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in Strain Imaging
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Abstract—Companding is a signal preprocessing tech-
nique for improving the precision of correlation-based time
delay measurements. In strain imaging, companding is ap-
plied to warp 2-D or 3-D ultrasonic echo fields to improve
coherence between data acquired before and after compres-
sion. It minimizes decorrelation errors, which are the domi-
nant source of strain image noise. The word refers to a spa-
tially variable signal scaling that compresses and expands
waveforms acquired in an ultrasonic scan plane or vol-
ume. Temporal stretching by the applied strain is a single-
scale (global), 1-D companding process that has been used
successfully to reduce strain noise. This paper describes
a two-scale (global and local), 2-D companding technique
that is based on a sum-absolute-difference (SAD) algorithm
for blood velocity estimation. Several experiments are pre-
sented that demonstrate improvements in target visibility
for strain imaging. The results show that, if tissue motion
can be confined to the scan plane of a linear array trans-
ducer, displacement variance can be reduced two orders of
magnitude using 2-D local companding relative to temporal
stretching.

I. Introduction

Elasticity imaging describes a broad range of emerg-
ing techniques for visualizing mechanical properties of

soft biological tissues in vivo [1]–[13]. Static methods use
an ultrasound transducer in place of a physician’s hand
to palpate tissues and detect stiff objects located below
the skin surface [6]–[8]. The transducer/compressor com-
bination becomes a remote sensing device for imaging tis-
sue strain deep in the body. Strain images provide unique
diagnostic information because of the large stiffness con-
trast that exists between some normal and diseased tis-
sues [14], [15].

Strain images are generated by comparing ultra-
sound scans—specifically, the radio-frequency echo fields—
acquired before and after compression of the tissue surface.
Internal tissue displacements are tracked along the beam
axis by classical 1-D time delay estimation [19], [20] ap-
plied to segments of pre- and postcompression echo wave-
forms. A strain image is computed from the gradient of
the displacement field.

Visibility of targets in strain images is currently noise
limited [16], where the strain noise is determined by the
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displacement covariance. Displacement covariance has two
sources: signal-independent ultrasound noise and signal-
dependent decorrelation noise [18]. The loss of coherence
between pre- and postcompression echo fields is the domi-
nant source of displacement error in strained signals.1 Dis-
placement variance increases nonlinearly with the amount
of applied strain [18]–[23]. However, when the deformation
occurs only in the scan plane, prior knowledge of the strain
can be used to warp 2-D echo fields to restore echo field
coherence for time delay estimation and thereby reduce
strain noise [22], [23].

Previously, strain noise was maintained at acceptable
levels by compressing the tissue only a small percentage
of its total height (≤1%) [7], [16]. After compression, the
echo field was linearly stretched along the beam axis by the
average applied strain before crosscorrelation with the pre-
compression echo field [24]. Temporal stretching [16], [17],
known as companding in the signal processing literature
[23], reduces strain noise by restoring coherence between
the waveforms to be crosscorrelated. Because crosscorrela-
tion methods assume there is only rigid-body motion over
the duration of the data window, stretching signals by the
applied strain conditions the data to better satisfy this
critical assumption. The improvement in strain noise de-
pends on the duration of the data window, the elastic het-
erogeneity of the medium, and the amount of strain [18].

Strain is estimated in one dimension only, along the
beam axis, because the axial sampling interval is often
10 times finer than the lateral sampling interval. (For ex-
ample, a 5 MHz linear array sampled at 50 Msamples/s
has a 15 µm axial sampling interval. The echo line den-
sity for this array was 5/mm, producing a lateral sam-
pling interval of 200 µm.) High sampling rates are needed
for strain imaging to reduce the demands on interpola-
tion algorithms for detecting correlation peaks using dig-
itized echo data. Interpolation can increase displacement
variance and bias [26]. Unfortunately, biological tissues do
not move in one dimension when compressed, and tempo-
ral stretching is insufficient to avoid decorrelation errors.
Temporal stretching may be extended to two or three di-
mensions by establishing known boundary conditions and
assuming the medium is homogeneous and incompressible
[25], but it is rare that these assumptions are valid at all
spatial scales for biological tissues.

Multicompression displacement estimators have been
proposed to minimize decorrelation errors [8], [24], [31],

1Strained signals are those with time-varying time delay.
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Fig. 1. A flow chart summarizing the proposed algorithm to form
strain images.

[32]. These methods combine displacements estimated
from many small compressions to increase object contrast
for strain while minimizing decorrelation errors. Although
multicompression approaches achieve their objective, they
are also susceptible to registration error, are of limited use
in cases of low echo signal-to-noise ratio, and require large
data volumes and long acquisition and computation times.
Alternatively, the 2-D companding methods described be-
low provide uniformly low strain noise in elastically hetero-
geneous media subjected to relatively large strains without
the limitations of multicompression methods. However, it
is more important for 2-D companding than multicompres-
sion methods that all motion occur in the scan plane.

The strategy proposed in this paper for strain imaging
is diagrammed in Fig. 1. Boundary conditions are adjusted
so that object motion is confined to the scan plane [33]. In
a first-pass process, the medium is assumed to be incom-
pressible, i.e., Poisson’s ratio ' 0.5, and spatially uniform
in elasticity. Global companding methods are applied to
the echo fields in two dimensions to detect and adjust for
large-scale (average) deformations and displacements. In a
second-pass process, elastic heterogeneities in the medium
are recognized at low resolution by a 2-D local compand-
ing technique. Echo waveforms are shifted correspondingly
in directions axial and lateral to the beam. In a third-pass
process, crosscorrelation is applied along the direction of
beam propagation to measure the residual axial displace-
ment. Axial measurements from steps 2 and 3 are added
before taking the gradient to form the strain image. The

first two steps warp the 2-D precompression data field to
match the postcompression field and improve waveform
coherence point-by-point. The overall displacement vari-
ance is reduced because it is mainly determined by esti-
mation errors in the third (crosscorrelation) step. In this
way, mean displacement is preserved while its variance is
reduced, so strain noise is controlled with minimal loss
of image contrast. Notice that warping the precompres-
sion field to match the postcompression field is equivalent
to warping the postcompression field to match the pre-
compression field. We choose the former for convenience
only. Also, alignment of the beam axis with respect to the
axis of compression is critical to avoid misleading displace-
ment information [28]–[30]. For this reason, linear arrays
are used. Throughout the paper, we assume that compres-
sion results in a positive strain and expansion in a negative
strain.

The 2-D companding process is described in the next
section.

II. Methods

A. Observation of Motion Due To Compression

Consider an incompressible free-standing block of ma-
terial that is compressed by a planar surface from above,
along the z axis, and held fixed from below. The longitudi-
nal strain, sz, is in the direction of the applied stress; the
transverse strains, sx and sy, are perpendicular to the ap-
plied stress; and sz = −2sx = −2sy. Minus signs indicate
that compression along z results in expansion in x, y.

In strain imaging, motion is always measured along the
axis of the ultrasound beam where the spatial sampling
rate is highest. Therefore, we study the object in compres-
sion by measuring the axial displacement to compute the
longitudinal strain. Similarly we study the object in ten-
sion by measuring the axial displacement to compute the
transverse strain. Longitudinal and transverse refer to the
motion of a planar compressor, and in-plane (axial and lat-
eral) and out-of-plane (elevational) refer to the beam axis
of a 1-D array transducer. Notice that if the boundary
conditions are set to prevent motion along x, then sx = 0
and sz = −sy. In that case, in x, z at y = 0, virtually all
motion is along z. Similarly, when the x, y boundaries are
unconstrained and the y, z image plane is along the cen-
tral plane of the block, virtually all motion is in the image
plane.

B. Echo Fields

Strain images are formed by analyzing a precompres-
sion echo field U and postcompression echo field C. Both
are Z × Y dimensional matrices of samples from con-
tinuous echo waveforms (see Fig. 2). For example, U =
(Uz, Uy), z = 1...Z, y = 1...Y , where there are Y wave-
forms each consisting of Z digitized echo values.
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Fig. 2. Division of the echo field into data kernels (shaded) for 2-D (a) global, and (b) local companding. U represents the uncompressed
echo field matrix, C represents the compressed echo field matrix, and z, y is the image plane. For global companding, the echo fields are
divided into 16 nonoverlapping kernels. For local companding, they are divided into 104 overlapping kernels for a 15 mm× 15 mm echo
field. The data kernels for global companding are five times larger than those for local companding.

C. Sum-Absolute-Difference (SAD) Algorithm

The SAD algorithm, previously used for blood velocity
estimation [34], [35], is the essence of companding. It is use-
ful because it calculates displacements accurately at high
speed. SAD provides performance similar to correlation
for 2-D displacement estimation but requires eight-times
fewer arithmetic operations [34].

SAD is implemented by selecting corresponding data
kernels from U and C of size L×M . Then for all (i, j) in
a P ×Q search region in C, where P > L and Q > M , the
SAD coefficients εi,j are computed:

εi,j =
L∑
`=1

M∑
m=1

|C`,m − U`+i,m+j |. (1)

Let εI,J = min {εi,j} be the minimum SAD coefficient in
the search region. The location of εI,J identifies the posi-
tion (zC , yC ) in C that corresponds to (zU , yU ) in U. The
displacement vector is:

D = (Dz, Dy) = ((zC − zU ), (yC − yU )) (2)

with an uncertainty at least as large as the axial (∆z) and
lateral (∆y) sampling intervals.

Since ∆y ≥ 10∆z, we attempted to interpolate between
y displacements for subsample estimates and increased
precision. Simple linear interpolation methods produced
strong artifacts that were unacceptable. We also tried the
technique of Geiman et al. [36] to interpolate between
echo waveforms based on a ratio of gradients in U and C
around (z

C , yC ). However, the additional derivative made
that method more sensitive to noise. Unlike blood veloc-
ity imaging, where ensemble averaging is possible, there is

only one pair of noise realizations in strain imaging. Con-
sequently nearest-neighbor interpolation was used.
D. 2-D Global Companding

Sixteen nonoverlapping SAD kernels were equally dis-
tributed over U at points (z

U , yU ) as shown in Fig. 2(a).
From the resultant displacement vectors, 16 correspond-
ing points (zC , yC ) were estimated. Using linear regression
analysis, we solved for the companding parametersmy and
mz and shift parameters by and bz using the equations:

zC = mzzU + bz

yC = myyU + by. (3)

U was then shifted and scaled accordingly, and the axial
companding parameter mz was added to the strain com-
puted by crosscorrelation to obtain the measured strain.

E. 2-D Local Companding

Many overlapping SAD kernels were applied to U as
shown in Fig. 2(b) to estimate local displacements in two
dimensions. The kernels were separated by five samples
along z and one sample along y. Roughly 104 estimates
were calculated for a 15 × 15 mm echo field in about 10
minutes on a workstation. Each segment of five vertical
samples along Uz was then shifted such that (Uz, Uy) −→
(Uz+Dz , Uy+Dy). Although echo data were shifted at each
kernel location, not scaled, the shifts were spatially varying
so the net effect was to locally deform, or compand, U
to more closely approximate C. Displacements along the
beam axis were stored and added to those later detected
using crosscorrelation.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Demonstration of the effect of companding on displacement. (a) A 2-D elastic modulus field was simulated for an incompressible
object. The bright targets are softer than the background and the dark targets are stiffer. The object was compressed uniformly from the
top surface, and the bottom surface was bound. Only the region below the dotted line was included in the following displacement images.
The longitudinal (b) and transverse (c) displacement fields show regions of large positive (white), zero (gray), and large negative (black)
displacements. 1-D global companding along the vertical axis resulted in (d). After 2-D local companding, however, the residual longitudinal
(e) and transverse (f) displacements were much smaller than the originals (b) and (c), respectively.

F. An Example

The effects of 2-D global and local companding on dis-
placement are illustrated in Fig. 3 independent of the ul-
trasound signals. Compression of the 2-D object shown
in Fig. 3(a) was simulated using a finite-element analy-
sis (FEA) software package from Algor, Inc. (Pittsburgh,
PA) assuming a plane-strain state and linear elastic media.
Young’s modulus was 100 kPa in the background, 50 kPa
in two soft bright targets, and 150 kPa in three hard dark
targets. The overall object dimensions in this example were
100 mm×100 mm, the large targets had a 20 mm diameter,
and the small targets had 8 mm diameters. The object was
compressed uniformly 10% of its height from the top sur-
face that was allowed to freely slip along the compressor,
while the bottom surface was bound in all directions. The
longitudinal [Fig. 3(b)] and transverse [Fig. 3(c)] displace-
ment fields show how the elasticity and boundary hetero-
geneities distort the displacement symmetry. Nonuniform
displacements indicate that the object was strained in both
dimensions.

After longitudinally stretching the postcompression ob-
ject (1-D global companding) by exactly the amount of

strain applied (d), the steep longitudinal gradient was re-
moved [compare Figs. 3(b) and (d)] but the residual dis-
placement remained nonuniform. Wherever the displace-
ment gradient in Fig. 3(d) is high, time delay estimation
involving ultrasound signals will suffer large decorrelation
errors. Companding aims to minimize strain over the di-
mension of the crosscorrelation window, roughly 2 mm.

A random field of points was deformed according to
the displacement fields in Figs. 3(b) and (c), and 2-D lo-
cal companding was applied to measure the displacement.
This simulated echo field is equivalent to scanning a ran-
dom scattering medium with an ideal point impulse re-
sponse. Although nonphysical, this simulation serves to
illustrate object motion without decorrelation errors. The
compander output was subtracted from Figs. 3(b) and (c),
and the residual longitudinal and transverse displacement
fields are displayed in Figs. 3(e) and (f), respectively. Lo-
cal companding removed nearly all the transverse displace-
ment (its magnitude is only half that in the longitudinal
direction) and most of the longitudinal displacement. The
advantages of local companding for strain imaging are re-
alized because the strain gradient along the sound beam
usually varies much more slowly than the displacement



chaturvedi et al.: noise reduction in strain imaging 183

gradient. Global companding is not essential for successful
local companding, although, when they are used together,
the total processing time is an order of magnitude less than
that using local companding alone.

In Section III, we present the results of several ultra-
sound simulations and phantom measurements performed
with the imaging algorithm outlined in Fig. 1.

III. Results

A. Simulations

Simulation model: Several experiments involved sim-
ulated ultrasonic echo data. The precompression rf echo
field U was simulated by applying the linear model [37],

Uz,y = Gz,y +Nz,y. (4)

N is a signal-independent white noise process. G is a con-
volution between the scatterer impulse response and pulse-
echo impulse response functions. The latter is a 2-D Gaus-
sian function modulated by a sine wave along the z axis.
The former assumes a 3-D field of randomly positioned
100 µm-diameter scatterers having sufficient number den-
sity to produce fully developed speckle [37].

The postcompression rf echo field C was simulated by
deforming an exact copy of the random scatterer field used
for U according to an FEA model. The object was allowed
to slip freely along boundary surfaces. The deformed scat-
terer field was then convolved with the same pulse-echo
impulse response to yield G′z,y. Consequently,

Cz,y = G′z,y +N ′z,y, (5)

where N ′ is an independent, identically distributed real-
ization of N .

Paramaters for the simulation model were specified to
match the phantom experiments described in the subsec-
tion III. B, except that the elevational beam-width was ap-
proximately 1.5 mm in the phantom experiment whereas
a 2-D beam in the scan plane was used in the simula-
tions. The simulated linear array had a center frequency
of 5.0 MHz and a bandwidth of 3 MHz. Waveforms were
sampled at 50 MHz to provide 1024 samples per wave-
form. The scan plane included 128 waveforms separated
0.16 mm with every fourth waveform being uncorrelated.
The simulated noise amplitude was 40 dB below that of
the signal. The SAD kernel, search region, and correla-
tion window sizes were selected by visual inspection of the
images; no attempt at objective optimization was made.
A 4 waveform × 50 samples (0.64 × 0.77 mm) SAD ker-
nel was used for local companding in all simulations and
phantom experiments except the first simulation experi-
ment, in which a 4× 30 (0.64× 0.46 mm) kernel was used.
A Hanning-weighted correlation window of 128 samples
(2.0 mm) was selected. The vertical shift between adja-
cent correlation windows (axial pixel dimension) was 16

samples (0.25 mm) resulting in a 92% overlap between
windows.

Simulation experiments: In the first simulation experi-
ment, an elastically homogeneous and incompressible 2-D
object was compressed 3.1% along the beam axis. Only
step 2 from Fig. 1 was applied. The axial and lateral dis-
placements detected by the SAD algorithm are shown in
Fig. 4. The 2-D local compander was able to correctly de-
tect this simple motion with little uncertainty, although
the higher axial sampling rate resulted in greater preci-
sion.

In the second simulation experiment, an inhomogeneous
and incompressible 3-D object was compressed 3.1% along
the beam axis. The object was a right circular cylinder
15 mm long and 20 mm in diameter (beam and cylinder
were coaxial). A 6.5 mm-diameter sphere with a stiffness
three times greater than the background was placed at the
center of the cylinder. A central cross-section through the
object depicting the elastic modulus distribution is shown
in Fig. 5(a). The stiff sphere appears dark. The simulated
acoustic scattering field was random and uniform through-
out, i.e., the sphere provided no acoustic contrast. The
cylinder was compressed from below and scanned in the
central plane, such that there was no motion out of the
image plane. The object strain field found from the gra-
dient of the longitudinal FEA displacement is shown in
Fig. 5(b).

The simulated echo fields were analyzed to form longitu-
dinal strain images without [Fig. 5(c)] and with [Fig. 5(d)]
local companding. With respect to Fig. 1, steps 1 and 3
were applied in Fig. 5(c), and steps 1, 2, and 3 were ap-
plied in Fig. 5(d). Bright pixels represent large strain (soft
regions) and dark pixels represent small strain (stiff re-
gions). Without local companding, the decorrelation noise
in Fig. 5(c) was obvious. Decorrelation noise was most
apparent near the lateral margins where lateral displace-
ments were greatest.

In the third simulation experiment, two stiff spheres
were centered on the axis of a background cylinder as
shown in cross-section in Fig. 6(a). Other object param-
eters were the same as in simulation experiment 2. The
sphere diameters were 2 and 4 mm. Stress concentrations
distort the circular shape of the targets as seen in the ob-
ject strain field, Fig. 6(b). Longitudinal strain images with-
out and with local companding are shown in Figs. 6(c) and
(d), respectively. Global companding was applied in both
cases. Fig. 6(e) shows the strain image obtained from the
displacement estimates provided by the local compander
without correlation (steps 1 and 2 only). The targets are
most visible in the images where all three steps—global
companding, local companding, and correlation—were ap-
plied.

In the fourth simulation experiment, the object in
Fig. 6(a) was again analyzed, except that the transverse
strain was imaged. That is, the object, now shown in
Fig. 7(a), was compressed from the right along the axis
of the cylinder but scanned from above. The strain field
in tension is shown in Fig. 7(b). The stiff targets appear
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(a) (b)

Fig. 4. Axial (a) and lateral (b) displacement fields in the scan plane as detected by the SAD algorithm for simulated ultrasonic echo fields
of an elastically homogeneous medium compressed 3.1% from the bottom surface. This is a 2-D FEA model under plane-strain with free-slip
boundary conditions. Notice the greater noise for lateral displacements (b) as compared with axial displacement (a).

Fig. 5. Longitudinal strain images. The elastic modulus distribution (a), object strain field (b), and strain images (c) and (d) of a spherical
target 6.5 mm in diameter and three times stiffer than the background. Strain images were formed without (c) and with (d) local companding
(step 2 in Fig. 1.) The object was compressed 3.1% from below.
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Fig. 6. Longitudinal strain images. The elastic modulus distribution (a), object strain field (b), and reconstructed strain images (c)–(e)
of two stiff spherical targets of diameters of 2 and 4 mm. Referring to Fig. 1, strain images were formed using steps 1 and 3 (no local
companding) in (c), steps 1, 2, and 3 in (d), and steps 1 and 2 (no correlation) in (e). The object was compressed 3.1% from below and
scanned along the direction of compression.
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Fig. 7. Transverse strain images of the object in Fig. 6(a). In this experiment, the object was compressed from the right and scanned from
below. The object strain field is shown in (b) and strain images in (c)–(f). The object was compressed 3.1% in (c) and (d) and 15.5% in (e)
and (f). The strain values depicted in (e) and (f) are five times the values in (b)–(d). Local companding was not applied in (c) and (e) but
was applied in (d) and (f).
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Fig. 8. Longitudinal strain images of a 3-layer graphite gel phantom. The middle layer had approximately half the stiffness of the other
layers. (a) is the object strain field modeled using FEA when the phantom is physically constrained so that all the motion is in the scan
plane. (b)–(d) are the strain images measured using a 5 MHz linear array. Referring to Fig. 1, strain images were formed using steps 1 and
3 (no local companding) in (b), steps 1, 2, and 3 in (c), and steps 1 and 2 (no correlation) in (d).

brighter than the background because the strain is neg-
ative in tension. Compressing the object 3.1% resulted
in Figs. 7(c) and (d). Local companding reduced noise
and contrast as seen in Fig. 7(d). Since transverse dis-
placements were only 50% of the longitudinal displace-
ment for the incompressible cylinder used in this simu-
lation, the signal-to-noise ratio for transverse strain esti-
mates in Fig. 7(d) was lower than that for longitudinal
strain estimates in Fig. 6(d). Target visibility was contrast
limited in the transverse strain images of Figs. 7(c) and
(d) and noise limited in the longitudinal strain images of
Figs. 6(c) and (d). We restored the noise-limited condi-
tion to transverse strain images by compressing the object
15.5%. The results, shown in Figs. 7(e) and (f), indicate
that companding is most effective in noise-limited imaging
situations. The position of the scan planes were chosen so
there was no out-of-plane displacement, allowing relatively

large compressions to be applied without decorrelation. It
is particularly important to apply global companding in
two dimensions for transverse strain images, because lat-
eral displacements are much greater than axial.

To compare target visibility for images formed with and
without local companding, the following contrast-to-noise
ratio was computed:

CNR =

√
2(s̄t − s̄b)2

varst + varsb
. (6)

The quantities s̄ and var s denote the mean and variance
of the strain estimates, and subscripts b and t represent
the background and the target, respectively. Mean and
variance for the background were computed from a region
in the upper left corner of the images, which was rela-
tively free from stress concentration artifacts. Comparison
of the CNR for various simulation experiments is provided
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TABLE I
CNR in Images Obtained for the Simulations Described in Section III.

Figure Target CNR Figure Target CNR

5c large 0.1183 7c large 1.2850
5d large 6.1410 small 1.0128
6c large 0.0693 7d large 1.2897

small 0.1068 small 0.4978
6d large 2.7669 7e large 0.5124

small 2.7138 small 1.0789
6e large 0.4294 7f large 7.5324

small 0.3980 small 5.6282

in Table I. These CNR values are not intended to be rig-
orous comparisons of lesion detectability. Rather, they are
a means to quantify visual impressions independent of the
display contrast and brightness settings.

B. Phantom Experiment

We further investigated the advantages of compand-
ing by studying strain images of a rectangular graphite-
gel phantom constructed with three horizontal layers. The
middle layer was approximately half as stiff as the up-
per and lower layers. The system parameters are the same
as those described in subsection III.A for the simulations.
The phantom was compressed from the top to produce
1.2% strain in the central layer and scanned from the top
with the image plane bisecting the phantom. Data were
collected for two sets of boundary conditions: first, the
plane strain where both axial and lateral displacements
(condition A) were allowed and second when only axial
displacements were allowed (condition B). For boundary
conditions (A), the object strain obtained by FEA is shown
in Fig. 8(a) and the measured strain images are shown in
Figs. 8(b)–(d).

Normalized displacement variances were also measured
for two of the images in Fig. 8 and displayed in Fig. 9 as
a function of correlation window duration T . Axial dis-
placement variances corresponding to the central layer of
the phantom imaged in Fig. 8(b) are plotted in Fig. 9 as
curve A, indicating the boundary conditions (A). When
companding is applied, as in the image of Fig. 8(c), dis-
placement variance is reduced (curve C in Fig. 9) to nearly
match the variance for boundary conditions (B), where
there is only axial displacement. The three curves of Fig. 9
show that companding eliminates most of the displace-
ment variance caused by decorrelation from lateral tissue
motion without adding a significant amount of noise. Fur-
thermore, the reduction in variance is nearly two orders of
magnitude. In each situation, displacement variances de-
creased for long duration windows because the strain was
small (1.2%). The exception was for curve A at short dura-
tion windows, where the maximum possible variance was
obtained, var(Dz)/T 2 = 1/12.

Fig. 9. Plots of correlation window length T vs. normalized displace-
ment variance/T 2 measured for the phantom images of Fig. 8. The
strain in the middle layer was 1.2%. “A” indicates the measured vari-
ance for plane-strain conditions. “B” indicates the measured variance
for axial motion only. “C” indicates the measured variance for data
in “A” after 2-D local companding.

IV. Discussion

Results of the simulation experiment of Fig. 4 demon-
strate the ability of the SAD algorithm to track simple
motion in the image plane. The 3.1% compression applied
along the beam in this experiment results in the largest
axial motion (at the bottom) of 32 samples and lateral
motion of ±2 rf lines. These features are clearly reflected
in the images shown in Fig. 4 because there is little signal
decorrelation. The small amount of data lost near the bot-
tom of each image in all experiments is the result of new
regions moving into the scan plane during compression.

The addition of local companding to correlation-based
strain imaging for measuring complex movement within
inhomogeneous objects is illustrated in Figs. 5–7. Local
companding reduced lateral decorrelation, produced spa-
tially uniform strain noise, and improved target visibility.
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Fig. 10. K-space representation of the pre- and postcompression echo data for longitudinal (a) and transverse (b) strain images. The shaded
region represents the pulse spectrum, and the outer circle (ellipse) represents the object spectrum.

The improvements were quantified by the increase in CNR
shown in Table I. Companding is only effective at tracking
displaced echoes that remain coherent after compression.
Out-of-plane motion, for example, cannot be tracked un-
less the echo data are finely sampled in three dimensions.

Simulation experiments with the two-target object,
Fig. 6, further illustrate the advantages of local compand-
ing for more complex object geometries. The image in
Fig. 6(c) was obtained with correlation analysis follow-
ing global companding. The high noise level significantly
reduces the visibility of the smaller target. With 2-D local
companding followed by crosscorrelation, the strain noise
in Fig. 6(d) is greatly reduced, and both targets closely re-

semble those in the object strain, Fig. 6(a). Strain images
obtained by 2-D local companding without crosscorrela-
tion, e.g., Fig. 6(e), exhibit higher noise and lower contrast
when compared to Fig. 6(d). Therefore, companding it-
self does not improve image quality significantly. All three
steps in displacement estimation summarized in Fig. 1 are
needed for efficient strain imaging.

Transverse strain images have less noise than longitu-
dinal strain images under the conditions that exist in the
simulation experiment for a fundamental reason that is
illustrated in the k-space diagrams [29], [38] of Fig. 10.
Fig. 10(a) shows ensemble tissue and pulse-echo spec-
tra for precompression, postcompression, and 2-D com-
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panded/postcompression echo data of a hypothetical tissue
sample. ky and kz represent components of the wavevector
perpendicular and parallel to the compression axis, respec-
tively. A broadband pulse propagating along z (shaded
areas) is used to probe a very broadband object with a
circular k-space representation that contains many spa-
tial frequencies not included in the pulse bandwidth. The
product of the pulse and tissue spectra determines which
tissue structures are visible to the ultrasound system.

Strain of the incompressible tissue along z elongates
the symmetric tissue spectrum along kz and narrows it
along ky, forming an ellipse. The deformed object is then
scanned with the same pulse. Successful 2-D global com-
panding restores the tissue spectrum but deforms the pulse
spectrum such that the spatial frequencies probed before
compression are not the same as those after compression.
The deformation reduced the center frequency and band-
width of the pulse along kz. The loss of signal coherence
ultimately degrades the CNR for strain images.

In transverse strain images, however, 2-D global com-
panding increased the center frequency and bandwidth of
the echo signal as diagrammed in Fig. 10(b). There is
greater overlap between the pre- and postcompression echo
spectra and, therefore, less decorrelation noise.

Images of the three-layer graphite-gel phantom provide
experimental evidence in support of employing local com-
panding. The image obtained without 2-D local compand-
ing displayed large strain noise near the lateral margins
[Fig. 8(b)]. The object strain contributed only a small frac-
tion of the image variability, as seen by a comparison with
Fig. 8(a). The decorrelation noise added by lateral motion
was reduced by local companding [Fig. 8(c)]. However, the
algorithm was less successful near the layer boundaries.
There are two possible reasons for the enhanced noise at
the boundaries. First, imperfect bonding between phantom
layers can cause slippage resulting in large local displace-
ments. Second, the gradient operation used for computing
strain from displacement exacerbates the noise added by
the SAD algorithm near boundaries, resulting in a process
similar to edge-detection.

2-D local companding increased the total processing
time for strain image formation. The amount of time de-
pends on the sizes of the image, SAD kernel, and search
region. Image formation can take anywhere between a few
minutes to a few hours on a DEC-Alpha workstation. It is
expected that local companding using the SAD algorithm
can be accomplished at near real-time rates using DSP
technology [35].

V. Conclusions

A 2-D local companding technique for reducing noise
in strain images is presented. By companding the data
prior to using crosscorrelation to compute strain, image
noise is reduced by two orders of magnitude or more. How-
ever, since strain variance increases with the applied strain,
there are limits to the effectiveness of companding that
have yet to be explored.

The relatively large compressions that must be applied
to realize the improved target visibility of strain images
also increase the chances for decorrelation from out-of-
plane motion. If boundary conditions can be established
that restrict motion to the scan plane, then large com-
pressions increase signal strength (strain contrast) and tar-
get visibility is noise limited. Under those conditions, local
companding is most useful.
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