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Abstract— This paper presents a novel approach for selecting
and tracking feature points in video sequences. In this approach,
the image intensity is represented by a 3D deformable surface
model. The proposed approach relies on selecting and tracking
feature points by exploiting the so-called generalized displace-
ment vector that appears in the explicit surface deformation
governing equations. This vector is proven to be a combination of
the output of various line and edge detection masks, thus leading
to distinct, robust features. The proposed method was compared,
in terms of tracking accuracy and robustness, with a well known
tracking algorithm (KLT) and a tracking algorithm based on
SIFT features. The proposed method was experimentally shown
to be more precise and robust than both KLT and SIFT tracking.
Moreover, the feature point selection scheme was tested against
the SIFT and Harris feature points and it was demonstrated to
provide superior results.

Index Terms— Feature point selection, tracking, 3D de-
formable models, intensity surface, video analysis.
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I. INTRODUCTION

Tracking objects in video sequences is a frequently encoun-
tered task in video-based applications, such as surveillance,
hand gesture recognition, human-computer interaction, smart
environments, motion capture for virtual reality and computer
animation, video editing, medical and meteorological imaging
and 3D scene reconstruction from uncalibrated video. Thus, in
the last two decades intensive research has been carried out in
this area. Building a tracking system is far from being a simple
process due to varying lighting conditions, partial occlusions,
clutter, unconstrained motion, etc. So far, various systems
for person, face and object tracking have been presented in
the literature. These systems can be broadly divided in four
categories:

« color-based tracking,

« template-based tracking,
« contour tracking,

« feature-based tracking.

Additional information about the aforementioned tracking
categories can be found in the excellent review publications
that have appeared in the literature [1]-[5].
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Color is a distinctive object feature and, therefore, is useful
for object localization on static and video images. Color
information produces satisfactory tracking results and allows
fast processing, which is important for a tracking system that
needs to run at a reasonable frame rate. Many approaches are
based on color histograms while some others use global color
reference models [6]-[7].

Template matching techniques are used by many researchers
to perform object tracking by following the same princi-
ples with the template matching techniques used in object
recognition [8]-[9]. Template-based tracking involves the use
of multiple templates or template warping to accommodate
changes in object pose. The process of determining correspon-
dences between image and template pixels is computationally
expensive but provides robust tracking results.

Tracking using outline contour information is easier than
modeling and tracking the entire object area, e.g. when using
color. Moreover, contour tracking is more robust than using
simple corner or edge tracking, since it can be adapted to
cope with partial occlusions. The active contour representation
introduced by Kass ef al. [10], is the most popular method for
contour delineation and tracking.

Feature-based tracking is a frequently used approach, in
which moving objects are represented by feature points de-
tected prior to tracking or during tracking. Feature-based
tracking, though prone to tracking errors, can be implemented
very efficiently and it is important in many time-critical
applications. The selection of the feature points depends on
the algorithm and usually is based on specific features (local
image properties) of these points. A significant number of
feature tracking algorithms have been introduced trying, in
general, to correlate image features from frame to frame. In
[11], the feature points are stochastically selected based on
the energy of their Gabor wavelet transform coefficients. The
global placement of the feature points is determined by a 2-D
mesh, using the area of the triangles formed by the feature
points. This method uses a local feature vector containing
Gabor wavelet transform coefficients and a global feature
vector containing triangle areas. In order to find the corre-
sponding features in the next frame, the 2-D golden section
algorithm is employed. Middle level features (strokes) are
used in [12], instead of low-level ones (edge points). Strokes
are accomplished by organizing edge points through an edge
linking operation. Two labels (valid/invalid) are considered for
each stroke and a probability is assigned to each of them.
In this way, all the strokes contribute to track the moving
object but with different weights. In [13], multiple features
were used in order to improve the accuracy and robustness



of a real-time tracker. More specifically, color histogram
features combined with edge-gradient-based shape features
were tracked over time under a Monte Carlo framework. A
comparison of four feature point tracking algorithms is given
in [14]. Many researchers, instead of trying to improve the
tracking performance through the selection of “good” features,
exploited the knowledge of how a tracker works and tried to
impose several constraints so as to improve the tracking of
feature points [15], [16], [17].

In most of the cases, an initialization step which depends
on the tracking algorithm is applied prior to tracking and
defines the area of points that will be tracked. In feature
based algorithms, several feature point selection strategies can
be used. The goal is to obtain distinctive feature points on
the image that are appropriate for tracking. Many of these
feature points are also used for image matching applications,
e.g., for finding the correspondences between two views of
the same scene. Lowe proposed the Scale Invariant Feature
Transform (SIFT) feature points [18], which are scale, rotation
and partially illumination invariant. The SIFT feature points
were used for image matching and image retrieval. Harris
et al. [19] proposed a combined edge and corner detector
which provides feature points that exhibit high “cornerness”
and thus, are suitable for tracking. In [20], the feature points
are extracted based on the eigenvalues of an image gradient
matrix constructed over a window around the candidate feature
point. If the minimum eigenvalue of this matrix is larger than
a user-defined threshold, then the feature point is considered
to be good for tracking. The extracted feature points are
optimal for the tracking algorithm presented in the same paper.
Moreover, a scheme for the selection of discriminative tracking
features was proposed in [21]. Given a set of features, the log
likelihood ratios of class conditional sample densities from
the objects of interest and the background were computed,
to form a new set of candidate features tailored to the local
object/background discrimination task. The two-class variance
ratio is used to rank these new features according to how well
they separate sample distributions of object and background
pixels. This feature evaluation mechanism is embedded in a
mean-shift tracking system that adaptively selects the top-
ranked discriminative features for tracking.

A novel feature selection and tracking algorithm is proposed
in this paper. The approach was motivated by the technique
presented in [22]-[24], which aims at analyzing non-rigid
object motion, with application to medical images. Nastar et
al. [22] used deformable models to approximate the dynamic
object surface deformations in time sequences of volume
data (i.e. sequences of 3D data) and applied modal analysis
techniques (a standard engineering technique that allows more
effective computations and provides closed form solution of
the deformation process) in order to describe and analyze
the deformations. The framework proposed in this paper has
been also exploited for the alignment of serially acquired
slices [24], for multimodal brain image analysis [23] and
segmentation of 2D objects [25]. In our case, the deformable
model formulation is used in a totally different and novel
application, i.e. that of feature point tracking. We assume that
the image intensity in each video frame can be approximated

by a deformable “intensity” surface, where we select and track
characteristic feature points. The proposed technique exploits
a byproduct of the explicit surface deformation governing
equations, in order to select and subsequently track distinctive
feature points. More specifically, the feature point selection
process utilizes the so-called generalized displacement vector
[22], which is shown to be a novel combination of the
output of various line and edge detection masks and thus,
produces feature points corresponding to local edges, lines,
corners or other characteristic image features that are suitable
for tracking. The connection between the deformable surface
model and the line/edge detector operators is an important
outcome of this work. The tracking procedure that follows
the feature selection is based on measuring and matching the
generalized displacement vector of the feature points from
frame to frame.

In summary the novelty of the paper lies in the use of a
deformable surface to approximate the image intensity surface
and the consequent use of a term appearing in the deforma-
tion procedure to perform robust feature point selection and
tracking. With respect to the deformable model and its modal
analysis as introduced in [26], [22] and further used in [23],
[24], the novelty lies in the use of the model for a different
application (i.e. that of feature selection and tracking), the use
of different external forces that attract the model towards the
image intensity (as will be described in section II) and the use
of an intermediate result (generalized displacement vector) of
the deformation procedure instead of using the model per se.

Compared to existing feature selection and tracking algo-
rithms, namely the KLT [27] and the SIFT algorithm [28],
the proposed method achieves better performance in terms
of tracking accuracy and robustness. The results show that
the proposed method is robust against rotations, zooming,
varying lighting conditions and hard shadows and can track
the selected features for long time periods. Moreover, the
feature point selection part of the algorithm, was compared
to other feature selection algorithms, i.e. the SIFT [18] and
Harris [19] feature point detectors and was shown to provide
superior results in their subsequent tracking.

The remainder of the paper is organized as follows. In
Section II, a brief description of the deformation procedure
based on modal analysis is presented. The feature point
selection procedure is introduced in Section III. The tracking
algorithm is described in Section IV. The performance of the
proposed technique, as well as a comparison between the
proposed algorithm and the well known KLT feature-based
tracking algorithm [27], tracking using SIFT feature points
[18] and feature selection using SIFT and Harris [19] feature
detectors are presented in Section V. Final conclusions are
drawn in Section VI.

II. DEFORMABLE MODEL DESCRIPTION

Image intensity I(z,y) can be assumed to define a sur-
face over the image domain (x,y) that will be subsequently
called intensity surface (Figure 2b). The proposed tracking
approach focuses on parameterizing the 3D space defined
by (z,y,I(z,y)) that is called the XY space [29]. A



3D physics-based deformable surface model, introduced in
[22], [23], [26], is used for this purpose. In this section,
the methodology described in these papers will be briefly
reviewed, so as to make this paper self-contained. For more
details, including the assumptions that are involved, interested
readers can consult the above-mentioned papers.
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Fig. 1. Quadrilateral surface (mesh) model.

The deformable surface model consists of a uniform quadri-
lateral mesh of N = Ny, x N,, nodes, as illustrated in Figure 1.
In this section, we assume that N, IV, are equal to the image
height and width (in pixels) respectively, i.e. that each image
pixel corresponds to one mesh node. The node coordinates of
the model under examination are stacked in a vector:

T
vt = [rﬁ),...,rgTK,w,ré?,...,rg.Tj),,...,rg\T,zNw] =
T
[rgT),...,rgT),...,rg\T,)] , (1)

where N = N, x Ny, j € {1,2,...,Np}, j €
{1,2,... ,Ny},i=( —1)Ny,+j and i € {1,2,... ,N},
v\ = 27, 4 217). The coordinate z{™ corresponds to
image intensity, namely ziT) =1 (xET) ; ylm ). T denotes the 7-
th deformation time instance. Each model node is assumed
to have a mass m and is connected to its neighbors with
perfect identical springs of stiffness k& having natural length
lyp and damping coefficient c. Under the effect of internal and
external forces, the mass-spring system deforms to a 3D mesh
representation of the image intensity surface, as can be seen
in Figure 2d.

The model under study is a physics-based system governed
by the fundamental dynamics equation:

Fa @) + fa@l) + feoe(l) = misl ™,

i=1,2,... N, 2)
(r)

, 18 the i-th component of vector v(7) ie., the coor-
dinates of the i-th node, m; its mass and i‘ET) its acceleration
under total force load. fy4(+) is a damping force proportional to
node velocity fET). fext(+) is the external force load on each
node resulting from the attraction of the model by the image
intensity, often based on the Euclidean distance between the

where r

intensity of an image pixel, whose representation in the XY [
space is (x;;,¥:,I(x;;)) and the node coordinates [30], [31].
fer(+) is the sum of elastic forces applied to the i-th node.

Under certain assumption that can be found in [22], the
deformable surface model is ruled by Lagrangian dynamics
[32]:

Mil? + Ca™) + Ku'™ = (1) 3)

where u(™) is the nodal displacement vector u(™ = v(7) —
v(™) M, C, and K [33] are, respectively, the N x N mass,
damping, and stiffness matrices of the model and £(7) is the
external force vector.

If the initial and the final deformable surface states are
known, it is assumed that a constant force load f is applied to
the surface model [23]. This is the case of our problem formu-
lation, where the initial state is the initial model configuration
(Figure 2¢) and the final, desirable state is the image intensity
surface, shown in Figure 2b. Thus, equation (3) is transformed
to the equilibrium governing equation that corresponds to the
static problem:

Ku="f. “)

Instead of finding directly the equilibrium solution of (4),
one can transform it by a basis change [34]:

u=vuq, ®)

where ¥ is a square nonsingular transformation matrix of
order N to be determined and u is referred to as the gen-
eralized displacement vector. One effective way of choosing
¥ is setting it equal to matrix ®, whose columns are the
eigenvectors ¢; of the generalized eigenproblem:

K¢; = wiMé;, (6)
N=Np Ny

ud=ea = Y gl )
i=1

The i-th eigenvector ¢;, i.e., the i-th column of @ is also
called the i-th vibration mode. u; is the i-th component of u
and w; is the corresponding eigenvalue (also called vibration
frequency). Equation (5) (and subsequently (7)) is known as
modal superposition equation.

A significant advantage of this formulation, is that the vibra-
tion modes (eigenvectors) ¢; and the frequencies (eigenvalues)
w; of a plane topology have an explicit formulation [22] and
they do not have to be computed using eigen-decomposition
techniques:

o 4k mj . nj'
2 N 2 2
W0, = [sm <—2Nh>+sm <2Nw)}, ®)

i(2n —1 i'(2n' — 1
bua () = cos LED o LB
where j = 0,1,...,Ny —1,j' = 0,1,...,Ny — 1, n =
1,2, Npo ' = 1,2, Ny, &?(j) = 0noiss

Gnn (4, 7') is the (n,n')-th element of matrix ¢(3,j'), where
¢(j,j') = ¢j Ny+j'+



In the modal space, equation (4) can be written as:

Ka="f, (10
where K = ®TK® and f = <I>Tf, f being the external
force vector. Hence, by using (7), (8) and (9), equation (10)

is simplified to 3N scalar equations:
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Fig. 2. (a) Facial image, (b) intensity surface representation of the image,
(c) the initial model configuration, (d) deformed model approximating the
intensity surface.

The components of the forces in f along the z and y axes are
taken to be equal to zero, i.e. f;, = fi, = 0. The components
of these forces along the z (intensity) axis are taken to
be proportional to the Euclidean distance between the point
(z,y,I(x,y)) of the intensity surface and the corresponding
model node position in its initial configuration (x,y,0), i.e.,
equal to the intensity I(x,y) of pixel (z,y): fle—1)Nyty.: =
f(z,y) = I(x,y), where f,_1)n,+y,. iS the component
along z axis of the (z — 1)V, + y-th element of vector f.
Under such a condition, the model deforms only along the z
axis.

In our case, each frame of the video sequence is described in
terms of vibrations of an initial model. Figure 2 illustrates the
vibration mode parameterization of the 2D image of a human
face shown in Figure 2a. The intensity surface representation
of the image can be seen in Figure 2b. The size of the model
(in nodes) that was used to parameterize the image surface
was equal to the image size (in pixels). The quadrilateral
mesh model is initialized (Figure 2c¢) and the elements ;;
are explicitly computed:

N, Ny -
Tss = Znil n'=1 I(n’nl)¢n,n’ (27])
(1+w2(i, )/ SNy 6200 (0.)

12)

It should be noted that the deformable model achieves only
an approximation of the intensity surface of the target image.

The generalized displacement vector @(!) (z,y) of equation
(10) is exploited, as will be shown in the following sections,
in order to select and track feature points on 2D images. This
vector will be called characteristic feature vector (CFV). A
flow diagram of the proposed algorithm is shown in Figure 3.
The details of the algorithm will be provided in the following
sections.

III. IMAGE FEATURE POINT SELECTION

In this section, we introduce the way in which 3D physics-
based deformable surface models can be exploited to select
characteristic feature points on an image. This feature point
selection procedure can be applied on the first frame of a
video sequence in order to initialize the tracking procedure
that will be described in the next Section. The same procedure
can be used to reinitialize the tracker in cases where such an
action is required, e.g. when an object disappears (occlusion)
or reappears (disocclusion). In order to select a pixel (x,y)
on the image I; at time ¢ as a characteristic feature point, we
use the characteristic feature vector @®)(z,%) of (10) whose
elements are given by (12).

For determining the CFV of a pixel (z,y) of a video frame
1;, a deformable surface model of size Ng X Nyww (Ng < Np,
Nw < Ny, Ng and Ny being odd numbers) is applied to
an image window D; of the same size (Ng X Ny ), centered
at pixel (z,y). The CFV @® (z,y) for a specific pixel (z,y)
is:

a0 (z,y) = K (z,9), k% (z,9), ...

I kgf’LNW (ZB, y)]T;
13)
where k() (x,y) = [a), (2,9), 8}, (e.9). @, (2, 9)]".
evaluated by applying the deformation procedure descrlbed in
Section II, to the image window D;. As already mentioned in
the previous section, no deformations occur along the x and y
axes, i.e., deformations occur only along the intensity axis (z
axis), driven by the image intensity under examination. Thus,
112?3 (x,y) = ﬂg)} (z,y) = 0 and the CFV is simplified to:

a0 (,y) = [0 9), i @] (9
where u( )( y) 2 u,(ztz (z,y). Using (12), one can find that

ug) (z,y) can be expressed as:
NH 1NW 1
i@y = Y Z ij(k,1) (15)
k=0 =
I m—51:l+&y—Nﬁ_1+l,
2 2
where:
Tz](kal) = ¢kl(z J) )
(1+w2(0, )/ h S 62,46, )
ogngH—l,oglgNW—l. (16)

Evaluation of the matrices Y;; (16) for typical values of N,
Nw, (e.g. 3, 5) revealed that these matrices corresponds to
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well known image processing operator masks W;, typically
local line and edge detectors, scaled by a constant a;; whose
value depends on the properties of the deformable surface, i.e.
the stiffness of the springs and the mass of the nodes:

Yij(k,1) = a;; Wij(k,1). (17)

For the simple case Ng = Ny = 3 and for a model with
k=1 and m = 1, the vector ¥ (x,y) can be evaluated by
applying the a;; and W;; presented in Table I. It can be seen
that indeed the masks in this table correspond to image pro-
cessing operators. Masks W 5, and W, ; are the Prewitt edge
detector operators [35], which detect edges along vertical and
horizontal directions respectively. Additionally, masks W 3
and W3 ; are vertical and horizontal line detection masks [35].
Moreover, masks W5 3 and W3 , are edge detectors [36] and
W3 3 is the Laplacian line detection mask.

The masks and constants for the case Ny = Ny = 5 also
correspond to local line and edge detection operators. Thus, the
elements of the characteristic vector, evaluated using (15), are
the outputs of line and edge detection operators, evaluated over
the image window centered around pixel (z,y) and weighted
with appropriate coefficients. The connection between the
characteristic feature vector (i.e. the generalized displacement
vector of the deformable model) and the edge/line detection
operators was one of the most interesting outcomes of this
study. This connection can be attributed to way in which modal
analysis operates. In essence, the modal superposition equation
(5) performs a “frequency” decomposition of a shape, i.e., it
decomposes it into a frequency-increasing set of modes (which
are orthonormal basis functions corresponding to basic shapes)
linearly combined by the modal amplitudes [22]. The masks
related to the evaluation of the characteristic feature vector

considered as lost

Flow diagram of the proposed feature point selection and tracking algorithm.

provide information for the frequency content of the image
(edges, lines and mean intensity value or DC term) which
enters into the frequency decomposition in the form of modal
amplitudes ; in (7).

In the proposed feature point selec-
tion approach, we compute the CFVs
a®(1,1), a®(,2), 0 (Npyeg, Nwreg), for

each pixel (z,y) of an image region R; to be tracked at time
instance t, where Ngpeqy X Nw, ey is the image region size.
Subsequently, the vector S(®) whose elements Sg(fg, are the
sum of absolute values of the elements of CFVs @) (z,y) is
calculated:

SO = 51,819, .. SN ) (18)
Ny Nw
sH2y > |y (19)

(k:D)#(1,1)

The element ﬂgt)l(a:,y) is excluded from the calculations in

(19), since this element corresponds to the mask W1, which
simply calculates the local image average and therefore, bears
no significant information. Thus, each pixel (z, y) in the image
(or the image region) under examination is assigned a scalar
value. In order to select the M most salient feature points
(pixels) on the image, the M pixels that correspond to the
M largest Sg(fy) values are selected, since a large value of
Sé? indicates that the Ng x Ny, window around pixel (z,y)
contains edges, lines, corners or other characteristic formations
and, thus, the corresponding pixel is suitable for tracking.
As expected, some of the M selected feature points are
located close to each other (Figure 4a), along image edges,



TABLE I
Constants a;; and masks W ;j (matrices) of dimensions 3 x 3.
a1l = 0.1_111 aje = 0.0_962 a13 = 0.0_278
1 1 1 1 0 -1 1 -2 1
Wip=(1 1 1 Wip=(1 0 -1 Wiz=|1 -2 1
1 1 1 1 0 -1 1 -2 1
az1 = 0.0962 az2 = 0.1111 a23 = 0.0385
1 1 17 [ 0 11 1 -2 1]
Wy = 0 0 0 Was = 0 0 0 Wos = 0 0 0
-1 -1 -1 -1 0 1 -1 2 -1
a1 = 0.0_278 ) age = 0.0_385 ) a3s = 0.0_159 )
1 1 1 0 -1 1 -2 1
Wz = | -2 -2 -2 Wiz =| -2 0 2 Wiz = | —2 4 -2
1 1 1 0 -1 1 -2 1
(b)
Fig. 4. (a) Positions of the feature points that correspond to the 300 largest
values of S$t1, with model size Ngg = Ny = 17, (b) positions of the feature
points that correspond to the 300 largest values of 57(02 while being at
least T pixels apart (in both horizontal and vertical directions). Only 25%
of eigenvalues and eigenvectors are used during the deformation procedure. ~ Fig. 6. (a) The initial image, (b) 15 feature points on the initial image, (c)

A A A
A < T

Fig. 5. Local intensity surfaces of the original image for six of the selected
feature points depicted in Figure 4 (model size Ny = Ny = 7, total number
of selected feature points 300).

lines and corners. If the selected feature points are concen-
trated on a small neighborhood, problems in the subsequent
tracking procedure can occur, e.g., in the case of partial
occlusions, where all feature points in an area might be lost.
Thus, the M feature points Egt)’ i € {1,2,...,M} that
are finally selected, are the ones that have maximum Sa(fy)
but, at the same time, maintain a certain Euclidean distance
D= ||B§t) —Eg,t) || > Dinres from each other (Figure 4b). More
specifically, we order the feature points with respect to Sa(fy)
and select the one with the biggest Sa(fy) value. Subsequently,
we choose as the second feature point the one with the largest
value of S,(;Z) whose distance from the first is at least D;ppes.

the binary output of Canny edge detector, (d) 15 feature points selected on
the output of the Canny edge detector.

The procedure continues until the desired number of points is
reached. The number M of feature points that will be selected
is a user-defined parameter of the algorithm. Figure 5 depicts
the local intensity surfaces of the original image for some of
the selected feature points shown in Figure 4b. The intensities
values being along the vertical direction. It can be seen that the
image intensity within the 7 x 7 neighborhood of these feature
points has large variations. Thus, these points are expected to
be suitable for tracking, as will be shown in the experiments.

The procedure of selecting feature points in an image is
rather time consuming (although not considerably so), since,
for each image pixel a deformable surface model of size
Ny x Nw must be used. The computational complexity for
each pixel is of the order O(N*?) for a deformable surface
model of size N x N. This complexity figure can be derived
from equation (12), since for each of the N2 nodes of the
deformable surface model, 2N? + 1 additions and 4N2 + 5
multiplications are needed. To avoid applying the deformation
procedure on each image pixel, in situations that require low
computational complexity, one can incorporate in the proposed
approach the well known Canny edge detector [37] as follows:
the Canny edge detector is applied on the image and the
selection of the feature point set (Figure 6b) is performed
only among the image pixels where the corresponding output



of the Canny edge detector is sufficiently high (Figure 6c).
This procedure offers a faster but suboptimal feature point
selection. None of the experiments reported in this paper
used this suboptimal version of the selection procedure, since
complexity was of secondary concern.

IV. FEATURE POINT TRACKING

The 2D feature point tracking problem is equivalent to
finding the location of the feature points in successive frames
of an image sequence. Given such an image sequence I =
L, I5,... ,IT and a feature point p( ) = (vi,yi), t €
{1,2,.. T} in the ¢-th image frame, the tracking problem
can be formulated into finding a displacement vector QE ) =
(dgt) (x), dgt) (y)) , Where (d(t)( ), dg )(y)) are the translation
components of point Bgt) along each axis respectively, in order
to locate its position Bgt"'l) = («’,y') in the next image frame:
() = pl) +a,

2 (20)

To achieve tracking, the proposed approach computes for
each feature point Bgt) = (x;,y;) of the selected feature
point set p(*) = [Egt),ggt), . ,Bg\?]T in image frame I; the
CFV @® (z,y) over a window Ny x Ny, and subsequently
calculates S®) (z,y):

-3 5 e

(k)£(1,1)

21

In order to find the position p{™) = (z},4}) of the
feature point ¢ in the next image frame I;;;, the algorithm
computes the CFV @(*t1) (k, 1) for each pixel of a Ns,, x Ng,,
(Nsy . Ns,, being odd numbers) search region I?, centered at
coordinates (x,y) in image I;41. The new location of feature
point 7 is given by:

p{"Y = (af,y)) — argmin(SY) - 5"V, (@2)
where k € {z — M, R NSH_I} and [ € {y —
N, -1 w1

S‘g’ N }.

The use of the absolute difference (22) of Sz y (t (21) for
judging the similarity/matching of features, during the tracking
procedure, instead of other possible measures, such as the cor-
relation between the CFVs, was decided after the experimental
comparison of such metrics.

In order to identify feature points that lose their target
and to cease tracking them, a mutual information based
measure, expressing the goodness of tracking for feature points
belonging to successive frames [; and I;4;, was used. Let
C®, ¢+ be two random variables with P(c (t)) P(CEH—I))
and P(c; (t) (t+1)) their marginal and joint probability density
functions. In our case, cgt) =1 (Bgt)), CEH—I) = It+1(B§t+1))
and Egt) e pW, Egt"‘l) e ptY . In other words,
the two random variables are the intensities of the same
feature point on two successive frames. Thus, the marginal
probability P(cz(.t)) is estimated from the image histogram

Hii (D), ie., P(D) = Hisle),

~N,~—- The joint probability

is estimated by the 2D joint histogram of two frames, i.e.,

P, D) = Hioi (e i) (e, o)

s .
i 1 Cj NV , where H; is

the number of corresponding pixels (pixels in the same spatial
position) that have intensity cgt in frame I; and A in frame
I;41. The mutual information of C'*), C!+1) is defined as:

Nmaz Nmaa

L(C(t)’c(t+1)) _ Z Z t,
=1 =

P( (t) (t+ ))

27]

IOg — s
* ()Pt

t+1)‘

(23)

where Ny,q, 1S the maximum number of the available image
grayscales. In order to distinguish the lost feature points during
the tracking process the following measure is defined:

EQ = |\L(ct=1,0W) — LW, 0ty . @24
When Er(,? > Th (IT'h being a predefined threshold), the
corresponding tracked feature point is labelled as lost and the
algorithm stops tracking it. T'h was set equal to 1.6, because
it was experimentally proven that this threshold can efficiently
separate the well tracked feature points from the ones that lose
the target. The experimental threshold evaluation was done by
running the tracking algorithm for a number of feature points
on various video sequences and evaluating the Er(,? value for
the frames where visual inspection of the results showed that
a feature point has lost its target. The threshold T'h was set to
be equal to the minimum of these values, since it was found
that this value was considerably larger than the E( ) values
corresponding to properly tracked feature points.
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Fig. 7. (a) Eﬁ,ﬁ) versus time (in frames) for a tracked feature point (white dot).
(b) E',,(,tl) versus time (in frames) for a feature point that ceases being properly
tracking (black dot). (c) Tracking results for frame 173. (d) Tracking results
for frame 174, where the black feature point loses the target and, therefore,
is considered lost.



An example of the previously described lost feature point
detection procedure is shown in Figure 7. Fifteen feature points
were selected in the initial frame of the video sequence and
were tracked in the entire sequence. The time series of ET(,?
corresponding to two feature points is plotted in Figures 7a,
7b. Both feature points were successfully tracked till the frame
173 and ET(,? < Th for t < 173. At frame 174 one feature
point (black dot) lost its target (Figure 7d) and ET(,? identified
it as lost (BEY > Th).

Since it is difficult to know the proper size for the search
window R in (22) a priori, we propose using an adaptive
window Ry, defined as the best region for estimating the new
position of a feature point in the next video frame. Starting
with a small window R; (e.g. of 9 x 9 pixels), the algorithm
iteratively increases the window size up to a certain limit, until
the normalized correlation between the CFV of the feature
point in the previous frame and the CFV of the best match in
the current frame, surpasses a threshold E,. For evaluating a
suitable value for E,, normalized correlation was computed for
different sizes of the deformable surface model for different
video sequences and objects of interest. These experiments
have demonstrated that one can achieve a good matching
within the search area by setting the threshold E, equal to
0.7. Similar methods have been used to find the best feature
points correspondences in real and synthetic images in [38].

In time-critical applications, an exhaustive search in the
region of the adaptive window ;y; at the next image frame
can be avoided by employing the same technique which is
used in the feature point selection procedure (Section III) and
exploits the Canny edge detector output. Before determining
the displacement Qgt) of a feature point pgt) from frame I;
to frame I; 1, one can apply the Canny edge detector to the
search region R;;; and search exhaustively only the subset
of R:y1 comprising of those pixels where the Canny edge
detector output is above a certain threshold. The threshold is
set so as the Canny edge detector output contains all significant
edges of the region R;y; at image I;;;. However, it should
be noted, that this procedure results in inferior performance
compared to that provided by the exhaustive search. This is the
reason for using the exhaustive search in all the experiments
reported in this paper.

V. EXPERIMENTAL RESULTS

To evaluate the proposed tracking method, which will be
subsequently called Modal Features (MF) method, we applied
it for face tracking on a set of test video sequences [39].
The material consists of 100 GB of raw video data in full
PAL resolution (25 fps, 4 : 2 : 2, 720 x 576, 24 bpp). The
sequences contain studio scenes with one, two or more persons
moving on a predefined or random trajectory, under either
optimal (as defined by the studio technicians) or suboptimal
lighting conditions created using studio lighting equipment,
thereby introducing hard shadows and bright/dark areas in the
recorded video sequences. Examples are shown in Figure 8.
The proposed approach was also tested on other outdoors
and indoors video sequences depicting persons performing
different motions under various illumination conditions. In all

the experiments, the stiffness £ and the mass m of the nodes
of the deformable surface model, were set equal to 1. It should
be noted here that this paper does not aim at introducing
a full-fledged tracking system with occlusion handling, lost
feature points regeneration etc., but only at proposing a novel
and efficient method for selecting and tracking feature points
on video sequences, which can be integrated in any complex
feature tracking system. Alternatively, occlusion/disocclusion
handling mechanisms can be introduced in the proposed
methodology to make it capable of coping with such situations.
Thus, the performance of the MF method has been examined
mainly in terms of tracking accuracy and robustness under
different motions and lighting conditions, without taking into
account occlusion cases since such cases are outside of the
scope of the proposed methodology. The acquired results were
compared with the ones produced by the well known feature-
based Kanade-Lucas-Tomasi (KLT) tracking algorithm [27],
[20] and a SIFT feature-based tracking system [28]. The
selected feature points were also compared with feature points
produced by SIFT [18] or Harris [19] operators. It should be
noted that a small number of feature points has been used
in all the experiments due to the small size of the tracked
objects in certain cases, the painstaking procedure required in
order to derive ground truth information for a large number
of tracked points and the fact that a small number of feature
points facilitates the visual inspection of the results.

Fig. 8.  Tracking results of the MF algorithm for a 600 frame segment of
an indoor video sequence. The shown sample frames are taken at 120 frame
intervals.

The first set of experiments dealt with the evaluation of the



accuracy of the MF algorithm when tracking individual feature
points. The feature point selection method described in Section
IIT was used to select a number of feature points (M = 9) on a
specific image region, (i.e. a human face) which was manually
outlined on the first frame of the video sequence under
examination. The tracking procedure described in Section IV
was then applied to all (600) video frames. Examples of the
output are presented in Figure 8. The KLT algorithm was
also applied on the same sequence in a similar manner. The
KLT algorithm selected 9 feature points in the same manually
selected area of the first frame using its own feature point
selection algorithm described in [20] and tracked them over
the rest of the video frames. The size of the deformable
intensity surface model was set to be the same with the
window R used by the KLT algorithm around each pixel for
feature point selection and tracking, i.e., equal to 7 x 7 pixels.
Image intensity normalized correlation between corresponding
feature point regions (image regions around each feature point)
were computed between the initial frame and the current
one and the average normalized correlation over the entire
video sequence for all selected feature points was calculated.
The average normalized correlation can provide clues about
the tracking performance of the algorithm, since large values
indicate good tracking. The results are shown in Table II. One
can see that average normalized correlation over the entire
video sequence for the proposed approach is much higher
than the one achieved using KLT. Furthermore, the normalized
correlation variance over the entire video sequence is much
smaller for the MF approach than for KLT. This indicates
that the proposed method has less fluctuations in tracking
performance than KLT. Similar results were obtained for other
video sequences that were used in the experiments.

TABLE 1T
Average normalized correlation (NCA) in windows around selected feature
points and normalized correlation variance (NCV) for the MF algorithm
and the KLT algorithm.

[ Feature points | Point 1 | Point 3 | Point 6 [ Point 9 | All Points |

NCA (MF) 0.8661 | 0.8546 | 0.8881 | 0.7900 0.8360
NCA (KLT) 0.5961 | 0.6428 | 0.7860 | 0.6946 0.6330
NCV (MF) 0.0070 | 0.0074 | 0.0050 | 0.0157 0.0123
NCV (KLT) 0.0380 | 0.0171 | 0.0211 | 0.1360 0.0621

The second set of experiments aimed at testing the ability of
the proposed algorithm to correctly track feature points over a
large number of frames. The MF and the KLT algorithms were
applied on a number of video sequences. It was experimentally
proven that the KLT algorithm ceases tracking feature points
over time more frequently than the proposed method. This is
illustrated in Table III that provides figures for the average
tracking life (measured in number of frames) of feature points
for both algorithms for different sizes of the window R, which
is the model size for the MF algorithm and the window
around each feature point used in KLT. Lost feature points
were detected by visual inspection, i.e., by inspecting the
tracking results in order to find where the tracked feature
points deviated to a great extent from the target feature points.
The superiority of the MF tracking method can also be verified

by the plot in Figure 9, which depicts the number of tracked
feature points (selected in the same region of the initial frame
of the same image sequence) versus time (in frames) for both
algorithms for a certain video sequence depicting a person
moving towards the camera in a zig-zag fashion. The window
size used was equal to 7 x 7 pixels. It is clearly seen that the
MF method loses less feature points as tracking proceeds and
continues tracking even when KLT breaks down completely at
frame number 635, due to head rotation of the target person.
Similar results were obtained in other video sequences.

TABLE III
The average life (in frames) of feature point tracking for different
model/window sizes.

[ Model/window Size | MF tracker

| KLT tracker |

3x3 466.00 115.27
5x5 618.27 349.13
Tx7 730.33 479.33
e e Proposed tracker ‘ 7
““““““““““ — KLT tracker

Number of tracked feature points
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Fig. 9. Number of successfully (not lost) tracked feature points at each frame
of a video sequence for both algorithms.

Furthermore, in order to evaluate tracking precision, we
have manually produced tracking ground truth data for a
number of video sequences and compared it with the output
of the two algorithms. The procedure that was used in this
experiment was the following: we allowed both the KLT al-
gorithm and the MF algorithm to select 9 feature points on the
facial image region in the first frame of each sequence, each
using its own feature selection procedure. Afterwards, both
algorithms were allowed to track the selected feature points
for the rest of the video sequences. The window size was set
equal to 7 x 7 pixels. The feature point positions generated by
the two algorithms were compared with the ground truth data,
i.e. the manually tracked positions of the same feature points.
The Euclidean distance between the ground truth positions and
the positions provided by the two algorithms (i.e. the tracking
position error) was used for the comparison. As can be seen in
Figure 10 (for a sequence depicting a person moving parallel
to the camera), our algorithm is more precise in tracking, i.e.,
the tracking error is constantly smaller for the MF algorithm.
More specifically, the MF error is almost three times smaller
than the one produced by KLT. Table IV presents the average



tracking position error and the variance of the position error
over the entire video sequence for some feature points which
were selected and tracked by the two algorithms. The position
error variance is much smaller for the MF tracker than for the
KLT one. These results show that the MF approach performs
more accurate tracking than KLT.

f— KLT tracker
Proposed tracker

Distance in pixels

. | .
50 100 150 200 250 300
Time in frames

Fig. 10.  Euclidean distance (averaged over all feature points) between
ground truth positions and the positions provided by the KLT and the MF
algorithm.

TABLE IV
Mean (MPE) and Variance (VPE) of the Euclidean distance (error) in
pixels between feature points tracked by the two algorithms and ground

truth data. Each algorithm is initialized with its own feature points.

[ Feature points | Point 1 | Point 3 | Point 6 [ Point 9 | All Points |

MPE, (MF) 0.6063 | 0.7564 | 0.9831 | 0.7445 0.8232
MPE, (KLT) 2.3390 | 2.4549 | 8.0851 2.0794 2.7638
VPE, (MF) 0.5433 | 0.4880 | 0.4442 | 0.6202 1.3731
VPE, (KLT) 1.1039 1.1748 | 0.6211 1.0728 2.1059

We have also repeated the same experiment but this time
the feature point selection was based on the KLT algorithm.
The aim of this experiment was to illustrate that the proposed
tracking algorithm can offer satisfying results even if the
feature point set has not been chosen by using the method
introduced in Section III, i.e. that the success of the proposed
tracking procedure is not only due to the feature point selection
approach but also due to the feature vector used for tracking.
In this experiment, both algorithms were initialized with the
feature points selected by the KLT algorithm and were left to
track these points over the entire video. Results were compared
(using Euclidean distance) with the manually tracked ground
truth data. Table V shows that the proposed tracking algorithm
is not as precise as in the previous case but it is still more
precise than the KLT algorithm.

In the next set of experiments, the proposed feature selection
algorithm presented in Section III was compared to the well
known SIFT feature points [18] which are appropriate for
matching between different views of an object and to the
feature points derived by the Harris feature point detector
[19]. The proposed feature point selection algorithm, the SIFT
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TABLE V
Mean Euclidean distance (error) in pixels between feature points tracked by
the two algorithms and ground truth data. Data in rows 2, 3 were derived
by initializing both algorithms with the feature points selected by the KLT

algorithm.

[ Feature points | Point 1 [ Point 3 | Point 6 [ Point 9 | Average |

MF Tracker 0.6063 | 0.7564 | 0.9831 0.7445 0.8232
KLT - MF Tracker | 29111 0.9741 7.2948 1.5715 1.3731
KLT Tracker 2.3390 | 2.4549 | 8.0851 2.079%4 2.7638

algorithm and the Harris detector were applied to the same
manually selected area on the first image of a number of
video sequences and feature points for each algorithm were
selected. The selected feature points were tracked to the
rest of the sequence with the proposed tracking algorithm.
Normalized correlation between corresponding feature point
regions (image regions around each feature point) was com-
puted between the initial frame and the current one and the
average normalized correlation over the entire video sequence
for all selected feature points was calculated. The results for
one of these sequences consisting of 600 frames, are shown
in Table VI and prove that the combination of the proposed
feature selection scheme and tracking algorithm offers the best
performance. In all the experiments of this set, the number of
the feature points was defined by the output of the SIFT and
Harris detectors.

TABLE VI
Average normalized correlation (NCA) in windows around tracked feature
points and normalized correlation variance (NCV) for the acquired results
when SIFT, Harris and the proposed feature selection scheme were used as

the initialization for the proposed tracking procedure (three feature points).

| Feature points | Point I | Point 2 | Point 3 [ All Points |

NCA (MF) 0.8794 | 0.9047 | 0.8989 0.8943
NCA (SIFT) 0.8994 | 0.7215 | 0.8180 0.8112
NCA (Harris) 0.7852 | 0.7845 | 0.5610 0.7120
NCV (MF ) 0.0055 | 0.0077 | 0.0102 0.0078
NCV (SIFT ) 0.0135 | 0.0271 0.0101 0.0169
NCV (Harris) 0.0162 | 0.0169 | 0.0257 0.0196

In another experiment, MF tracking performance was tested
on a planar, rigid, textured object (a book cover) in order
to illustrate the fact that the MF tracker can achieve very
good results when tracking salient points. The tracked object
remained fixed whereas the camera moved in a pattern that
included in-plane translations, zoom-ins, zoom-outs and in-
and out-of-plane rotations. Ground truth data, i.e. the manually
tracked positions of the five feature points selected in the
first frame by the proposed feature selection algorithm, was
obtained for the video sequence. The Euclidean distance
between the ground truth positions and the positions provided
by the MF tracking (averaged over all tracked points) was
used as performance criterion. As can be seen in Figure 11,
MF algorithm obtains very good and highly stable tracking
results, since the maximum average distance from the ground
truth is 1.5 pixels whereas the mean average distance is only
0.5 pixels. Two frames of the video sequence are depicted in
Figure 12.
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Fig. 11. Euclidean distance (averaged over all five tracked points) between
ground truth positions and the positions provided by the MF algorithm, , for
the image sequence depicted in Figure 12.

Fig. 12.  Two frames of a video sequence consisting of 400 frames. The
tracked object is a planar textured object (book cover) where the feature
points (black points) are clearly visible.

The following set of experiments aimed at providing results
for the performance of the MF tracking algorithm when ap-
plied on motions frequently encountered in tracking situations,
such as scaling and rotation of the object under examination,
i.e. the human face. In this case, the performance of the
algorithm was evaluated at the object level, i.e., on the basis
of whether the entire object under examination was correctly
tracked or not. True positives (1'P), false positives (F'P),
false negatives (F'N) were obtained using manually extracted
ground truth data. The results where the bounding box of
the tracked feature points contained only the object under
examination, were considered as 7'P. When the bounding box
included some background area, it was considered as con-
tributing to F'P. The situations where the tracking algorithm
stops tracking the face (i.e. it loses the target), were considered
contributing to F'N. Based on these numbers, the well-known
precision (P = :,,P:Cr%) and recall measures (R = TPI;%)
were calculated for the tracking procedure. The results are
summarized in Table VII for five sequences with different
motion characteristics. In all sequences the tracked object was
the head of the depicted person. One can see that the MF
tracking algorithm is robust to such movements. Some tracking
results of the MF algorithm are shown in Figures 13-17. In
Figure 13, the subject tilts its head in various orientations. In
Figure 14, the subject rotates its head up to 90 degrees (out-of-
plane rotation) and thus the characteristics of the facial features
change dramatically. Only one feature point was selected on
the nose of the subject, since nose is the only part of the face
that remains visible in all frames. The MF tracker continues
tracking the selected feature point throughout the sequence.
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TABLE VII
PRECISION AND RECALL OF THE TRACKING ALGORITHM FOR VIDEO
SEQUENCES WITH DIFFERENT MOTIONS.

[ Motion | Frames [ P [ R |
Free 961 98.9 | 90.0
Translation 780 100 100
Zoom 639 100 100
Tilt and pan 575 100 | 90.6
Roll 341 79.3 | 100

Moreover, one can see in Figure 15 a subject rotating its head
up to 45 degrees, so as all the selected feature points remain
visible. The MF tracking results are very good, since all the
feature points are tracked properly. In Figure 16, the subject
walks towards and away from the camera. As a result, the area
of the face is dramatically enlarged/minimized and at the far
end of the movement the facial features are almost invisible.
However, the MF tracker tracks the selected feature points
fairly well, especially when judging results at the object level.
Finally, Figure 17 shows that the proposed algorithm is robust
to illumination changes and shadows, such as those caused on
the face by a person entering/leaving a brightly lit area of a
room.

(d)

Fig. 13.  Tracking results of the MF algorithm for a 400 frame segment of
an indoor video sequence. The shown sample frames are taken at 10 frame
intervals. The subject tilts its head.

TABLE VIII
The average life (in frames) for the two variants of SIFT feature point
tracking (SIFT-1 and SIFT-1I) and MF feature point tracking for various

video sequences.

Average life in frames
MF tracker | SIFT-I tracker | SIFT-II tracker

Number of frames

550 550.00 46.04 290.27
500 412.60 62.00 303.90
650 543.40 78.09 320.12

In the final set of experiments, a recent SIFT feature based
tracking algorithm [28], [18] was tested against the proposed



(e

Fig. 14. Tracking results of the MF algorithm for a 330 frame segment of an
indoor video sequence under varying lighting conditions. One feature point
was selected on the nose, because the nose is the only part of the face which
is constantly in the field of view during the time sequence. The shown sample
frames are taken at 60 frame intervals.

(b)

(d)

Fig. 15.  Tracking results of the MF algorithm for a 300 frame segment of
an indoor video sequence. The shown sample frames are taken at 100 frame
intervals. The subject rotates its head up to 45 degrees.

selection and tracking approach. In their paper, Gordon and
Lowe [28] presented a complete system architecture for aug-
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(©) (d)

Fig. 16.  Tracking results of the MF algorithm for a 450 frame segment of
an indoor video sequence. The shown sample frames are taken at 150 frame
intervals. The subject moves towards and backwards to the camera in 5 meter
distance.

Fig. 17. Tracking results of the MF algorithm for a 450 frame segment of
an indoor video sequence under varying lighting conditions. The existence
of hard shadows on the face does not affect the tracking performance. The
shown sample frames are taken at 150 frame intervals.

mented reality. The feature selection and tracking procedures
of this system was implemented for comparison. Two different
approaches were utilized. In the first approach (denoted as
SIFT-I), which is directly comparable to the proposed method,
SIFT feature points are found in the first and second frame
and matched using the corresponding 128-dimensional feature
vector through a search involving Euclidean distance. Then,
those points on the second frame that have been matched
in the previous step (involving the 1%! and 2"¢ frame) and
reside within the face, are matched with SIFT feature points
detected on the third frame and so on. The procedure continues
until all frames are examined. This procedure produced poor



results in terms of feature points lifetime. In the second
approach (denoted as SIFT-II), SIFT points were detected in
each pair of consecutive frames (7 and i+ 1, ¢ + 1 and ¢ + 2,)
and the corresponding 128-dimensional feature vectors were
used in order to find matches between them. This approach
produced better results then the previous one, but is not
directly comparable to the proposed tracking algorithm since
it is not a feature tracking method (i.e. it does not track a
feature point from the first frame onwards) but it just matches
features from one frame to the next. Both approaches produced
inferior results when compared with the proposed method.
Results (average life in frames) for the two SIFT approaches
and the MF algorithm are given in Table VIII.

VI. CONCLUSION

A novel 2D feature point selection and tracking algorithm
based on the use of a parameterized 3D physics-based de-
formable model was proposed in this paper. In this approach,
the intensity surface of the image is represented by a 3D
physics-based deformable model. We have shown how to tailor
the model deformation equations to efficiently select and track
feature points in a video sequence. It has been shown that
these equations are a combination of the output of various
line and edge detection masks. The presented tracking method
was compared with the well known KLT algorithm and a
SIFT feature-based tracking algorithm. The results show that
the proposed method produces superior tracking results, it
provides better tracking accuracy and tracks feature points for
longer period of time than KLT and SIFT tracker. Moreover,
the feature point selection mechanism was tested against SIFT
and Harris feature points and it was shown to have better
performance.
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