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Abstract 

In this paper. the performances of testure 
classification based on pyramidal and uniform 
decomposition are comparatively studied with and 
without feature selection. This comparison using the 
subband variance as feature explores the dependence 
among features. It is shown that the main problem when 
employing 2-D non-separable wavelet transforms for 
testure classification is the determination of the suitable 
features and that yields the best classification results. A 
Mas-Mas algorithm which is a novel evaluation 
function based on genetic algorithms is presented to 
evaluate the classification performance of each subset of 
selected features. Esperimental results have shown the 
selectivity of the proposed approach and do capture the 
testure characteristics. 

1 Introduction 

The wavelet transform is a multiresolution 
technique. which can be implemented as a pyramidal or 
uniform (tree-structured) decomposition. Several 
contributions have proposed pyramidal and tree- 
structured wavelet transforms as alternatives for testure 
feature estraction and classification [S-71. Although 
pyramidal and tree structured wavelet transforms can 
map the useful information content into a lower 
dimensional feature space, yet they achieves no 
dimensionality reduction in the space of the original 
features. 

classifiers [l-21. This technique is known as genetic 
algorithms (GA) and is based on the assumption that 
large domains of data are organized and evolve in a 
manner similar to processes occurring in nature. 

In this paper. a novel evaluation function defined 
as the interclass distance minus the intra-class distance 
is proposed in a genetic algorithm to explore the 
importance of individual feature in the optimal 
classification. Our approach is to use the Euclidean 
distance as the distance measure in the proposed 
evaluation function. The inter-class distance is defined 
as the mean square distance between pattern points that 
belong to different classes. The intraclass distance is the 
mean square distance between pattern points of the same 
class. In our algorithm. optimum feature selection is 
dictated by the maximization of the evaluation function. 
After energy-based features are extracted from 
pyramidal or uniform decomposition via 2-D non- 
separable wavelet transforms. the evaluation function of 
the genetic algorithm for feature selection is combined 
with the simplified Mahalanobis classifier to optimize 
classification by searching for near-optimal feature 
subsets. 

This paper is organized as follows. 2-D non- 
separable wavelets are described in Section 2. In Section 
3. the classification algorithms is presented. Section 4 
describes a novel evaluation function for the feature 
selection problem. Section 5 presents experimental 
results of classification and some discussions to explore 
the importance of individual feature in o~timal  
classification. 

The feature selection is applied for testure 
classification in this paper. The main goal of feature 
selection is to select a subset of q features from the given 
set of Q features. q < Q, without significantly degrading 
the performance of the recognition system. Achieving 
this goal requires a capability for evaluating the 
effectiveness of a feature subset and an effective strategy 
for searching for the best q features from the given Q 
features. Recently several authors proposed randomized 
population-based heuristic search techniques that 
simulates natural process in biology to select feature 
subsets for use with decision tree or nearest neighbor 

2 2-D Non-Separable Wavelets 

In most of the previous works on two 
dimensional texture processing the sampling rate 
changes used are separable and can be performed alone 
one dimension at a time. However, for two dimensional 
textures, a non-separable wavelet basis [3] opens a 
possibility of having schemes better adapted to the 
human visual system and thus will be used in this work 
to decompose the texture images. If it is desirable to have 



features invariant to rotation of the texture image. a 2-D 
non-separable wavelet basis can be used to cope with the 4 Feature selection using genetic 
problem. algorithms 

3 Classification algorithm The evaluation function has to consider accuracy of 
classification and the cost of performing classification. The 

The classification algorithm can be separated into strategy of feature selection involves selecting the best 
learning phase and classification phase as follows: subset A,. 

(I)  Decompose a given texture image using the 2-D 
non-separable wavelet basis into image subbands. 

(2) Calculate the sampled energy of each subband. If the 
decomposed image is .f ( r .  s) with 0 I r I R-l and 
0 < s I $7-1, the energy e  is calculated as follows: 

I R - I S  I 

mean = -7x f ( r ,  s), (1) 
Rs r : , ,  ,=,I 

1 2 e=-xx[f ( r ,  s)-  meat,] 
RY r 0 s:I, 

( 3 )  Use the decomposed images as the nest input. 
increase the level by 1. Note. it decomposes the 

image with a multiresolution scale factor of fi  . 
(1) Repeat the steps I to 3  and terminate until the 

desired resolution is reached. 
( 5 )  After the desired resolution. we have the feature set 

given by 

where e,  denotes the energy from the Ith subband 
at level j. For the case of pyramidal decomposition. I 
= 0 and 1 (I, = 2 ' )  indicating the lowpass and 
highpass bands respectively. For the case of uniform 
decomposition, I = 0.. . . .2' - 1 ( L  = 2' ) indicating 
the uniform bands. 

(6)  Repeat the steps 1 to 5 for each sample image from 
the same texture. 

(7) Generate the mean and variance of energy for each 
texture. 

( 8 )  Repeat the process for all testures. 

( 1 )  Decomposes an unknown input testure using the 
steps 1 to 5  of the Learning Phase. 

(2) Calculate the distance from the input testure to each 
testure in the database. 

( 3 )  Assigns the unknown input testure to texture i  if D, 
< Dl, for all i' # i.  

from an original feature set B . 

In other words, the combination of q features from A, 
will maximize an evaluation function J(.)  with respect to 
any other combination of q features taken from Q. In the 
Max-Max method. the new feature f ly is chosen as the 

(k+l)st feature if it yields 

Max Max M(a,17  P,,) 
- P ,  -au 

where a ,  E Ak . P,. E R - A ~ .  and 

AJ(a,. P,.) = J(a,. P,.) - J(at1). J(a,) is the 
value of the evaluation function while the feature a, is 

selected and J(aI1,  P,,) is the value of the evaluation 

function while the candidate P,, is added to the already 

selected feature a ,  . 

In this paper. we define the evaluation function J as 

where < is the constant greater or equal to one. 6 is the 
number of selected features. x is the number of training 

samples, D, is the Euclidean distance between classes, 
and 1)? is the Euclidean distance within class. The 
following constraints of Eqs. (7) and ( 8 )  are used to bias 
the search process so as to provide an improvement in the 
population's average fitness: 

the latest (1 - 6 x 6/x ) x Dl 
> the previous (1 - 5 x 6/x ) x Dl , (7) 

and 

the latest (1 - 5 x 612 ) x D, 



<the previous (I - 5 x 6 / ~ )  x D2.  (8) strings whose length is equal to the number of features. 
A bit of one indicates that the feature is used; 0 indicates 

In this research. we consider the standard GA by that the feature is not used. Parent selection emulates the 

randomly creating an initial population of size P. A survival-of-the-fittest mechanism in nature. Single- 

direct encoding scheme is used to construct binary GA point crossover exchange information between two 

parent stringsto produce offspring that contain some available features are most important for the 
parts of both parent's genetic material. Mutation is an discrimination and which are not good representatives of 
operator that introduces variations into the string and the training samples, the constant t: is used to tune the 
applied to each generation. In order to obtain the optimal number the- selected features* of the evaluation 
string. the population diversity is needed. At early function, and its value is determined on a problem- 
iterations the mutation probability p, is set to high and 

specific basis. In other words, the value of 5 could be 
as the optimal string is being approached few changes in 
the present strings are necessary, ~h~ process of different from these levels to the next levels and 

crossover, evaluation, and selection is repeated for a therefore it is suggested as 2 and 3 in the experiments so 

predetermined number of generations and the best string to minimize the number used features. 

obtained is taken as the optimal one. 

5 Experimental results and 
discussions 

Classification experiments were conducted using 
twelve standard 512 x 512 Brodatz textures with 256 
gray levels obtained from a public archive. One hundred 
256 x 256 overlapping subimages are randomly chosen 
from the original image and used in the training and the 
classification phases. The mean and variance of the 
decomposed subbands are calculated with the leave- 
one-out algorithm. During the classification phase, the 
unknown texture is matched against the database and the 
best match is taken as the classification result. The 
reported results for each classification task have the 
following parameter settings: population size P = 200. 
number of generation = 20, and the probability of 
crossover p, = 0.5. A mutation probability value starts 

with p, = 0.9. The P, value is then varied as a step 
function of the number of iterations until it reaches a 
value of 0.1. 

In the following, we summarize the classification 
results obtained from the twelve classes of textures. 
Table 1 shows the performances of the pyramidal 
decomposition using features from all last levels with 
and without feature selection. The band ordering of the 

"Feature Selection Vector" in the last column is from 
high to low. for example. they are OH, lH, 2H, 3H. 4H. 
SH, 6H. 7H. and 7L for levels 0 - 7. Table 2 summarizes 
the classification results of the uniform decomposition 
using features from the last level. The band ordering of 
the "Feature Selection Vector" in the last column is 
from high to low. for example, they are 30H, 31H, .... 
37H. 30L. 3 lL, . . . . and 37L for level 3. 

The goal of feature selection is to find the smallest 
or least costly subset of features for which the classifer's 
performance does not deteriorate below a certain 
specified level. In order to examine which of the 

In table 1, the percentage of correct classification 
rate with and without feature selection improves as the 
number of levels increases. This observation is expected 
since there is no problem of curse of dimensionality. At 
the levels 0, 1, and 2, the results of table 2 without 
feature selection is as good as the results of table 1. At 
the level 3 of table 2. the performance is increased less 
than 1% although the number of used features is a double 
of the level 2 of table 2. The classification rate is even 
down to 86.21% at the level 4 in our experiments. This 
decreases classification performance compared to the 
pyramidal decomposition. The effect of decreasing 
classification performance with increasing feature space 
dimension is related to the Hughes effect [4] and has two 
reasons. First, the cause of it is that only a finite number 
of training samples was used in these experiments for a 
given texture. Second, the reason for worse 
discrimination performance is that the additional 
features at higher levels of the uniform decomposition 
may contain noisy information and negates the presence 
of the features with discriminatory information. This 
shows that the discriminatory characteristics of texture 
spread more in low-pass bands and the features extracted 
from the pyramidal decomposition are more 
representative for texture images in the experiments. On 
the other hand, the classification error decreases when 
the used features are selectively removed from all 
features at the level 3 of table 2. This decrease is due to 
the fact that less parameters used in place of the true 
value of the class conditional probability density 
functions need to be estimated from the same number of 
samples. The smaller the number of the parameters that 
need to be estimated, the less severe the Hughes effect 
can become. 

The Max-Max evaluation function of doing feature 
selection and warping of the feature space to optimize 
classification has been demonstrated to be very powerful 
in dealing with texture images. Simulations of the 
selected feature subsets have shown the selectivity of the 
proposed approach and do capture the texture 



characteristics. The tabu search approach is also a very 
powerful optimization technique which can be used for 
the feature selection which is called tabu feature 
selection and the experiments are processing now. 
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Table 1 Classification results of the pyramidal decomposition using 2-D non-separable wavelet 
transforms with and without GA feature selection using features from all last levels 
(correct rate in %). 

Level 
0 

0 - 1  
0 - 2 
0 - 3  
0 - 4  
0 - 5  
0 - 6  
0 - 7 

Table 2 Classification results of the uniform decomposition using 2-D non-separable wavelet 
transforms with and without GA feature selection using features from the last level 
(correct rate in %). 

All Features 
83.16 
87.29 
87.29 
88.80 
91.08 
94.19 
96.04 
98.15 

Level 
0 
1 
2 
3 

GA-Selected Subset 
83.16 
87.29 
87.29 
88.47 
90.24 
93.27 
94.02 
97.39 

All Features 
83.16 
87.29 
87.79 
88.55 

Feature Selection Vector 
11 

111 
11 11 

101 11 
0001 11 
0001 101 

0001 1101 
001 110001 

GA-Selected Subset 
83.16 
87.29 
87.54 
89.73 

Feature Selection Vector 
11 

11 11 
00001 11 1 

0110011011111011 


