus be in conflict 
because they are relevant to different enterprises. 

2.5 Some modelling principles 

Having considered knowledge representation and some criteria for knowledge representation 
formalisms, we will now briefly discuss some principles and distinctions that are common in 
symbolic representations of knowledge.  

2.5.1 Procedural/declarative representations 
Let us consider the way in which the data organization and the inference methods are 
represented and operationalized. Many AI models use a declarative architecture, where the 
data organization part contains factual knowledge descriptions represented for example as 
lists of words and grammar rules. Problem solving methods are then implemented separately 
as operations performing inferences on this knowledge. For example, a model for syntactic 
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sentence parsing may consist of a general parsing method and a separately specified set of 
grammar rules for a specific language (see Chapter 8). 

In a procedural architecture, the data organization and a specific problem solving method 
are integrated in the form of procedures to carry out a specific task (see Figure 2.1). 
Consequently, reflection on data organizations and inference methods is hardly possible. This 
is no problem for models of cognitive tasks that are considered automatic and unconscious 
activities. In Chapter 11, the IPG model is given as an example of a procedural architecture 
for natural language production. In this model, syntactic constituents and grammatical 
functions are viewed as active procedures, and the syntactic tree structure is not a data 
structure but a hierarchy of procedures calling other procedures. 

declarative
architecture

procedural
architecture

{

{

linguistic 
knowledge

problem
solving method

specific linguistic 
operation

data organization inference

 

Figure 2.1 Declarative and procedural architectures. 

However, a procedural architecture is not always at an advantage. When linguistic 
knowledge and problem solving methods are tied together, they are harder to manipulate, so 
that the learning and development of procedures present serious problems. In particular, 
extensions to a procedural language processing system may lead to discrepancies between 
existing procedures and new situations, which would require additional procedures to solve 
the conflict, and so on. Most AI systems for natural language processing use a declarative 
architecture. 

2.5.2 Type/token 
In their data organizations, symbolic models usually distinguish between types and tokens. 
Tokens represent objects which can be identified in the real world and are unique, such as the 
first word you have spoken today. If this word happens to be socks then that occurrence of the 
word is unique and different from any other occurrence of the word socks. All occurrences 
are linguistic tokens of the same type, which is the word socks as it exists in the English 
vocabulary. The difference may be important for representational reasons. For example, in 
one sentence, socks may be the subject, whereas in another it may be the direct object. In one 
context, it may refer to clothing, whereas in another it may be the name of a cat. Should we 
want to represent both sentences at once in memory, then we can avoid conflicts by 
representing both tokens as separate units. Object-oriented models explicitly represent tokens 
as separate instances of types. Nevertheless, some models need to link repetitions of the same 
items more strongly and therefore use and reuse linguistic types rather than tokens. For 
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example, the spreading activation model for phonological encoding by Dell (1986) discussed 
in Chapter 13 uses units for each type of phoneme in each positional slot in the syllable. 
Repeated occurrences of these units are modelled by repeated activation of the same unit 
through time. The TRACE model discussed in Chapter 5 uses type units to handle the 
occurrences of a phoneme within a certain time window. 

2.5.3 Search 
Problem solving in AI is generally based on the representation of possible situations in the 
search for solutions. These situations are called states and the set of all states, together with 
operators to change from one state to another, is called the state space. Some of the states are 
begin states and some are goal states. Search methods are algorithms allowing a state space to 
be searched for a path leading from a begin state to a goal state. When the state space 
involves choices between possible paths leading from one state to the next, the state space 
takes the shape of a tree. Chapter 7 discusses the use of a tree shaped state space for 
segmenting complex words. This L-tree or trie is a lexicon structure where each node is 
labeled with a particular grapheme or phoneme. Words are looked up by matching each 
successive character in an input string with a node in the L-tree. 

Methods searching a tree can be blind, which means that possible states are tried in a 
systematic but uninformed way. One kind of systematic search is depth first, where at each 
choice point between several possible next states, only the first alternative is considered, 
following this path as long as possible, and backtracking to the next possibility when 
necessary. Chapter 8 discusses a model for sentence comprehension based on ATNs with 
backtracking. Another kind or search is breadth first, where all alternatives may be 
considered in parallel. Examples from Chapter 8 are the Sausage Machine and race-based 
parsing, two models of sentence comprehension with limited forms of parallel search. These 
two search methods are illustrated in Figure 2.2 

1

2

3 4

5

6 7   

1

2

4 5

3

6 7  

Figure 2.2 Depth-first search (left) and breadth-first search (right). 

Instead of being blind, search methods can make use of heuristics, i.e. knowledge about 
the domain to traverse the state space in a more efficient way (Pearl, 1980). An example of 
such a heuristic in sentence comprehension is right association: the preference to attach a 
new constituent to the rightmost node of a syntactic tree (see Chapter 8). One problem with 
heuristics is that their use can lead to a local minimum, which means that they may lead to a 
path that seems the most promising in a local context but turn out to be bad in a global 
context (as illustrated by garden path sentences). More recent and sophisticated forms of 
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search include probabilistic methods that help to escape from local minima. In the 
UNIFICATION SPACE, discussed in Chapter 8, the state space is searched with a probabilistic 
optimization technique. 

2.5.4 Planning 
Searching a solution for a problem is often viewed as planning in AI work, and planning 
techniques from everyday life are applied in the process. These techniques include, for 
instance, the division of plans in separate smaller steps, each achieving a particular subgoal 
(hierarchical planning), the analysis of appropriate means to achieve certain ends (means-
ends analysis), and on-the fly modification of plans to achieve secondary goals when 
appropriate (opportunistic planning). Chapter 10 takes a strong plan-oriented approach to 
discourse production. The TEXT model discussed in that chapter makes use of schemata, 
which are prepackaged plans for the generation of structured discourse. In order to generate 
discourse defining an object, for example, TEXT has the choice between several schemata, 
including a schema which describes parts of the object and one which lists defining 
characteristics. 

Whereas schemata are hierarchically structured plans, more recent text planners take a 
more flexible approach, e.g., by assembling plans incrementally, in the order in which the 
plan elements appear in the final text, and by choosing plan elements depending on the 
current context (see Chapter 10). Also, the modelling of spontaneous speech, for example, 
requires incremental planning. This is necessary to account for the fact that people sometimes 
start speaking before they have delineated the complete content of their utterance. Models of 
incremental planning in grammatical encoding are discussed in Chapter 11. 

2.6 AI paradigms and formalisms for knowledge representation 

There are two opposing trends in the development of formalisms for linguistic knowledge 
representation. Some of the research is aimed at using and refining existing general purpose 
AI paradigms for the representation of all knowledge, including linguistic knowledge. A full 
inventory is beyond the scope of the current chapter (see our short bibliographic guide 
below). In the following sections we will group general purpose formalisms into three main 
paradigms: frame-based formalisms, rule-based formalisms, and logic. Other research is 
aimed at the development of special purpose formalisms for language. Among these, only a 
limited number of grammar formalisms will be discussed. The choice of formalisms and 
examples is mostly determined by the models which will be further discussed in later chapters 
of this book, while only a few other formalisms that do not return in the remainder of this 
book are added because they are important. 
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2.6.1 Structured knowledge representation 

Semantic or associative networks 
Frame-based formalisms grew out of semantic (or associative) networks that were introduced 
in the sixties as models for human semantic memory (Quillian, 1968; Collins & Quillian, 
1970; Collins & Loftus, 1975; Brachman, 1979). The data organization of a semantic network 
consists of labeled nodes representing concepts and labeled links representing relations 
between concepts. Nodes can be used to represent both types and tokens. The is-a link 
hierarchically relates types to types or types to tokens, part-of links relate concepts and their 
parts, and in general any relation can be the label of a link. Figure 2.3 shows the common 
graphical notation of an example network representing some of the knowledge underlying the 
utterance Lucy weeded the vegetable garden. Note that Lucy is a named individual, and vg012 
is a token whereas garden, for instance, is a type. 

Lucy 
weed

garden

vegetables

part-of

person

vg012

vegetable 

garden

is a

is a is a

 

Figure 2.3 Part of a semantic network. 

In a semantic network, each link between two nodes represents a separate proposition, e.g. 
the fact that Lucy is a person is a proposition separate from the fact that Lucy weeds the 
garden and the fact that the garden contains vegetables. But suppose that we want to represent 
relations between more than two nodes.  A solution is to allow nodes to represent situations 
or actions. Each such node has outgoing links representing thematic roles (or cases) for 
participants in the situation or action. An example is depicted in Figure 2.4. Semantic 
networks and variants thereof have been used in several psycholinguistic models. Chapter 9 
discusses how networks can be used to represent the meaning of a text, e.g. in Kintsch’s 
construction-integration model. Chapter 12 discusses Roelofs’ model for non-
decompositional lexical semantics, based on a network with is-a and other links. 
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weed

actor object source

remove

Lucy vg012
 

Figure 2.4 A semantic network representing an action with roles. 

Frames 
In order to incorporate more structure into semantic networks, frames were introduced by 
Minsky (1975) as a representation formalism. A frame is basically a encapsulated fragment of 
a semantic network with conceptually related nodes and links that can be addressed as a 
unity. For example, one can define a frame for the remove action and the associated roles 
actor, object and source. 

The term frame is not only used for structures representing domain knowledge, but also 
for structures representing linguistic knowledge. In Dells’ (1986) model for phonological 
encoding, discussed in Chapter 14, for example, a syllable frame may consist of an onset, a 
nucleus, and a coda. In the syllable best, these roles are filled by b, e, and st, respectively. 
Several modifications have been proposed to make frames so powerful that they can be used 
as high-level programming languages: (1) constraints on the items allowed to fill each slot in 
the list; (2) recursive frames, the slots of which may contain items that are themselves frames, 
(3) procedural attachment, in which procedures are attached to roles of the frame to compute 
the fillers of these roles, and (4) inheritance, which makes inferences along is-a links; this is 
dealt with in more detail in the next section. 

Inheritance 
Given the enormous number of linguistic facts that are brought to bear in language 
processing, it is clearly important to represent this knowledge in an efficient and general way. 
Inheritance is a powerful technique to represent generalizations over descriptions in a way 
similar to is-a relations in semantic networks, and to use these generalizations to make 
inferences. Daelemans et al. (1992) motivate the use of inheritance for linguistic knowledge 
as follows. Imagine that we are setting out on the job of building a lexicon for English. We 
begin by encoding everything we know about the verb love, including its syntactic category 
and how it is conjugated. Next, we turn our attention to the verb hate. Although these words 
are antonyms, they nevertheless have a lot in common: for example, they are both transitive 
verbs and have past participle ending on -ed. To save time and space, both can be categorized 
as transitive verbs and the common information about these kinds of words can be encoded in 
just one place called, say, transitive verb. The verb love then inherits information from 
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transitive verb. Similarly, when we hit upon intransitive verbs, we collect all information 
about this kind of verbs in a place intransitive verbs. The next step is to extract from both 
classes of verbs the common information which is then stored in an even more abstract 
category verb. This is shown in Figure 2.5. 

verb

intransitive verb transitive verb

love hate beat

past participle: +(e)d

past participle: +en
meditate

 

Figure 2.5 Inheritance hierarchy of some English verbs. 

Suppose we discover the verb beat, which is transitive but not regular: it has a past 
participle ending on -en. If we let beat inherit from transitive verb, we still need to specify the 
exceptional information, but then we get an inconsistency with the inherited information. The 
obvious solution is to let the exceptional information override inherited information. This 
mechanism is called default (or non-monotonic) inheritance. Default inheritance is 
incorporated in semantic networks and frame-based representation languages used in AI. The 
sentence production model IPF, discussed in Chapter 11, is implemented in a frame-based 
language using default inheritance. Default inheritance is also used in specific linguistic 
formalisms, for example DATR (Evans & Gazdar, 1989), a formalism for lexical 
representation. 

Marker Passing and Spreading Activation 
One of the inference mechanisms available in semantic networks is marker passing , a 
process with which intersection search can be implemented. This type of search starts from 
two nodes which pass a marker to those nodes which are linked to them, a process which is 
repeated for each of those nodes. Whenever a marker originating from one of the original 
nodes encounters a marker originating from the other node, a path is found representing a 
association between the two concepts represented by the nodes. This way, semantic 
associations can be modeled, but marker passing can also be used in networks representing 
other types of linguistic knowledge. A similar inference mechanism in networks is spreading 
activation (explained in Chapter 3), where instead of discrete symbolic markers, a continuous 
(numerical) activation level is propagated along the links of a network. Chapter 12 discusses 
a model of lexical retrieval where a semantic network with labeled links is combined with 
spreading activation. 
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Conceptual dependency structures and conceptual graphs 
Many of the early symbolic AI research on natural language understanding used semantic 
network or frame-based formalisms to represent its theoretical insights. Schank and his 
students developed CONCEPTUAL DEPENDENCY THEORY for the description of the meaning 
of sentences and texts (Schank, 1975; 1980). This theory was based on semantic networks, 
but defined only a limited number of node types and link types (conceptual primitives) that 
were deemed necessary and sufficient as a language of thought to represent meaning 
unambiguously.  Any implicit information in the text (information that can be inferred by the 
reader) was to be made explicit in the conceptual dependency representation. 

This goal gave rise to the development of a large number of data structures and inference 
mechanisms (often without a well-defined semantics). Data structures included causal chains 
(a chain of states enabling or motivating actions which in turn result in, or initiate, other 
states), scripts and scenarios (prepackaged sequences of causal chains), and MOPS (Memory 
Organization Packages) (Schank & Abelson, 1977; Schank, 1982). These data structures 
enabled directed and efficient inference mechanisms, based on following up causal 
connections and associations between representations at the same and at different levels of 
abstraction. Work by Sowa (e.g. Sowa, 1984; 1991) on CONCEPTUAL GRAPHS also follows 
this approach. Chapter 9 discusses some models using scripts, scenarios and MOPS as data 
structures for discourse comprehension. One problem is that these models tend to focus on 
the data structure, and are vague on the inference part. 

The work by Schank and his students also made clear that two sources of knowledge are 
indispensable for developing useful symbolic natural language understanding systems: (1) 
knowledge about the intentions, plans and goals of different agents in narratives or dialogue, 
and (2) knowledge about preceding discourse (discourse representation). In work by Allen 
and Perrault (1980) and others, AI planning formalisms are combined with speech act theory 
to model the recognition of intention, an approach which gave rise to research on speech act 
planning, topic structure modeling, and user modeling. This AI work has influenced 
psycholinguistic models of discourse comprehension (see Chapter 9) and discourse 
production (see Chapter 10). 

2.6.2 Production systems 
Production systems are rule-based systems developed during the seventies as models for 
human problem solving (Newell & Simon, 1972). They are common in models for many 
areas of knowledge. In this kind of formalism, knowledge is expressed as rules taking the 
form of condition-action pairs: if X then do Y. For example, in a model for language 
production, one of the rules for producing questions might be the following: 

if the intention is to query the truth of P, 
then produce a sentence about P where the finite verb of the main clause is moved up 
front. 

Rules of this type, often called production rules, can only produce actual behavior with the 
help of an interpreter, a mechanism which applies the rules to reach a given goal. In addition 
to the rule-base (which acts as a kind of long-term memory), a production rule system also 
has a short-term memory (working memory) which registers the current state of the 
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computation, as well as current input and output states. The control structure of a production 
system interpreter consists of a cyclical process, where each cycle consists of three phases: 
1. Identification. This phase determines for which rules the condition sides are currently 
satisfied in working memory. 
2. Selection. It will often happen that more than one rule’s condition side will be satisfied. 
Since in general it is not desirable for all applicable rules to fire, one or more rules are 
selected on the basis of a particular conflict resolution strategy. 
3. Execution. The action part of the chosen rule is executed. Although actions can take many 
forms, the most typical ones involve the addition to or removal from working memory of 
certain facts. 

This interpreter’s mode of operation is called forward chaining or data-driven: rules are 
identified when states in working memory match their conditions; the execution of the rules 
may in their turn activate other rules, until a goal is achieved. But it is also possible to run an 
interpreter in a backward chaining or goal-driven mode: in that case, rules are identified 
when their actions match the current goals; their execution may add elements of their 
conditions as new goals when they are not present in working memory, and so on, until rules 
are found whose conditions match the current states in working memory. It is evident that 
both modes represent different kinds of search. 

Rule-based architectures have been further developed toward more sophisticated cognitive 
architectures, for example, ACT* (Anderson, 1983) and SOAR (Laird, Newell & Rosenbloom, 
1987; Rosenbloom, Laird & Newell, 1993). The ACT* system has a semantic network (see 
above) as part of its long term memory. 

Production systems have been used in a few psycholinguistic models, but no models 
based on them are discussed in the remainder of this book. Anderson, Kline and Lewis (1977) 
describe a production system model of language processing. In PROZIN (Kolk, 1987), 
agrammatism effects are simulated by manipulating the processing speed of the production 
system interpreter and the decay rate of facts in working memory. Lewis (1993) describes a 
computer model of human sentence comprehension implemented in SOAR. 

2.6.3 Logic 
Logic has often been used as a formal foundation for knowledge representation in AI. For this 
reason it is mentioned here, even if no psycholinguistic models discussed in this book are 
directly based on logic. The formal properties of logic formalisms are relatively well 
understood and make them ideally suited as a language to which other formalisms can be 
translated in order to evaluate and compare them. 

Data organization in predicate logic consists of a set of unambiguous constants 
(representing entities in the domain), a set of unambiguous predicates (representing relations 
between entities in the domain), a set of functions (mapping between sets), variables, 
quantifiers, and logical connectives. Inference in predicate logic is achieved by applying 
deductive inference rules, e.g. by means of resolution . For an introduction to the logical 
approach to knowledge representation, see e.g. Ramsay (1988). 
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A practical computer language based on a limited version of predicate logic is PROLOG 
(Clocksin & Mellish, 1984). Below is a small program that expresses the fact that Socrates 
and Plato are human, and the rule that if x is human, then x is mortal: 

human(socrates). 
human(plato). 
mortal(X) :- human(X). 

The interpreter of PROLOG uses these facts and rules to derive other facts. For example, the 
following dialog is possible, where we ask whether Socrates and Descartes are mortal, and 
who are all mortal beings the system knows. The system infers, for instance, that Socrates and 
Plato are mortal. Notice that PROLOG gives a negative answer for everything that does not 
occur in the knowledge base. 

|?-mortal(socrates). 
yes 
|?-mortal(descartes). 
no 
|?-mortal(X). 
X=socrates; 
X=plato; 
no 

Predicate logic has some severe limitations as a tool for representing linguistic knowledge 
which is incomplete, inconsistent, dynamically changing, or relating to time, action and 
beliefs. For all these problems, special purpose logics are being designed. An example is 
default logic, which handles exceptional information without having to modify existing 
general knowledge (see the section on inheritance above). 

2.7 Grammar formalisms 

Grammar formalisms constitute a special type of formalism for natural language processing, 
even though they are not unrelated to the knowledge representation paradigms and 
formalisms discussed earlier. They often use a different terminology, due to the different 
background of the developers, which is linguistics, logic, and theoretical computer science 
rather than AI, and use special notations for linguistic strings and structures. Most grammar 
formalisms were developed as part of the efforts to build systems for natural language 
understanding, which up to now received more attention in AI than natural language 
generation. 

2.7.1 Phrase structure grammars and automata 
The representation of grammatical knowledge as phrase structure rules is common for 
syntactic parsing in sentence comprehension (see Chapter 8), and to some extent, the 
recognition of complex words (see Chapter 7). The use of these rules is somewhat similar to 
production rules, but they operate on strings of linguistic items. Phrase structure rules 
basically specify how an initial symbol can be recursively expanded into a sequence of other 
symbols. 
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For example, the first rule in the rule set below specifies that a sentence (S) can be 
expanded into a noun phrase (NP) followed by a verb phrase (VP), or, inversely, that a noun 
phrase and a verb phrase can be reduced to a sentence. The selection mechanism chooses 
among various applicable rules. Often, a symbol can be expanded into different ways, for 
example in the following rule set describing how an NP can be rewritten as either an article 
followed by a noun, or an article followed by an adjective, followed by a noun. 

S -> NP VP 
NP -> PRONOUN 
NP -> ART N 
NP -> ART ADJ N 
VP -> COPULA NP 
PRONOUN -> she 
COPULA -> is 
ART -> the 
ART -> a 
ADJ -> nice 
ADJ -> smart 
N -> doctor 

A deterministic system will choose only one rule, whereas a non-deterministic system 
may search through a space of possibilities, using e.g. a parallel or backtracking search (see 
Section 2.5.3). Chapter 9 argues for determinism, as embodied e.g. in PARSIFAL. When a rule 
is chosen, the left hand side of the rule is replaced with the right hand side. Successive 
expansions develop the structure until a solution is reached in the form of a sequence of 
words. The expansion history of a particular case can be represented as a syntactic tree 
structure, for example the one in Figure 2.6. Clearly, different grammars give rise to different 
tree structures. 

S

NP

Pronoun

she

VP

Copula

is

NP

Art

a

Adj

nice

N

doctor  

Figure 2.6 A syntactic structure for She is a nice doctor. 

Phrase structure rules may operate in both directions, top-down, where the left hand sides 
of rules are rewritten as their right hand sides, or bottom-up, where the right hand sides are 
rewritten as the left hand sides. Depending on the form the left-hand side and the right-hand 
side of the phrase structure rules can take, different types of grammars can be formally 
defined: regular, context-free, context-sensitive, or unrestricted (see e.g. Hopcroft & Ullman, 
1979; Wall, 1972). Much research in CL is based on context-free grammars. 
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Languages can be described by grammars, but they can also be characterized by abstract 
computing devices called automata or transition networks. An automaton is an idealized 
machine which receives an input tape on which it performs operations according to given 
instructions. Automata have internal states and during computation they can make transitions 
from one state to another. If the automaton reaches a state designated as a final state, this may 
signify that the input has either been accepted or rejected. Thus, an automaton is effectively a 
recognizer of sentences (or other linguistic units) corresponding to a given grammar. There 
are four main classes of automata, corresponding to the different grammar types (see e.g. 
Hopcroft & Ullman, 1979; Wall, 1972). 

One class of automata are finite state automata. Figure 2.7 shows an simple automaton 
that recognizes several kinds of sequences including those consisting of art adj adj n, e.g. a 
nice smart doctor. The process starts in an initial state NP1 and accepts words, which allow it 
to perform transitions to other states. If after the last word, a state NP3 is reached, which is 
designated as a final state, the process of recognition is successful. Automata can be used to 
generate sentences as well. 

np1 np2 np3

art

adj

n

pronoun
 

Figure 2.7 A transition network for simple NPs. 

Some variants of automata have been defined and applied to parsing. In Recursive 
Transition Networks (RTNs), not only a word can be accepted on a transition, but also a 
network can be called recursively in order to recognize a string of words. Chapter 9 discusses 
Augmented Transition Networks (ATNs), which are not only recursive, but in which 
transitions can be coupled to tests and to operations on memory registers. This memory can 
be used to store information, e.g. to build syntactic structures. Another variant of automata 
are transducers, which operate on several input and output tapes at the same time. Chapter 7 
discusses models based on two-tape finite state transducers for morphological analysis. 

Clearly, parsing with a transition network can be seen as a kind of search. One way in 
which a search can often be made more effective is by storing the results of partial 
computations, so that when the search fails, one does not need to start from scratch. A chart 
parser is a device where the results of partial parses are stored in a working structure called a 
chart (e.g. Winograd, 1983). Figure 2.8 shows an example of a chart made with the grammar 
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given above. Chapter 7 discusses a model of morphological analysis based on charts. In that 
model, the items between nodes are morphemes rather than words. 

np

vp

she is a smart doctor

pronoun copula art adj n

s  

Figure 2.8 A  chart containing a record of constituents found. 

2.7.2 More expressive formalisms 
During the last decade, many grammar formalisms have been devised that have in some way 
or other departed from simple phrase structure rules (see e.g. Sells, 1985; Shieber, 1986). 
They have been applied primarily to syntax, although they are also used for modeling other 
levels of processing. For example, categories can be made more abstract by the use of 
wildcards, for example, XP may stand for NP as well as for PP. Another way to increase 
abstractness is separating information about left to right order from information about 
hierarchical relations (in terms of immediate dominance). In the following set of rules, for 
example, the first two rules representing immediate dominance are supplemented by a third 
rule which is an abstract ordering rule: 

VP -> V, NP 
VP -> V, NP, PP 
V < XP. 

Another way in which the rules are made more expressive is by adding tags to categories 
in order to represent syntactic features, for example, for number and person. In this way, 
information about agreement, for example between the subject and the finite verb, is factored 
out. In many formalisms, feature structures (or feature graphs, or feature matrices) are the 
common way to represent linguistic information. A feature structure is a recursively defined 
structure consisting of a set of features and their values. A frequently used notation writes 
feature-value pairs as feature = value, and puts square brackets around the whole feature 
structure. Figure 2.9 gives three examples of feature structures in this notation: (a) describes 
singular NPs, (b) describes third person NPs with as their heads the noun girl, and (c) 
describes third person singular NPs with as their heads the noun girl. 
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Figure 2.9 Three feature structures. 

Most of the new grammar formalisms based on feature structures are unification-based. 
Unification is prescribed as the sole information-combining operation. It can intuitively be 
described as a combination of two feature structures into a new one (see Shieber, 1986, for a 
more formal description). For example, feature structure (c) is the unification of (a) and (b). 
Besides the unification operation, a unification-based grammar consists of only declarative 
knowledge expressed in feature structures. 

Kay (1979; 1984) proposed a formalism called Functional Grammar, later called 
Functional Unification Grammar (FUG), which works along the lines sketched above. A 
unification grammar can be described as a disjunction of feature graphs describing all 
possible sentence forms in a language. The processing of a sentence with such a grammar is a 
search for the unification of an initial description of the sentence with one of the alternatives 
in the grammar. 

Several influential theories of language use linguistic descriptions which are feature 
structures, including LEXICAL FUNCTIONAL GRAMMAR (LFG; Kaplan & Bresnan, 1982), 
GENERALIZED PHRASE STRUCTURE GRAMMAR (GPSG; Gazdar, Klein, Pullum  & Sag, 
1985), and HEAD-DRIVEN PHRASE STRUCTURE GRAMMAR (HPSG; Pollard & Sag, 1987). 
We briefly mention some other grammar formalisms, which have been created as extensions 
of older formalisms by the unification operation: UNIFICATION CATEGORIAL GRAMMAR 
(UCG) was derived (Calder, Klein & Zeevat, 1988), and FEATURE STRUCTURES BASED TREE 
ADJOINING GRAMMAR (FTAG; Vijay-Shanker & Joshi, 1988). 

Logic grammars view language processing as resolution in the logic sense. Because 
resolution can be seen as unification, there is a strong link between logic grammars and other 
unification based formalisms. In DEFINITE CLAUSE GRAMMAR (DCG; Pereira & Warren, 
1980), for example, grammar rules are expressed in a way quite similar to phrase structure 
rules, but are translated into PROLOG clauses. The PROLOG resolution mechanism then 
executes the program. The rules of DCG have the general form of phrase structure rules 
(rewrite rules). Below is a small grammar for sentences of a simple form. 
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s-->np, vp. 
np-->pronoun. 
np-->determiner, noun. 
vp-->copula, np. 
pronoun-->[she]. 
copula-->[is]. 
determiner-->[a]. 
determiner-->[the]. 
noun-->[doctor]. 

The program can be used to recognize or generate sentences that conform to the grammar. 
Below is an example of two queries to recognize sentences. 

|?-s([she,is,a,doctor],[]) 
yes 
|?-s([is,she,a,doctor],[]) 
no 

SEGMENT GRAMMAR (SG; Kempen, 1987; De Smedt & Kempen, 1991) is a unification-
based formalism especially proposed for incremental syntactic processing. This formalism 
views a grammar as a collection of syntactic segments. Each segment represents a single 
hierarchical (immediate dominance) relation between two categories. The relation between a 
sentence and a noun phrase that is its subject, for example, is represented as the segment 
S-subject-NP (see Chapters 8 and 11 for details and examples). The essence of sentence 
processing in SEGMENT GRAMMAR consists of using such segments as building blocks in the 
construction of a syntactic structure for a sentence, joining them by unification. For example, 
a path S-subject-NP-head-N can be formed by unifying the NP node in an S-subject-NP and 
that in an NP-head-N segment. Chapter 11 discusses the IPF model for grammatical 
encoding, which is based on the construction of syntactic structures out of segments. Chapter 
8 explains a variant of SEGMENT GRAMMAR where unification is turned into a probabilistic 
operation dependent not only on the feature composition of the nodes to be unified, but also 
on the activation levels of these nodes (see Chapter 3 for activation based paradigms). 

2.8 Advantages and disadvantages of symbolic systems 

Symbolic approaches that are based on logic, frame-based systems, production systems, 
grammar formalisms, or on a combination of these representation techniques, are able to 
successfully perform complex natural language processing tasks. Thanks to the definition of 
formal operations – procedures that operate on the form of structures, irrespective of their 
content – symbolic systems achieve a high level of abstraction. New symbols and structures 
can be created dynamically during execution of a program. Moreover, symbolic structures 
can easily be defined recursively and can thus represent a potentially infinite number of actual 
structures. 

However, symbolic systems have a few drawbacks. First, when symbols are represented 
as single pointers to memory locations, a symbolic system is vulnerable when the properties 
of even a single symbol change. Second, symbolic systems are rigid and complex. Each 
exception requires additional rules and more processing. This is particularly problematic as 
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the system is scaled up, even though the problem of scaling up can be somewhat alleviated by 
the use of powerful mechanisms such as default inheritance. It is this sheer complexity that 
makes the system vulnerable in the case of ill-formed or incomplete input and in the case of 
unforeseen interactions between rules. When a symbolic system goes wrong, it usually does 
not degrade gracefully, but breaks down completely. Third, the data and methods must 
generally be hand-coded by the system designer, because their complexity makes it hard to 
acquire them automatically. Machine learning of natural language from data like corpora or 
machine-readable dictionaries is therefore becoming an increasingly important topic, as it 
may alleviate these knowledge acquisition and robustness problems. 

The PSSH goes a long way toward providing a framework for the study of knowledge-
based intelligence, that is, intelligence based on the construction and manipulation of models. 
However, this is less the case for behavior-based intelligence, that is, intelligent behavior 
based on direct associations between sensory input and motor output without intermediate 
models. It is an open research question whether language processing is an instance of 
behavior-based or knowledge-based intelligence, or both. It also remains to be seen whether 
language is indeed a task much like other cognitive tasks, for example playing chess, solving 
algebra problems, or recognizing visual objects, or whether it requires a mode of processing 
that is unique. 

In this chapter we have touched upon a few topics in traditional AI, but it must be stressed 
that AI is always incorporating new ideas from computer science and other disciplines such 
as neurology and biology. Recently, AI has seen the influence of radically new computing 
paradigms, including genetic algorithms, complex dynamic systems, and several kinds of 
brain style computing which are usually grouped under the term connectionism. The adoption 
of the new computing paradigms into mainstream AI has recently been stimulated by the 
availability of massively parallel hardware.  Chapter 3 of this volume will introduce 
connectionism and will show how connectionist approaches are designed to overcome the 
robustness and acquisition problems of traditional AI systems. 

2.9 Epilogue: finding your way in AI and CL 

A thorough introduction to even a small subset of the formalisms, techniques and theories 
developed in symbolic AI and CL would require several times the size of this chapter. 
However, there are several good textbooks and reference works that can be used to get a 
deeper knowledge about the concepts introduced in this chapter. Two recent textbooks on AI 
are Winston (1992) and Luger and Stubblefield (1993), an older one is Charniak and 
McDermott (1985). They include chapters on CL formalisms. The Encyclopaedia of AI 
(Shapiro, 1992) and the Handbook of AI (Barr, Feigenbaum & Cohen, 1986-1989) provide 
introductions to all subfields and most concepts in AI and CL, and contain numerous 
references to the AI literature. There are anthologies of articles on AI (Webber & Nilsson, 
1981), knowledge representation (Brachman & Levesque, 1985), and natural language 
processing (Grosz, Sparck Jones & Webber, 1986). The textbook by Winograd (1983) is a 
classic introduction to syntactic processing. 
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Programming is an essential skill for anyone who wants to develop AI models. Languages 
like LISP and PROLOG are especially suited to implement the formalisms discussed in this 
chapter. Winston and Horn (1988) and Norvig (1992) are excellent textbooks for learning 
how to program AI formalisms in LISP. Bratko (1986) and Flach (1994) do the same for 
PROLOG. Excellent textbooks especially devoted to CL are Gazdar and Mellish (1989a; 
1989b), which introduces the most important CL formalisms with their implementation in 
Lisp or Prolog, and Allen (1994). Pereira and Shieber (1987) is a classic introduction to 
implementation of CL formalisms in PROLOG. 
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