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Due to their high efficiency and power density, permanent magnet synchronous machines (PMSMs) operating at high speed have
recently gained a lot of attention. The development of high-speed PMSMs requires a good understanding of the physics related
to the operation of such machines. Moreover, accurate modeling tools are needed when designing high-speed electrical machines.
In this paper, the subdomain modeling technique is used to analytically compute the magnetic field of an electrical machine. The
idea behind this technique is to divide the machine in a number of subdomains, in which the problem is simplified. The solutions
in the different subdomains are then linked by imposing physical boundary conditions. The described model immediately considers
the slotting effect and the eddy-current reaction field of a shielding cylinder (SC). The SC is a conductive sleeve, which is wrapped
around the magnets. Its goal is to reduce the rotor losses at high-speed operation. This paper starts by introducing the applied
modeling technique and the studied machine. Second, the basics of the model and its development are discussed. Finally, the results
are compared with results of a finite-element (FE) model. A very good agreement between the proposed model and the FE model is
observed. This implies that the developed model is indeed a powerful modeling tool for high-speed PMSMs. Moreover, it provides
great insight in the machine’s physics as well.

Index Terms— Analytical models, eddy-current reaction field, high-speed PMSM, permanent-magnet machines, slotting effect,
subdomain model.

I. INTRODUCTION

AN EVER-GROWING importance of energy efficiency
and a demand for more flexible applications have led

to a rising interest for highly efficient permanent magnet
synchronous machines (PMSMs). Moreover, lately PMSMs
operating at high speed have gained a lot of attention. Indeed,
because of their high power density, and thus low weight,
these machines offer a high flexibility. This increased interest
implies a need for accurate techniques to model high-speed
PMSMs and a need for better insight in the physical aspects
of such machines.

A. High-Speed Electric Machines

Although the model’s applicability is not restricted to
high-speed machines, the development of such machines is
a motivation for the development of the presented model.
Therefore, a definition of high-speed machines is necessary.
An important limiting factor for the rotational speed is the tan-
gential speed at the outer radius of the rotor. This means that
achieving high rotational speeds is relatively easy for smaller
machines. The definition of high-speed electric machines can
thus not solely depend on the rotational speed. Therefore,
Binder and Schneider [1] introduced a definition based on
both the nominal power (Pnom) and the rotational speed. They
defined high-speed ac machines as electric machines with a
minimal mechanical frequency ( fmin) that satisfies

log fmin = 4.27 − 0.257 logPnom. (1)
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B. Goal

The goal of this paper is to provide an accurate modeling
tool for high-speed permanent-magnet machines that also
increases the understanding of these machines. Two aspects
require special attention: 1) the eddy-current reaction field and
2) the slotting effect.

1) Eddy-Current Reaction Field: Because of cooling diffi-
culties, permanent demagnetization of the magnets is a major
concern when designing high-speed PMSMs. A commonly
proposed technique to reduce the rotor losses, and thereby
the demagnetization risk, is the shielding cylinder (SC). The
SC is a conductive sleeve, which is wrapped around the
rotor. Asynchronous harmonics in the machine’s magnetic field
will induce eddy currents in the sleeve. At high frequencies,
the amplitude of these currents is limited because of a low
penetration depth. At the same time, according to Lenz’s Law,
the eddy currents will produce a magnetic field that counteracts
their origin. This field is called the eddy-current reaction field.
The asynchronous harmonics in the magnetic field will thus be
mitigated by the SC. This means that, when designed correctly,
the SC reduces the overall rotor losses.

Modeling the SC analytically is one of the biggest chal-
lenges in this paper because it requires spatial and time
dependency of the solution. A commonly used technique is
to separate the time and spatial aspect by first solving the
stationary problem and then to use its solution as an input for a
simplified time-dependent problem. This has been done in [2]
for induced currents in the magnets and in [3] for induced
currents in the stator conductors. This technique neglects the
eddy-current reaction field and is, therefore, not suited to
compute the field in an electrical machine equipped with an
SC. The first goal of this paper is to build a model that
simultaneously accounts for spatial and time dependency. This
is done in [4] for a slotless machine.
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2) Slotting Effect: In contrast with the machine in [4], the
machine considered in this paper contains a slotted stator.
Accounting for the effect of the slots is crucial because of the
importance of rotor losses in high-speed machines. Indeed, the
slots will introduce asynchronously rotating fields, which in
turn will cause rotor losses. A second goal is thus to exactly
consider the slotting effect. There are several techniques to
model the slots analytically. These are discussed in detail in
Section I-C.

C. Modeling Technique

Various modeling techniques, for a large number of machine
topologies, have been presented in the literature. Reviews of
these techniques can be found in [4]–[7].

1) Analytical Versus Numerical Methods: A first subdi-
vision can be made between analytical models and models
using numerical techniques, mostly the finite-element (FE)
technique. FE models are characterized by high accuracy
because of the ability to consider nonlinearity, realistic geome-
tries, and so on. Moreover, when using commercial or free
software packages, the development time of FE models is
very low. However, when compared with analytical models,
FE models typically provide less insight in the physical aspects
of the modeled machine. Analytical models are also easier to
parameterize and are characterized by a low computational
time [6]– [13]. Since a good understanding of the machine’s
physics and a high flexibility are of key importance here, the
choice for an analytical study is obvious.

2) Conformal Mapping Versus Subdomains: Modeling the
slots analytically forms a challenge. The literature considers
two major techniques to do so: 1) the subdomain technique
[3]–[13] and 2) conformal mapping [14]–[18].

In a first step, the conformal mapping technique maps the
slotted machine to a simple geometry. Second, the field of
this geometry is computed. Finally, the solution is mapped
back to the slotted PMSM. When the conformal transfor-
mation is performed exactly, the accuracy of this method is
high. However, the solution becomes very complicated [6].
Therefore, permeance functions were proposed as a simplifi-
cation of the exact conformal transformations [14]–[16]. How-
ever, [7] showed that these simplifications imply inaccuracies
in the field under the slot openings and in the tangential
field component. The torque and iron loss calculations are
affected by these inaccuracies. Indeed, the computation of
these quantities requires good knowledge of the magnetic
induction.

An alternative is the subdomain technique, which divides the
machine in a number of regions (subdomains). First, a differen-
tial equation for the magnetic scalar potential or the magnetic
vector potential is solved separately for every subdomain. In a
second step, the subdomains are linked by imposing physical
boundary conditions. These boundary conditions now account
for the slotting effect. This has the advantage of a direct insight
in the effect of the slots. Moreover, the degree of accuracy
can easily be controlled by the number of harmonics that are
considered. Several authors have reported very good results
when using the subdomain modeling technique [6]–[13].

Because of its high accuracy and a good insight in the
slotting effect, the subdomain technique is chosen for this
paper.

By choosing the analytical subdomain modeling tech-
nique to model a slotted PMSM with an SC, a powerful,

Fig. 1. Geometry of a three-phase four-pole PMSM containing an SC.

fully parameterized model is combined with high insight in
the machine’s physics. This tool can be used in the further
development of high-speed PMSMs.

II. GEOMETRY AND ASSUMPTIONS

An example of the studied machine topology is shown in
Fig. 1. Note that the machine does not contain any stator teeth
tips. The geometrical parameters of the machine are the rotor
yoke’s outer radius r1, the magnet’s outer radius r2, the outer
radius of the SC r3, the inner radius of the stator r4, the
winding’s outer radius r5, and the machine’s outer radius r6.
The magnet span is ϕm and the opening angle of the slots is
δ. The angular position of the i th slot is

δi = −
δ

2
+

2π

N
i with 1 ≤ i ≤ N (2)

where N is the number of slots.
The machine is divided in a number of subdomains,

as shown in Fig. 1. Every subdomain is indicated with an
index ν. ν = 1 stands for the PM region, 2 is the SC, and 3 is
the air gap. Every slot is a separate subdomain and is indicated
with an index 4i , with i the slot number.

To enable an analytical calculation, the following assump-
tions are made:

1) steady-state operation;
2) infinite permeability of the rotor and stator iron;
3) relative permeability of the PM, the SC, and stator slots:

µr = 1;
4) zero conductivity of the magnets and the rotor and stator

iron;
5) no induced currents in the slots;
6) radial slot boundaries;
7) no end effects.

Neglecting the influence of the induced currents on the total
magnetic field is referred to as the resistance limited approxi-
mation [2], [4]. This assumption is valid if the induced currents
in the SC are greater than these in the magnets.
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The amplitude of the current densities at a certain depth in,
respectively, the SC and the PM can be estimated as

J (2)(r) =
c

δSC
e
− r

δSC (3a)

J (1)(r) =
ce

−
dSC
δSC

δPM
e
− r

δPM . (3b)

With c a constant, dSC = r3 − r2, dPM = r2 − r1 and δ the
skin depth

δ =

√

2

ωµσ
. (4)

By integrating (3) over r , a measure for the induced currents
in the SC and the PM (ξ ) can be found. The ratio of the
induced currents in the SC to the total induced currents in the
rotor (RI ) can then be estimated as

RI =
ξ (2)

ξ (1) + ξ (2)

=
1 − e

−
dSC
δSC

e
−

dSC
δSC

(

1 − e
−

dPM
δPM

)

+

(

1 − e
−e

dSC
δSC

) . (5)

Note that this is an underestimation. Due to electrical isolation
between two magnets and a reluctance effect on higher har-
monics, the actual ratio will be smaller. The authors, therefore,
propose a minimum ratio of 0.6.

III. ANALYTICAL SUBDOMAIN MODEL

Based on Maxwell’s equations and the constitutive relations,
a differential equation for the magnetic vector potential in
domain ν is built [4]

∇2A(ν) − µνσν
∂A(ν)

∂ t
= −µνJ

(ν)
ext − ∇ × B(ν)

rem (6)

where J
(ν)
ext is an externally imposed current density,

B
(ν)
rem stands for the remanent flux density, µν is the perme-

ability, and σν is the conductivity.
The vector potential in domain ν is defined by

B(ν) = ∇ × A(ν). (7)

At the boundary between two subdomains, conservation of the
magnetic flux and Ampère’s law are imposed. Conservation
of the magnetic flux implies continuity of the vector potential.
A first boundary condition can thus be written as

A(ν) = A(ν+1). (8)

Ampère’s law implies that the tangential component of the
magnetic field at one side of the boundary equals the field’s
tangential component at the other side plus the current density
on the boundary

n̂ ×
(

H(ν) − H(ν+1)
)

= K(ν) (9)

where n̂ is the unit vector along the normal direction and
K(ν) is the current density on the boundary. In a 2-D model,
K(ν) is a line current density. This paper does not consider
line currents; K(ν) will thus always be zero.

In the following, the cylindrical coordinate system, with the
z-axis along the machine’s axis, is used. By neglecting the end

Fig. 2. PM subdomain and its boundary conditions.

effects, the problem can be regarded in a plane perpendicular
to the z-axis. Indeed, the vector potential will only have a
z-component and will only depend on the radius and the
azimuth. Notice that a distinction is made between the system
fixed to the stator (r, φ, z) and the system fixed to the rotor
(r, ϕ, z). If θ0 is the initial rotor position, then the stator
angular position can be expressed as

φ = ϕ + �t + θ0 (10)

where � is the mechanical speed of the machine.
Accounting for the induced currents in the rotor requires a

clear distinction between harmonic fields that vary in time with
respect to the rotor and harmonic fields that do not. Therefore,
the vector potential is expressed as a function of the rotor
coordinate system. However, to avoid relative movement of
the boundaries between the air gap and the slots, the problem
is regarded from the stator point of view. This implies the
usage of ϕ + �t + θ0 instead of ϕ.

The vector potential in the νth region can, therefore, be
written as

A(ν) = A(ν)(r, ϕ, t) · ez. (11)

IV. MAGNETIC FIELD COMPUTATION

In the following section, an expression for the vector
potential will be developed based on the formal solution of (6).
This is done individually for every subdomain and by making
use of the separation of variables technique. The following
notations will be used:

Lx (y, z) =

(

y

z

)x

+

(

y

z

)−x

(12a)

Mx (y, z) =

(

y

z

)x

−

(

y

z

)−x

(12b)

Nw,x (y, z) = Iw(τw,x y) Kw(τw,x z)

− Kw(τw,x y) Iw(τw,x z) (12c)

where Iw and Kw are the modified Bessel functions of the first
and second kind and wth order, and τ 2

w,x = j (w − x)�µ0σ2.

A. Permanent-Magnet Subdomain

Subdomain 1 contains both the permanent magnets and the
gaps between two subsequent magnets (Fig. 2). The governing



8101410 IEEE TRANSACTIONS ON MAGNETICS, VOL. 50, NO. 7, JULY 2014

equation (6) is reduced to

∂2 A(1)

∂r2
+

1

r

∂ A(1)

∂r
+

1

r2

∂2 A(1)

∂ϕ2

= −
Brem,ϕ

r
−

∂ Brem,ϕ

∂r
+

1

r

∂ Brem,r

∂ϕ
. (13)

The remanent magnetic flux density, of which Brem,r and
Brem,φ are the radial and azimuthal components, can be written
as an exponential Fourier series over space and time as

Brem(r, ϕ, t) =

∞
∑

n = −∞

∞
∑

k = −∞

Brem,k,n(r)e j (kϕ+(k−n)�t+kθ0) (14)

where n and k are the time and spatial harmonic orders,
respectively. Note that the remanent magnetic induction does
not vary over time when referred to the rotor coordinate
system, this implies that Brem,k,n(r) will only differ from zero
if k = n.

At the boundary between the PM subdomain and the rotor
yoke, infinite permeability of the rotor iron implies that the
tangential component of the magnetic field has to be zero

∂ A(1)(r, ϕ, t)

∂r

∣

∣

∣

∣

∣

r = r1

−
Brem,ϕ

µ0
= 0. (15)

At r = r2, continuity of the tangential component of the
magnetic field condition is written as

∂ A(1)(r, ϕ, t)

∂r

∣

∣

∣

∣

∣

r = r2

−
Brem,ϕ

µ0
=

∂ A(2)(r, ϕ, t)

∂r

∣

∣

∣

∣

∣

r = r2

. (16)

When considering (15) and (16), the solution of (13) can be
written as

A(1)(r, ϕ, t) =

∞
∑

n = −∞

∞
∑

k = −∞

A
(1)
k,n(r)e j (kϕ+(k−n)�t+kθ0) (17)

where

A
(1)
k,n(r) =

⎧

⎨

⎩

U
(1)
0,n + K0,n if k = 0

r2

|k|
U

(1)
k,n

L |k|(r, r1)

M|k|(r2, r1)
+ Kk,n else.

(18)

Kk,n is the source term and depends on the magnetization of
the magnets. The source term is calculated as the particular
solution of (13). Kk,n is given for radially magnetized magnets
in Section VI.

The boundary condition constants U
(1)
k,n are computed using

the definition of an exponential Fourier constant

U
(1)
k,n =

�

4π2

∫ 2π
�

0

∫ 2π−�t−θ0

−�t−θ0

∂ A(2)(r, ϕ, t)

∂r

∣

∣

∣

∣

∣

r = r2

·e− j (kϕ+(k−n)�t+kθ0) dϕdt . (19)

The spatial integration boundaries (0 and 2π) are fixed to
the stator coordinate system, they are converted to the rotor
coordinate system in (19). An integration over time and space

has to be performed to compute the integration constants U
(1)
k,n .

This integration is developed in the Appendix.

Fig. 3. SC subdomain and its boundary conditions.

B. Shielding-Cylinder Subdomain

The shielding-cylinder subdomain, as shown in Fig. 3, is
the domain wherein eddy currents are induced. Its governing
equation is written as

∂2 A(2)

∂r2
+

1

r

∂ A(2)

∂r
+

1

r2

∂2 A(2)

∂ϕ2
= µ0σ2

∂ A(2)

∂ t
. (20)

It is assumed that the solution is of the same form as in the PM
subdomain. This implies that, for every combination of time
and spatial harmonics, the vector potential expression can be
written as

A
(2)
k,n(r, ϕ, t) = A

(2)
k,n(r)e j (kϕ+(k−n)�t+kθ0). (21)

For every individual time and spatial harmonic combination,
the right-hand side of (20) can now be rewritten as

µ0σ2

∂ A
(2)
k,n(r, ϕ, t)

∂ t
= j (k − n)�µ0σ2 A

(2)
k,n(r, ϕ, t)

= τ 2
k,n A

(2)
k,n(r, ϕ, t). (22)

The governing equation is then rewritten as

∂2 A
(2)
k,n

∂r2
+

1

r

∂ A
(2)
k,n

∂r
+

1

r2

∂2 A
(2)
k,n

∂ϕ2
= τ 2

k,n A
(2)
k,n. (23)

Both at the boundary with the magnets and at the boundary
with the air gap, continuity of the vector potential has to be
imposed

A(2)(r2, ϕ, t) = A(1)(r2, ϕ, t) (24)

A(2)(r3, ϕ, t) = A(3)(r3, ϕ, t). (25)

Accounting for the above-mentioned boundary conditions, the
vector potential in the SC can be expressed as

A(2)(r, ϕ, t) =

∞
∑

n = −∞

∞
∑

k = −∞

A
(2)
k,n(r)e j (kϕ+(k−n)�t+kθ0) (26)
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Fig. 4. Air-gap subdomain and its boundary conditions.

where

A
(2)
k,n(r)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

U
(2)
0,0

ln r
r3

ln r2
r3

+V
(2)
0,0

ln r
r2

ln r3
r2

if k = n = 0

U
(2)
k,k

M|k|(r, r3)

M|k|(r2, r3)
+V

(2)
k,k

M|k|(r, r2)

M|k|(r3, r2)
if k = n �= 0

U
(2)
k,n

Nk,n (r, r3)

Nk,n (r2, r3)
+V

(2)
k,n

Nk,n(r, r2)

Nk,n(r3, r2)
else.

(27)

The boundary condition constants are now written as

U
(2)
k,n =

�

4π2

∫ 2π
�

0

∫ 2π−�t−θ0

−�t−θ0

A(1)(r2, ϕ, t)

·e− j (kϕ+(k−n)�t+kθ0) dϕdt (28a)

V
(2)
k,n =

�

4π2

∫ 2π
�

0

∫ 2π−�t−θ0

−�t−θ0

A(3)(r3, ϕ, t)

·e− j (kϕ+(k−n)�t+kθ0) dϕdt . (28b)

The integration in (28a) and (28b) is analog as in (19).

C. Air-Gap Subdomain

In the air gap, (6) is simplified as

∂2 A(3)

∂r2
+

1

r

∂ A(3)

∂r
+

1

r2

∂2 A(3)

∂ϕ2
= 0. (29)

The boundary condition used to rewrite the vector potential
equation in the air gap is continuity of the field’s tangential
component. At r = r3, this is (Fig. 4)

∂ A(3)(r, ϕ, t)

∂r

∣

∣

∣

∣

∣

r = r3

=
∂ A(2)(r, ϕ, t)

∂r

∣

∣

∣

∣

∣

r = r3

. (30)

At r = r4, the boundary condition is written as

∂ A(3)(r, ϕ, t)

∂r

∣

∣

∣

∣

∣

r=r4

= f (ϕ) (31)

with

f (ϕ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂ A(4i)(r, ϕ, t)

∂r

∣

∣

∣

∣

∣

r = r4

if δi − �t − θ0 ≤ ϕ

≤ δi + δ − �t − θ0

0 else.

(32)

Considering (30) and (31), the expression for the magnetic
vector potential is formulated as

A(3)(r, ϕ, t) =

∞
∑

n = −∞

∞
∑

k = −∞

A
(3)
k,n(r)e j (kϕ+(k−n)�t+kθ0) (33)

where

A
(3)
k,n(r)=

⎧

⎪

⎨

⎪

⎩

A
(3)
0,n + r3U

(3)
0,n ln (r) if k =0

r3

|k|
U

(3)
k,n

L |k|(r, r4)

M|k|(r3, r4)
+

r4

|k|
V

(3)
k,n

L |k|(r, r3)

M|k|(r4, r3)
else

(34)

and r3U
(3)
0,n = r4V

(3)
0,n .

Note that, at every moment in time, the solution of the vector
potential problem is defined except for a constant. Here, it is

assumed that A
(3)
0,n = 0. To satisfy the boundary conditions,

the integration constants are defined as

U
(3)
k,n =

�

4π2

∫ 2π
�

0

∫ 2π−�t−θ0

−�t−θ0

∂ A(2)(r, ϕ, t)

∂r

∣

∣

∣

∣

∣

r = r3

·e− j (kϕ+(k−n)�t+kθ0) dϕdt (35a)

V
(3)
k,n =

�

4π2

∫ 2π
�

0

∫ 2π−�t−θ0

−�t−θ0

f (ϕ)

·e− j (kϕ+(k−n)�t+kθ0) dϕdt . (35b)

The integrals in (35a) and (35b) are developed in
the Appendix.

D. Slot Subdomains

A current density J
(i)
ext is imposed in every slot i . The

current flows parallel with the z-axis and is independent of
r and ϕ. This means that the governing equation in the i th
slot subdomain is

∂2 A(4i)

∂r2
+

1

r

∂ A(4i)

∂r
+

1

r2

∂2 A(4i)

∂ϕ2
= −µ0 J

(i)
ext . (36)

The externally imposed current density is time dependent and
can be written as an exponential Fourier series

J
(i)
ext =

∞
∑

n=−∞

J (i)
n e− j n�t . (37)

Every slot has four boundaries, and the conditions on these
boundaries are shown in Fig. 5 and formulated as

∂ A(4i)(r, ϕ, t)

∂ϕ

∣

∣

∣

∣

∣

ϕ = δi−�t−θ0

= 0 (38)

∂ A(4i)(r, ϕ, t)

∂ϕ

∣

∣

∣

∣

∣

ϕ = δi+δ−�t−θ0

= 0 (39)

A(4i)(r4, ϕ, t) = A(3)(r4, ϕ, t) (40)

∂ A(4i)(r, ϕ, t)

∂r

∣

∣

∣

∣

∣

r = r5

= 0. (41)

The solution of (36) can then be imposed by

A(4i)(r, ϕ, t)

=

∞
∑

n = −∞

∞
∑

l = −∞

A
(4i)
l,n (r)e

j
(

lπ
δ (ϕ−δi )+

(

lπ
δ −n

)

�t + lπ
δ θ0

)

(42)
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Fig. 5. i th slot subdomain and its boundary conditions.

where

A
(4i)
l,n (r)=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

U
(4i)
0,n +

1

2
µ0 J (i)

n

(

r2
5 ln

r

r4
−

1

2

(

r2−r2
4

)

)

if l =0

U
(4i)
|l|,n

L∣

∣

∣

lπ
δ

∣

∣

∣

(r, r5)

L∣

∣

∣

lπ
δ

∣

∣

∣

(r4, r5)
else.

(43)

Continuity of the vector potential at r = r4 is now imposed
by

U
(4i)
|l|,n =

�

4π2

∫ 2π
�

0

∫ δi +δ−�t−θ0

δi −�t−θ0

A(3)(r4, ϕ, t)

·e
− j

(

lπ
δ (ϕ−δi )+

(

lπ
δ −n

)

�t+ lπ
δ θ0

)

dϕdt . (44)

E. Conclusion

In the above sections, expressions for the vector potential in
every subdomain were obtained. The integration constants in
these expressions can be calculated by solving the system of
boundary condition equations. Therefore, the vector potential
can be calculated in every subdomain.

Note that if hk and hn are, respectively, the spatial and time
cutoff harmonics, then the number of integration constants is
hn(5(1 + 2hk) + N(1 + hk)). This indeed complies with the
number of equations, which can be calculated per boundary
condition.

1) Equation (19): hn(1 + 2hk).
2) Equation (28a): hn(1 + 2hk).
3) Equation (28b): hn(1 + 2hk).
4) Equation (35a): hn(1 + 2hk).
5) Equation (35b): hn(1 + 2hk).
6) Equation (44): hn N(1 + hk).

The size of the resulting system is hn(5(1 + 2hk) +
N(1 + hk)). This means that the computational time will not
only depend on the desired accuracy (hk and hn) but on the
machine geometry as well (N). When very high accuracy
is desired, the size of the system will be large; numerically
obtaining the solution of the system will be time consuming.
A study of the harmonic content of electrical machines could
lead to a simplification of the system. However, the primary
goal of this paper is the development of an accurate model.
A further reduction of the computational time can be an
interesting topic for future research.

V. FLUX DENSITY, NO-LOAD VOLTAGE, AND

TORQUE COMPUTATION

The magnetic vector potential can be used to compute a
large number of machine characteristics. In this section, the
flux density, the torque, and the no-load voltage are described.

A. Flux Density

The magnetic flux density can be computed as the curl of
the vector potential (7). This means that, when a cylindrical
coordinate system is used, the flux density only has a r and a
ϕ component

B(ν)
r =

1

r

∂ A(ν)(r, ϕ, t)

∂ϕ
and B(ν)

ϕ = −
∂ A(ν)(r, ϕ, t)

∂r
. (45)

B. Torque

Applying Maxwell’s stress tensor in the center of the air
gap (r = rac), the electromagnetic torque can be calculated as

T (t) =
lsr2

ac

µ0

∫ 2π−�t−θ0

−�t−θ0

B(3)
r (rac, ϕ, t)B(3)

ϕ (rac, ϕ, t) dϕ

= 2π
lsr2

ac

µ0

∞
∑

n=−∞

∞
∑

s=−∞

Tn,se− j (n+s)�t (46)

where n and s represent the time harmonics of B
(4i)
r and B

(4i)
ϕ ,

respectively. Tn,s is the torque component corresponding to the
time harmonic combination (n, s).

Note that the integral in (46) is analog to the integration
over space in (19)

Tn,s =

∞
∑

k=−∞

B
(3)
r,k,n(rac)B

(3)
ϕ,−k,s(rac). (47)

The r -dependent parts of B
(4i)
r,k,n and B

(4i)
ϕ,−k,s can be calculated

using (45).

C. No-Load Voltage

The no-load voltage induced in a phase is calculated as the
time derivative of the flux coupled with that phase. If S is a
surface spanned by the single turn C , then the flux coupled
with that turn is calculated as

λ =

∫∫

S

B da =

∫∫

S

∇ × A da =

∮

C

A ds. (48)

Since the vector potential only has a z-component, the flux
linked to a turn in slots i and i + a can be calculated as

λ= ls

(

A(4i)

(

r, δi +
δ

2
, t

)

−A(4i+a)

(

r, δi+a +
δ

2
, t

))

. (49)

A matrix �k,n can now be defined for every space and time
harmonic combination as

�k,n =

⎡

⎢

⎢

⎣

ls A
(41)
k,n

(

r, δ1 + δ
2

)

e− j n�t

...

ls A
(4N)
k,n

(

r, δN + δ
2

)

e− j n�t

⎤

⎥

⎥

⎦

. (50)

Matrix D is defined as a m-by-N matrix, with m the number
of phases. Every element of D represents the number of turns
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TABLE I

PARAMETERS OF THE STUDIED MACHINE

a phase has in a given slot. For the single-layer winding
machine, as shown in Fig. 1, D is

D =

[

w 0 0 −w · · · 0
0 0 w 0 · · · −w
0 −w 0 0 · · · 0

]

(51)

where w is the number of turns per winding.
If e j (t) is the no-load voltage in phase j , the no-load

voltages can be computed as
⎡

⎢

⎣

e1(t)
...

em(t)

⎤

⎥

⎦
= D ·

∂�k,n

∂ t
. (52)

VI. VALIDATION

As validation, the machine shown in Fig. 1 will be studied
using the described model. The results of this paper will be
then compared with the results of an FE study. In the analytical
model, the number of spatial and time harmonics has been
limited to 50. The machine parameters are shown in Table I.

The magnets are radially magnetized. To simplify the source
term, inverse dependency of Brem on the radius is presumed.
The remanent magnetic induction in the magnets can be
expressed as an exponential Fourier series

Brem,r (r, ϕ, t)=

∞
∑

n = −∞

∞
∑

k = −∞

Brem,k,n(r)e j (kϕ+(k−n)�t+kθ0) (53)

where

Brem,k,n =

⎧

⎨

⎩

j
2rmc Brem sin(kϕm)

πr |k|
p if k = n and k/p odd

0 else.

(54)

The source term Kk,n can then be calculated as

Kk,n =

⎧

⎨

⎩

− j
2rmc Brem sin(kϕm)

πk2
p if k = n and k/p odd

0 else

(55)

Fig. 6. Magnetic field at no-load conditions.

where rmc is the radius at the center of the magnets and p is
the number of pole pairs.

Although any current waveform can be applied, if its Fourier
coefficients are known, in this paper, a three-phase sinusoidal
system drives the machine. This means that the respective
current densities in every phase can be written as

J
(i)
ext =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

wI

S

e− j2�t + e j2�t

2
if i ∈ KU

wI

S

e
− j

(

2�t− 2π
3

)

+ e
j
(

2�t− 2π
3

)

2
if i ∈ KV

wI

S

e
− j

(

2�t− 4π
3

)

+ e
j
(

2�t− 4π
3

)

2
if i ∈ KW

(56)

where S is the surface of a slot and KU , KV , and KW ,
respectively, contain the slots linked to phases U , V , and W .
Note that � is the mechanical speed, therefore the pulsation
in (56) is 2�.

A. No-Load Condition

When the current in the slots is set to zero, the resulting
magnetic field in the discussed subdomains is shown in Fig. 6.

Notice that the boundary conditions at the boundary
between the air gap and the slots are not fully satisfied.
This is because of the limitation in the number of regarded
harmonics.

Based on the solution of the vector potential, the magnetic
induction at the center of the air gap can be calculated
using (45). The results for the situation corresponding to the
rotor position as in Fig. 6 are shown in Figs. 7 and 8. Note
that the analytical results are in very good agreement with the
results from the FE study.

The effect of the slots on the magnetic induction can be
clearly observed. Fig. 9 shows the radial induction at the air
gap center for different slot-opening angles.
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Fig. 7. Normal component of the magnetic induction in the air-gap center
under no-load conditions at t = 0 s.

Fig. 8. Tangential component of the magnetic induction in the air-gap center
under no-load conditions at t = 0 s.

Fig. 9. Effect of the slot opening on the normal component of the magnetic
induction in the air-gap center under no-load situation at t = 0.

At no load, the torque and no-load voltage can be computed.
These results are shown in Figs. 10 and 11 when the rotor is
rotated at 30 000 r/min.

The torque at no load will grow with the opening angle
of the slots. A maximal difference of 4.7% between the
torque obtained analytically and via FE modeling is observed.
This can also be explained by a difference in permeability of
the stator and rotor iron, as discussed in Section VI-C. Note
that the average torque is not zero. This is because of the
asynchronous magnetic fields, induced by the slotting effect.
The SC acts as the squirrel cage of an induction motor, which
explains the net torque.

Fig. 10. Torque at no load.

Fig. 11. No-load voltage in phase U at 30 000 r/min.

Fig. 12. Armature reaction field.

The different windings of a single phase are connected in
series.

B. Armature Reaction Field

The armature reaction field is obtained when the effect of
the magnets is neglected. If the rated current (50 A) is applied,
the magnetic field is shown in Fig. 12.
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Fig. 13. Normal component of the magnetic induction in the air-gap center
due to the armature reaction at t = 0 s.

Fig. 14. Tangential component of magnetic induction in the air-gap center
due to the armature reaction at t = 0 s.

Fig. 15. Electromagnetic torque under load conditions.

The radial and tangential induction in the center of the air
gap is plotted in Figs. 13 and 14. Again, very good agreement
between the analytical and FE solution is obtained.

C. Load Condition

When the effects of the magnets and the stator currents
are considered at the same time, the electromagnetic torque
can be calculated (Fig. 15). The torque ripple has a frequency
equaling N times the machine’s mechanical frequency.

From Fig. 15, it can be observed that the resulting torque
is smaller when using FE methods. However, the deviation is
limited to 3.9%. In the analytical model, infinite permeability

of the stator and rotor iron is assumed. The FE model
in contrast does not account for infinite permeability. This
partially explains the deviation. It is also believed that the
numerical integration of the Maxwell stress tensor in the FE
model causes an error.

VII. CONCLUSION

The above-presented validation shows that the analytical
model accurately considers both the slotting effect and the SCs
eddy-current reaction field. A very important feature of the
model is that all the results are available separately for every
space and time harmonic combination. This implies a great
insight in the machine. Under no-load conditions, for example,
the source term only contains harmonic combinations where
the spatial harmonic order equals the time harmonic order.
However, in the resulting magnetic field, other combinations
are present as well. Study of these combinations gives a clear
insight in the slotting effect.

When analyzing the computational time, the calculation of
the boundary condition constants is dominant. However, based
on these constants, all the further information, at every instance
of time, can be calculated very fast.

The presented model is fast, accurate, and complete; more-
over, it provides a good insight in the machine’s physics.
Therefore, the model meets the demands provided in Section I.
It can be used to further study and optimize high-speed
electrical machines.

The presented analytical model can thus be seen as a starting
point for further research. The calculation of the different
machine losses would be a very interesting study, certainly for
high-speed machines. Other possibilities for future research are
the effect of the SC on the rotor losses and a comparison with
other machine types, such as the slotless PMSM or axial flux
machines. Finally, one of the assumptions made in this paper
is neglecting the end effects; this is only valid for sufficiently
high length-to-diameter ratios. The range of validity of this
assumption would be an interesting topic.

APPENDIX

To compute the boundary condition constants, an integration
over time and space has to be done. These integrations can
be developed analytically. A distinction is made between
boundaries with equal spatial periods, such as the boundary
between the SC and the air gap, and boundaries with different
spatial periods, i.e., the boundary between the air gap and the
slots. Note that the solution of the vector potential is always
written in the same form

A(ν)(r, ϕ, t) =

∞
∑

n = −∞

∞
∑

z = −∞

A(ν)
z,n(r)e j (zϕ+(z−n)�t+zθ0). (57)

In the latter, z can either be an integer (k) or lπ/δ, where l is
an integer.

At boundaries with equal spatial periods [(19), (28a), (28b)
and (35a)], the integration will be of the form, as illustrated
in (58)

∫ 2π
�

0

∫ 2π−�t−θ0

−�t−θ0

⎛

⎝

∞
∑

s=−∞

∞
∑

q=−∞

e j (qϕ+(q−s)�t+qθ0)

⎞

⎠

· e− j (kϕ+(k−n)�t+kθ0) dϕdt . (58)
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The integration can then be developed for every time and
spatial harmonic combination (q ,s)

∫ 2π
�

0

∫ 2π−�t−θ0

−�t−θ0

e j (qϕ+(q−s)�t+qθ0)e− j (kϕ+(k−n)�t+kθ0) dϕdt

=

⎧

⎨

⎩

4π2

�
if s = n and q = k

0 else.
(59)

The integration in (35b) will be written as

N
∑

i=1

∫ 2π
�

0

∫ δi +δ−�t−θ0

δi −�t−θ0

⎛

⎝

∞
∑

s = −∞

∞
∑

q = −∞

e j( qπ
δ (ϕ−δi )+( qπ

δ −s)�t+
qπ
δ θ0)

⎞

⎠

· e− j (kϕ+(k−n)�t+kθ0) dϕdt . (60)

The development of (60) can be written per time and spatial
harmonic combination as
∫ 2π

�

0

∫ δi +δ−�t−θ0

δi −�t−θ0

e j( qπ
δ (ϕ−δi )+( qπ

δ −s)�t+
qπ
δ θ0)

·e− j (kϕ+(k−n)�t+kθ0) dϕdt

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

δ
2π

�
e− j kδi if s = n and q = k

jδ
2π

�

1 − (−1)qe− j kδ

qπ − kδ
e− j kδi if s = n and q �= k

0 else.

(61)

Finally, the integration in (44) equals

∫ 2π
�

0

∫ δi+δ−�t−θ0

δi−�t−θ0

⎛

⎝

∞
∑

s =−∞

∞
∑

q =−∞

e j (qϕ+(q−s)�t+qθ0)

⎞

⎠

· e
− j

(

lπ
δ (ϕ−δi )+

(

lπ
δ −n

)

�t+ lπ
δ θ0

)

dϕdt . (62)

Every time and spatial combination can be developed as

∫ 2π
�

0

∫ δi+δ−�t−θ0

δi−�t−θ0

e j (qϕ+(q−s)�t+qθ0)

· e
− j

(

lπ
δ (ϕ−δi )+

(

lπ
δ −n

)

�t+ lπ
δ θ0

)

dϕdt

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

δ
2π

�
e j qδi if s = n and q = k

− jδ
2π

�

1 − (−1)le j qδ

lπ − qδ
e j qδi if s = n and q �= k

0 else.

(63)

REFERENCES

[1] A. Binder and T. Schneider, “High-speed inverter-fed ac drives,” in Proc.

Int. ACEMPE, Sep. 2007, pp. 9–16.

[2] P. Sergeant and A. Van den Bossche, “Influence of the amount of perma-
nent magnet material in fractional-slot permanent magnet synchronous
machines,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4979–4989,
Sep. 2013.

[3] P. Arumugam, T. Hamiti, and C. Gerada, “Estimation of eddy current
loss in semi-closed slot vertical conductor permanent magnet synchro-
nous machines considering eddy current reaction effect,” IEEE Trans.

Magn., vol. 49, no. 10, pp. 5326–5335, Oct. 2013.

[4] S. R. Holm, H. Polinder, and J. A. Ferreira, “Analytical modeling of
a permanent-magnet synchronous machine in a flywheel,” IEEE Trans.

Magn., vol. 43, no. 5, pp. 1955–1967, May 2007.

[5] A. Rahideh and T. Korakianitis, “Analytical calculation of open-circuit
magnetic field distribution of slotless brushless PM machines,” Int. J.
Electr. Power Energy Syst., vol. 44, no. 1, pp. 99–114, 2013.

[6] Z. Q. Zhu, L. J. Wu, and Z. P. Xia, “An accurate subdomain model
for magnetic field computation in slotted surface-mounted permanent-
magnet machines,” IEEE Trans. Magn., vol. 46, no. 4, pp. 1100–1115,
Apr. 2010.

[7] Z. J. Liu and J. T. Li, “Analytical solution of air-gap field in permanent-
magnet motors taking into account the effect of pole transition over
slots,” IEEE Trans. Magn., vol. 43, no. 10, pp. 3872–3883, Oct. 2007.

[8] M. R. Shah, H. Polinder, and S. B. Lee, “Rapid analytical optimization
of eddy-current shield thickness for associated loss minimization in
electrical machines,” IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 642–649,
Jun. 2006.

[9] A. Bellara, Y. Amara, G. Barakat, and B. Dakyo, “Two-dimensional
exact analytical solution of armature reaction field in slotted surface
mounted pm radial flux synchronous machines,” IEEE Trans. Magn.,
vol. 45, no. 10, pp. 4534–4538, Oct. 2009.

[10] Y. Amara and G. Barakat, “Analytical modeling of magnetic field
in surface mounted permanent-magnet tubular linear machines,” IEEE

Trans. Magn., vol. 46, no. 11, pp. 3870–3882, Nov. 2010.

[11] B. L. J. Gysen, E. Ilhan, K. J. Meessen, J. J. H. Paulides, and
E. A. Lomonova, “Modeling of flux switching permanent magnet
machines with Fourier analysis,” IEEE Trans. Magn., vol. 46, no. 6,
pp. 1499–1502, Jun. 2010.

[12] T. Lubin, S. Mezani, and A. Rezzoug, “Exact analytical method for
magnetic field computation in the air gap of cylindrical electrical
machines considering slotting effects,” IEEE Trans. Magn., vol. 46,
no. 4, pp. 1092–1099, Apr. 2010.

[13] T. Lubin, S. Mezani, and A. Rezzoug, “2-D exact analytical model
for surface-mounted permanent-magnet motors with semi-closed slots,”
IEEE Trans. Magn., vol. 47, no. 2, pp. 479–492, Feb. 2011.

[14] Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in
brushless permanent magnet DC motors. III. Effect of stator slotting,”
IEEE Trans. Magn., vol. 29, no. 1, pp. 143–151, Jan. 1993.

[15] H. Vansompel, P. Sergeant, and L. Dupré, “A multilayer 2-D–2-D
coupled model for eddy current calculation in the rotor of an axial-flux
PM machine,” IEEE Trans. Energy Convers., vol. 27, no. 3, pp. 784–791,
Sep. 2012.

[16] M. Markovic, M. Jufer, and D. Howe, “Reducing the cogging torque
in brushless DC motors by using conformal mappings,” IEEE Trans.

Magn., vol. 40, no. 2, pp. 451–455, Mar. 2004.

[17] K. Boughara, D. Zarko, R. Ibtiouen, O. Touhami, and A. Rezzoug,
“Magnetic field analysis of inset and surface-mounted permanent-magnet
synchronous motors using Schwarz–Christoffel transformation,” IEEE

Trans. Magn., vol. 45, no. 8, pp. 3166–3178, Aug. 2009.

[18] D. Zarko, D. Ban, and T. A. Lipo, “Analytical solution for cogging
torque in surface permanent-magnet motors using conformal mapping,”
IEEE Trans. Magn., vol. 44, no. 1, pp. 52–65, Jan. 2008.


