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Mammalian cells have a well-de
ned set of antioxidant enzymes, which includes superoxide dismutases, catalase, glutathione
peroxidases, and peroxiredoxins. Peroxiredoxins are the most recently identi
ed family of antioxidant enzymes that catalyze the
reduction reaction of peroxides, such as H2O2. In particular, typical 2-Cys peroxiredoxins are the featured peroxidase enzymes
that receive the electrons from NADPH by coupling with thioredoxin and thioredoxin reductase. 	ese enzymes distribute
throughout the cellular compartments and, therefore, are thought to be broad-range antioxidant defenders. However, recent
evidence demonstrates that typical 2-Cys peroxiredoxins play key signal regulatory roles in the various signaling networks by
interacting with or residing near a speci
c redox-sensitive molecule. 	ese discoveries help reveal the redox signaling landscape in
mammalian cells and may further provide a new paradigm of therapeutic approaches based on redox signaling.

1. Introduction

It is generally accepted that the cellular antioxidant enzymes
belong to a group of the oxidoreductase enzymesmaintaining
the cellular redox homeostasis. However, the importance of
antioxidant enzymes is given a spotlight a�er a paradigm shi�
of the cellular function of reactive oxygen species (ROS) from
toxic respiratory by-products to a signaling second messen-
ger. Peroxiredoxin (Prx) is a family of antioxidant enzymes
exhibiting peroxidase activity which reduces the hydroperox-
ides to water in the presence of proper electron donors. Prxs
are classi
ed by the number of cysteine residues involved in
the peroxidase activity: 2-Cys Prxs and 1-Cys Prx. 	e 2-Cys
Prxs form a disul
de bond by reacting with the peroxides
and the disul
de is reduced by thioredoxin which is coupled
with thioredoxin reductase and NADPH. 	erefore, 2-Cys
Prxs are the 
rst thioredoxin-dependent peroxidase enzymes
[1, 2]. 	e 2-Cys Prxs are purely cysteine-based peroxidase
enzymes with no cofactor or selenocysteine requirement.

	ey are divided into typical and atypical groups based on
the catalytic mechanism. Typical 2-Cys Prxs (Prx1–Prx4) are
active as dimers organized in antiparallel fashion: that is, the
peroxidatic cysteine residue (��) in the amino terminus of
one subunit reacts with the hydroperoxides and the resulting
�� sulfenic acid forms a disul
de linkage with the sul�ydryl
group of resolving cysteine residue (��) in carboxyl terminus
of another subunit [3]. In contrast, an atypical 2-Cys Prx
(i.e., Prx5) catalyzes theH2O2 reduction reaction through the
formation of intramolecular disul
de linkage [4]. 	e 2-Cys
Prx enzymes have distinct roles in diverse cellular processes,
such as proliferation, migration, apoptosis, and metabolism,
and are fundamentally supported by a broad distribution of
the isoforms throughout the subcellular compartments. For
example, Prx1 and Prx2 are the most abundant antioxidant
enzymes in cytosol. Prx3 is amajormitochondrial peroxidase
responsible for ecient elimination of H2O2, which is con-
tinuously produced by the dismutation of superoxide anions
formed as a result of a partial reduction of the dissolved
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oxygen molecules during mitochondrial respiration. Prx4 is
in both endoplasmic reticulum (ER) and extracellular �uid.
Recent studies indicate that Prx4 is involved in the oxidative
protein-folding pathway by the reoxidation of protein disul-

de isomerase [5, 6]. 	e distribution of Prx5 is somewhat
complex: high in mitochondria, some in peroxisome, and
low in cytosol [4]. Hence, the cellular abundance and broad
distribution of 2-Cys Prxs mark them as a major antioxidant
system in mammalian cells.

Beside their primary function as antioxidant enzymes,
the observation that 2-Cys Prxs peroxidase activity can be
readily inhibited by overoxidation of the active site cys-
teine residue (��) and reactivated by sul
redoxin-dependent
reduction [7] highlights novel and unforeseeable functions
of these enzymes. In both in vitro enzyme reaction with
high concentration of H2O2 and oxidatively-stressed cells,
the ��-sulfenic acid at the active site of typical 2-Cys Prxs
is overoxidized to sul
nic/sulfonic acids [8]. Unlike bacterial
homologs, the typical 2-Cys Prxs in eukaryotes have been
characterized to show a structural feature that the resolving
cysteine (��) buries away in latent enzyme and then reacts
with ��-sulfenic acid by local unfolding of the C-terminus
[9]. It is therefore interpreted that such conformational
change of the C-terminus in eukaryotic 2-Cys Prxs necessary
for forming a disul
de linkage with the ��-sulfenic acid
tolerates an additional reaction of the ��-sulfenic acid with
the second molecule of H2O2. Consequently, the 2-Cys Prxs
can be inactivated by overoxidation during the reaction cycle
and, if the inactive enzymes are accumulated, the local H2O2
concentration may be raised (“Floodgate” hypothesis).

Subsequent studies state that the overoxidation of ��
most probably corresponds to a gain of function of 2-Cys Prxs
in eukaryotes. 	e 
rst surprising result is that the overoxi-
dized 2-Cys Prxs are multimerized and function as a molecu-
lar chaperone to prevent unfolded proteins from irreversible
aggregation [10].Hence, the evolution of the eukaryotic 2-Cys
Prxs sensitive to overoxidation implies a highly ecient sur-
vival tactic in eukaryotes adapting oxidative stress. Recently,
Veal and her colleagues reported that the overoxidation of 2-
Cys Prxs plays a role in cell survival other than as a molecular
chaperone [11]. In this study, the inactivation of 2-Cys Prx
by overoxidation discharged a key coupling redox protein,
thioredoxin, which in turn rescued other oxidized client
proteins by reduction. Another compelling biological role of
the 2-Cys Prx overoxidation is a correlation with circadian
rhythm in normal physiology. O’Neill and Reddy have shown
that the overoxidation of 2-Cys Prxs exhibits a circadian
oscillation with a period of about 24 hours in human red
blood cells [12]. Later, it turned out to be a transcription-
independent circadian marker universally conserved from
bacteria to eukaryotes [13]. Consequently, the intrinsic sus-
ceptibility of 2-Cys Prxs to inactivation by overoxidation is
seemingly to be a part of the important redox mechanism in
both normal and abnormal physiology. In addition, a study
using yeast mutant strains lacking multiple thiol peroxidases
including all 
ve Prxs and three glutathione peroxidase genes
suggests that the thiol peroxidases may transfer the ROS
signals to gene expression by transcriptional regulation [14].
	erefore, in this review, we collect the evidence for speci
c

signaling functions of typical 2-Cys Prxs with low �� for
H2O2 and discuss its implication as a conceptually new hub
in signaling networks.

2. 2-Cys Prxs in Protein Phosphorylation
Signaling Networks

Protein phosphorylation is one of the most important
posttranslational modi
cations in the membrane receptor-
mediated growth factor and cytokine signaling and as such
modulates protein-protein interaction, enzyme activity, and
protein stability and structure. Human genome encodes over
500 putative kinase genes and more than 150 protein phos-
phatases including dual-speci
city phosphatases and protein
tyrosine phosphatases (PTP). With the exception of the EYA
subfamily, most protein phosphatases contain a low-pKa
cysteine residue at the active site.	e sul�ydryl group is thus
deprotonated to the thiolate anion at the physiological pH
[15, 16], which renders it susceptible to oxidation by H2O2 in
vitro and in vivo [17, 18]. Since H2O2 was proposed as a novel
intracellular secondmessenger in the platelet-derived growth
factor (PDGF) and epidermal growth factor (EGF) signaling
pathways [19, 20], the H2O2-mediated reversible oxidation of
PTPs has become an important regulatory mechanism con-
trolling protein tyrosine phosphorylation [21, 22]. Recently,
plausible evidence also indicates that the protein kinases
are redox-regulated by a reversible oxidation of the cysteine
residues in the regulatory region, rather than on their active
sites. For example, I�B kinases �/� (IKK�/�) were shown to
harbor a reactive cysteine between two serine residues, which
are the dual phosphorylation sites critical for activation, in
T-loop [23–25]. 	e ataxia-telangiectasia mutated (ATM)
kinase and a Src kinase Lyn were shown to be activated by
a H2O2-mediated cysteine oxidation [26, 27]. Such evidence
concertedly indicates that the phosphorylation signaling
network involves redox-regulated kinases/phosphatases and
therefore it is associated with the dynamics of intracellular
H2O2 level. In a live cell, the intracellular H2O2 level is deter-
mined by balancing the H2O2 generators (e.g., mitochondria,
oxidases, and heavy metals) and antioxidants (e.g., catalase,
glutathione peroxidases, and peroxiredoxins). Among cellu-
lar peroxidases, 2-Cys Prxs are the most abundant enzymes
and versatile in the subcellular distribution. In particular,
the evidence indicates that the two cytosolic forms, Prx1
and Prx2, are likely the key enzymes in the phosphorylation
signaling pathway (Figure 1). 	e 
rst indication of the
signaling function of Prx was made in 1998 and showed
that the overexpression of Prx1 and Prx2 eliminated intra-
cellular H2O2 increased by growth factors, such as PDGF-
B and EGF, and cytokine tumor necrosis factor (TNF)-�
[1]. Since then, many investigations indicate the important
regulatory role of Prx1/2 in phosphorylation signaling. 	e
Prx1 ablation was shown to result in the Akt hyperactiva-
tion in H2O2-treated cells, but not in PDGF-treated cells
[28]. Prx1 interacted with phosphatase and tensin homolog
(PTEN) in H2O2-treated cells and thus promoted the Ras-
or ErbB2-drived cell transformation. Hence, it was proposed
that Prx1 might contribute someway to the tumorigenesis.
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However, the function of Prx2 as a signal regulator was
initially proposed by the di�erential regulation of TNF-�-
induced MAP kinase activation [29]. Also, Prx2 negatively
regulates the PDGF-induced tyrosine phosphorylation in

broblast and vascular smooth muscle cells [30]. In this
case, the deletion of Prx2, not Prx1, selectively increased the
autophosphorylation of PDGFR� only at two tyrosine sites
(Y579 and Y857), which was not mimicked by addition of
exogenous H2O2. Such selective regulation was achieved by
the stimulation-dependent interaction of Prx2 and PDGFR�
proteins, which allowed the reactivation of a membrane-
associated PTP. 	is is the 
rst report showing the selective
action of endogenous H2O2 distinguished from the exoge-
nous source of H2O2. Recently, Prx2 was also shown to
preserve the VEGFR2-dependent tyrosine phosphorylation
in vascular endothelial cells by protecting the receptor from
oxidative inactivation by both the endogenous and exogenous
H2O2 [31].	is function appeared to be due to the colocaliza-
tion of Prx2 and vascular endothelial growth factor receptor-
2 (VEGFR2) in endothelial caveolae. Although the source
of endogenous H2O2 was not identi
ed, it is an important

nding that Prx2 functions upstream of the receptor tyrosine
kinase whose activity is regulated by an oxidation-sensitive
cysteine residue.

	e cytosolic 2-Cys Prxs are themselves linked to the
phosphorylation networks as their activities are regulated
by phosphorylation. Chang et al. reported that the 2-Cys
Prxs contain the conserved CDK phosphorylation sequence

(	r90-Pro-Arg-Lys), and among them the Prx1 and Prx2
were indeed phosphorylated by Cdk1/Cdc2 [32]. Although
such threonine phosphorylation caused the loss of peroxidase
activity of both 2-Cys Prxs in vitro, it was observed only in
Prx1 in vivo using the mitotic arrested HeLa cells. However,
its biological signi
cance remains unsolved. Other studies
also showed that the Prx1 threonine phosphorylation ismedi-
ated by serine/threonine kinase Mst1/2 [33, 34]. Similarly,
this phosphorylation inactivated the peroxidase activity and
therefore resulted in an increase in the intracellular H2O2
level. In contrast, the serine phosphorylation of Prx1 by
a T-cell-originated protein kinase (TOPK) increased the
peroxidase activity [35]. TOPK binds to and phosphorylates

Prx1 at Ser32 in vitro and in human melanoma cells. It is
noteworthy that the activated TOPK colocalized with Prx1
in nucleus, which is the 
rst indication of nuclear Prx1.
Later, both Prx1 and Prx2 were found in the nucleus and,
particularly, Prx2 protects the cancer cell death against
DNA damaging agents [36]. 	e threonine phosphorylation
of Prx2 correlates with an increased loss of dopaminergic
neurons by mitochondrial damage [37]. Interestingly, in
this case, the phosphorylation was mediated by Cdk5/p35
and increased in nigral neurons from postmortem tissue of
Parkinson’s disease patients. Related to Parkinson’s disease,
there was another interesting report that a mutation of
leucine rich repeat kinase 2 (LRRK2), where glycine-2019
is mutated to serine, increased the phosphorylation of a
mitochondrial Prx3 [38]. 	e phosphorylation of Prx3 was
associated with the increased cell death in neuronal cells by a
mitochondrial stress and signi
cantly detected in Parkinson’s
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Figure 1: Interaction of typical 2-Cys Prxs with signaling molecules
in the phosphorylation and acetylation networks. Prx1 and Prx2
interact directly or indirectly via ROSwith the kinases/phosphatases
and regulate their activation. In addition, the activities of these two
Prxs are also controlled by phosphorylation and acetylation. Note
that the Prx1 expression is known to be controlled by a transcription
factorNrf2 (nuclear factor E2-related factor 2) under oxidative stress
condition.

disease patients with the LRRK2mutation. Consequently, the
phosphorylation-dependent inactivation of mitochondrial
Prx3 and cytosolic Prx2 seems to be coordinately involved
in the loss of dopaminergic neuronal cells by mitochondrial
damage.

Recently, Prx1 was shown to be phosphorylated at Tyr194

by protein tyrosine kinases, such as Lck and Abl, in vitro
and in various mammalian cells treated with growth factors
[39]. 	is evidence is signi
cant in terms of that the inac-
tivation of Prx1 by phosphorylation in caveolae membrane
microdomain could alter the local redox status. Although
the authors showed the phosphorylated Prx1 in the mar-
gin of healing wounds in C57BL/6 mice, the physiological
relevance of the selective Prx1 phosphorylation to wound
healing process remained uncertain. It is however clear
that the phosphorylation-dependent inactivation takes a
physiological advantage of the dynamic regulation linked
to the intracellular kinase/phosphatase signaling network
compared to Prx inactivation by overoxidation, as the reversal
by sul
redoxin of the latter is a slow reaction requiring an
ATP energy demand [40, 41].
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How does such phosphorylation regulate Prx peroxi-

dase activity? Phosphorylation at 	r90 and phosphorylation
Tyr194 have both been shown to regulate Prx activity by
a similar mechanism, potentially involving a perturbation
of the active site conformation a�er the introduction of a
negatively charged phosphate moiety at the vicinity of the
active site �� residue [32, 39]. 	e crystal structure of Prx1
also suggests that the introduction of negative charges may
destabilize Prx1 homodimer further causing the reduction of
Prx activity toward H2O2.

Considering that the 2-Cys Prx isoforms are widely
distributed in subcellular compartments, such modi
cation-
dependent inactivation of the 2-Cys Prxs may be an impor-
tantmechanism in determining a localized elevation of H2O2
levels.

3. 2-Cys Prxs in Acetylation
Signaling Networks

	e reversible acetylation of protein lysine residues is
an important posttranslational modi
cation that regulates
enzyme activity, protein-protein interaction, and protein
conformation [42].	emajority of the initial studies focused
on the histone acetylation, which directly regulates gene
transcription and chromatin remodeling [43]. Since the
microtubule-associated HDAC6 and mitochondrial Sirt3
were discovered [44–46], the reversible acetylation has been
considered to be a general modi
cation involved in the
cellular signaling.

	ere are several studies implicating the redox reg-
ulation of lysine acetylation network. One study showed
that H2O2 inhibits IL-1�-induced HDAC2 activity in air-
way epithelial cells, which is associated with the tyrosine
nitration of HDAC2 [47]. Another study showed that H2O2
and hypertrophic stimuli induce a cysteine oxidation on
HDAC4 in myocytes [48]. Upon oxidation, HDAC4 forms
an intramolecular disul
de linkage and then the oxidized
HDAC4 is exported to the cytoplasm. When the disul
de
was reduced by Trx1, the reduced HDAC4 reenters into the
nucleus. Consequently, the nucleocytoplasmic shuttling of
HDAC4 is determined by its cysteine oxidation status. A
member of class II HDACs, Sirt1, was shown to be sensitive
to oxidation, especially S-glutathionylation on the Cys67

residue by S-nitrosoglutathione (GSNO) [49]. Interestingly,
the GSNO inhibited the resveratrol-stimulated, not the basal,
Sirt1 activity, which suggests that the redox-sensitive Cys
residue could be exposed to themodi
cation upon activation.
	e Sirt3 knockout mice showed oxidative stress phenotype
in skeletal muscle and its knockdown in cultured myoblasts
increased the ROS level [50].

Many studies show that the 2-Cys Prx activity is regulated
by acetylation (Figure 1). A recent high-resolution mass
spectrometric analysis combined with the stable isotope
labeling by amino acids in cell culture (SILAC) revealed
the lysine acetylation of Prx enzymes in various cell types
[51]. A previous study showed that the Prx1 and Prx2 were
among the substrates of cytoplasmic HDAC6 and their
acetylation increased peroxidase activity and resistance to

overoxidation [52]. It was shown that a lysine residue in the
C-terminus of Prx1 and Prx2 enzymes (Lys197 in Prx1 and
Lys196 in Prx2) is a site of acetylation. 	us, although the
molecular mechanism underlying the acetylation-dependent
activity increase is currently unknown, it is possible that
the C-terminal acetylation may in�uence the resolving step
accompanied with a conformation change of the �� residue
[9]. In the case of Prx2, the lysine-independent acetylation
at its demethionylated N-terminus conferred a resistance to
overoxidation in HeLa cells treated with high concentrations
of H2O2 [53]. It is noteworthy that the acetylation of 2-
Cys Prxs increases the enzyme activity and protects against
overoxidation in contrast to enzyme inactivation by phospho-
rylation.

Although there is no evidence showing a direct regulatory
role of 2-Cys Prxs in the lysine acetylation network, it will
be interesting to investigate the mechanism of how the
acetylation and deacetylation network is associated with 2-
Cys Prxs in various subcellular compartments.

4. 2-Cys Prxs in Cell Death Signaling Networks

	e role of ROS in cell death has been a long-standing issue
because mitochondria are the key players in both apoptotic
and necrotic cell death pathways. Indeed, mitochondria are
the site where the electron transport takes place and leakage
of the high energy electrons from the electron carrier com-
plexes can combine with molecular oxygen to produce ROS
[54]. Higher organisms with an aerobic respiratory system
have evolved apoptotic cell death programs utilizing mito-
chondrial proteins, which include cytochrome c [55, 56]. In
principle, the mitochondrial release of cytochrome c results
in a disruption of the electron transport in the respiratory
chain and causes an increase of mitochondrial ROS via the
leakage of high energy free electrons.	e resulting ROS burst
may oxidatively damage the cellular macromolecules, such as
proteins, membrane lipids, and DNA. However, the evidence
indicates that the mitochondrial ROS is not a causative factor
in apoptotic cell death, but rather it is the consequence of
the disruption of mitochondrial transmembrane potential
(Δ��) [57]. 	e involvement of ROS in the apoptotic death
pathway could be challenged by the fact that the active
site of caspase is a reactive cysteine residue, which can
be inactivated by oxidation [58–60]. Contrary to apoptosis,
there may be a function of ROS in necroptosis. Necroptosis,
also called programmed necrosis, is a type of necrotic cell
death involving the activation of death receptor but occurring
independently of caspase activation [61]. It has been shown
that activation of death receptors, such as the TNF-� receptor
(TNFR)-1 and Fas (CD95), induces necroptosis in some cell
types [62, 63]. For example, mouse 
brosarcoma cells L929
underwent caspase-independent necrosis when stimulated
with TNF-� [64]. Human Jurkat T lymphoma cells de
cient
in Fas-associated death domain (FADD) adaptor protein died
via necrosis when death receptors, such as TNFR and Fas,
were activated in an RIP1-dependent manner [65].	erefore,
the necroptosis was found to require the RIP1 kinase activity
[66]. Further evidence indicates that ROS accumulates in
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a RIP1 and FADD-dependent manner and is required for
the necroptosis [67]. 	e activation of NADPH oxidase-1 via
RIP1 is involved in the TNF-�-induced necrosis in L929 cells
[68]. In addition, RIP3, which was shown to be the most
essential factor for necroptosis [69, 70], was involved in the
production of mitochondrial ROS via energy metabolism
[71].

	e cell death studies by modulation of cellular antiox-
idant enzymes reveal a clear role of intracellular ROS in
apoptosis. Particularly, the 2-Cys Prxs play a regulatory role in
apoptotic, not necrotic, cell death (Figure 2). Prx1 was shown
to protect lung cancer cells from radiation-induced apoptotic
cell death by reducing JNK activation [72]. Interestingly,
Prx1 prevented the JNK activation by retaining the JNK
associated with glutathione S-transferase (GST)-pi, but not
through the peroxidase activity. It was also shown that the
expression of Prx1 in dopaminergic neuronal cells inhibited
6-hydroxydopamine-induced apoptotic death by reducing
the p38/caspase-3 activation [73]. 	e level of Prx1 was
obviously upregulated in human lung cancer patients and
the Prx1 knockdown in hepatocarcinoma cells accelerated
theTNF-related apoptosis-inducing ligand (TRAIL)-induced
cell death via caspase-8/-3 activation [74]. Prx1 also mediated
the disul
de-linked activation of the apoptosis signaling
kinase ASK1 by forming a mixed disul
de intermediate with
ASK1 in the peroxide-treated cells [75]. It has been shown that
Prx2 and Prx3 reduce apoptotic cell death via mitochondrial-
dependent intrinsic pathway [76, 77]. Interestingly, the redox
cycle of the Prx3 activity shi�ed to the disul
de-containing
oxidized state during Fas-mediated apoptosis of Jurkat and
U937 monocytic cells [78]. Collectively, the evidence related
to the 2-Cys Prxs strongly indicates that ROS is connected
to the apoptotic cell death. Further exploration is needed to

determine the molecular mechanism underlying antiapop-
totic role of 2-Cys Prxs.

5. Signaling Role of 2-Cys Prxs Beyond
Peroxidase Enzyme

Despite the 2-Cys Prx being a sophisticated peroxidase
enzyme with a high anity to H2O2 [79], recent studies
also suggest that 2-Cys Prx can function as redox protein
that regulates the activity of various client proteins by direct
protein-protein interaction or interprotein disul
de linkage.
In 1997, it was reported that Prx1 interacts with the SH3
domain of c-Abl and inhibits its tyrosine kinase activity [80].
It was the 
rst report showing that the 2-Cys Prx is one
of the redox proteins capable of regulating a key signaling
kinase. Subsequently, Prx1 has been found to interact with
the Myc Box II (MBII) domain of c-Myc by a yeast two-
hybrid screen [81]. By this interaction, Prx1 contributed to an
antioxidative stress function and it did also inhibit the c-Myc-
dependent target gene expression and tumorigenesis. Park
and her colleagues showed that Prx1 interacts with androgen
receptor in various prostate cancer cell lines and GST-pi in
lung cancer cell lines [72, 82]. 	e Prx1 interaction with
androgen receptor promotes the receptor’s transactivation
activity. Later, it turned out that Prx1 increases the receptor
anity to dihydrotestosterone [83]. 	e 
ndings seem to
be important in relation to the high Prx1 expression in
the prostate cancer patients [84]. Another interesting result
was that Prx1 interacts and forms a mixed disul
de linkage
with the GDE2 activation in spinal motor neurons [85].
In motor neuron progenitors, Prx1 promotes the GDE2
activity to drive a neuronal di�erentiation by reducing an
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intramolecular disul
de linkage in the cytoplasmic tail of
the transmembrane protein. 	is evidence indicates that the
Prx1 can function as a protein disul
de reductase (PDI).
Other example of PDI activity among 2-Cys Prxs is Prx4 in
endoplasmic reticulum. It was shown that the oxidized Prx4
transfers the disul
des to PDI [5, 6]. 	e Prx4 reoxidation is
achieved by metabolizing H2O2 produced by Ero1, which is
known as the main ER enzyme responsible for reoxidation
of protein disul
de reductase [86]. 	is evidence de
nes a
new role of Prx4 in oxidative protein folding along with
Ero1.

In contrast to the case of Prx1, the closest isoform Prx2
has barely been shown to directly interact with any protein.
Actually, few reports are stating that Prx2 colocalizes and
interacts with phospholipase D1 in phorbol ester-stimulated
cells [87] as well as interacts with the PDI family member,

ERp46, when under its overoxidized form [88]. 	e in vitro
activity assays showed that Prx2 is less active as a peroxidase
enzyme than Prx1 [1, 39]. Given the in vitro evidence that the
2-Cys Prxs is inactivated by overoxidation during the reaction
cycle proportional to the enzyme activity [8], it is conceivable
that Prx1 is the peroxidase enzyme acting as the 
rst line of
antioxidant defense underH2O2 stress.Nonetheless, it turned
out that Prx2 is more susceptible for overoxidation in the
animal cells underH2O2 stress than Prx1 [39].	e same study
shows that Prx1 rather prefers to be tyrosine phosphorylated
under H2O2 stress in vivo. 	is discrepancy between in
vitro and in vivo properties of Prx1 and Prx2 could be
explained as a paradox: unlike the potential function assumed
from the in vitro characterization, the Prx2 can be the real
peroxidase enzyme in the cells while the Prx1 primarily
functions as a redox regulator of diverse client proteins by
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interaction. 	is idea is supported to some extent because it
was observed that Prx1 wasmore abundant in protein amount
than was Prx2 in certain cell types like 
broblasts and HeLa
cells.

In an e�ort to obtain a global picture of regulations by
2-Cys Prxs, we 
nally produced a network model among
typical 2-Cys Prxs using the Pathway Studio so�ware. We
obtained the network relations for all four Prxs in the
knowledge base of Pathway Studio, which were built by text-
mining of literature texts. False positives or indirect relations
were removed by inspecting the relevant sentences manually.
Figure 3 shows the resulting network model where relations
speci
c to each Prx were located near the corresponding
Prx and entities involved in more than one Prxs were
positioned in the intervening space. 	is network includes
the direct interaction of 2-Cys Prxs and their client proteins
as mentioned above. As expected, it is evident that all four
Prxs are closely related to apoptosis and cell death, ROS
generation and oxidative stress, cell proliferation, growth,
and di�erentiation. 	is diagram also illustrates biological
processes and functions speci
c to each Prx or common
between two Prxs. For example, Prx3 is speci
cally related
to mitochondrial damage and lipid peroxidation. It can be
readily seen that cytosolic enzymes Prx1 and Prx2 are related
to cell survival via PTEN, TNF, MAP kinases, and PARP1.
Overall, the network model emphasizes the importance of
typical 2-Cys Prxs as hub molecules connecting cellular
signaling pathways and biological processes.

6. Conclusion Remarks

Four members of typical 2-Cys Prx subfamily are present
in various cellular compartments, including cytosol, plasma
membrane (especially caveolae), nuclei, mitochondria, and
endoplasmic reticulum. 	e majority of the abundant 2-
Cys Prx enzymes primarily function as general antioxidant
systems that maintain the intracellular ROS level within a
safety zone in both normal and stressed cells. However, some
part of the enzymes functions as the signal regulator at
speci
c locations by modulating the local ROS change or by
regulating the activity of the interacting/neighboring proteins
in a redox-dependent manner. Since H2O2 is an important
second messenger in a signaling network, the discovery
of the 2-Cys Prx function related to signal transduction
should provide clues necessary to understand redox signaling
architecture and further solve medical problems in ROS-
mediated chronic diseases.
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