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ABSTRACT

Aims. We outline a numerical method to calculate spatially two-dimensional (2-D) reactive flows and mixing processes in preplanetary
accretion disks and present first results. The numerical efficiency and robustness is demonstrated by following the hydrodynamical
and chemical evolution of the disk from a highly non-stationary dynamical “switch-on” phase asymptotically into the quasi-stationary,
viscous accretion regime. One major question we address is the C-, H-, O-chemistry. The leit-motif of our investigation is the attempt
to preserve as much consistency as possible when modelling the hydrodynamical, chemical, transport/mixing processes and their
mutual interactions in preplanetary disks.
Methods. We use an explicit scheme for solving the Navier-Stokes equations combined with an implicit solver for the energy equation.
The viscosity coefficient is modelled according to the so-called β-prescription of “turbulent” viscosity. In contrast to the well-known
α-viscosity, the β-parameterization of the viscosity warrants physical consistency if self-gravitation of the disk material is to be taken
into account. However, up to now we have neglected self-gravitation. For the radiative energy transport we have adopted the (grey)
Eddington approximation. The opacity is assumed to be caused by microscopic dust particles. Diffusive mixing of the various chemical
species is modelled by taking the diffusion coefficient, D, proportional to the (turbulent) viscosity, νturb. For comparison purposes, we
have considered two extreme choices of the Schmidt number, S := νturb/D, that is, S = 1 (D = νturb) and S = ∞ (D = 0, i.e., no
diffusive mixing at all), respectively. We have not yet included coagulation processes and grain growth.
Results. The main outcome of the 2-D simulations so far carried out is a characteristic circulation pattern of the quasi-stationary
accretion flow: Near the disk’s equatorial plane which is assumed to be a plane of symmetry the material moves in the outward
direction, whereas the accretion flow proper develops in higher altitudes of the disk. Species that are produced or undergo chemical
reactions in the warm inner zones of the disk are advectively transported into the cool outer regions. At the same time, they either
diffusively mix up with the surrounding material or freeze out on the dust grains to form “ice”-coated particles. By virtue of the
large-scale circulation, which is driven by viscous angular momentum transfer, advective transport dominates diffusive mixing in the
outer part of the disk.
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1. Introduction

Existing disk models are based on several approximations, in
particular, if emphasis is laid on the investigation of the complex
chemical and mineralogical processes in protoplanetary disks.
One salient feature of accretion disks is the fact that they are
geometrically thin (“pancake”-like) objects. Hence, the simplest
way to construct disk models is to use quantities that are, to-
gether with the structure equations, properly averaged over the
vertical (z-) direction parallel to the axis of rotation in a cylindri-
cal system of polar coordinates (r, φ, z).

The simplest non-trivial disk models are the spatially 1-D,
one-zone models. Only the radial coordinate, r, is retained, the
z-dependence is completely eliminated and all relations referring
to the vertical direction are omitted. Since the viscous timescale
is, in general, orders of magnitude larger than the dynamical
(“Keplerian”) revolution time, the Keplerian rotation law can be
assumed to be established at every instant of time. This statement
remains true as long as the self-gravitation of the disk material
can be neglected. The slow radial drift is completely governed
by the efficiency of turbulent friction in redistributing angular
momentum. So, in the 1-D approach with a given viscosity

parameter, only the detailed conservation of mass and angular
momentum has to be observed.

Nevertheless, assured a thermally steady state, it is even pos-
sible to define a radial distribution of an “effective” temperature
as an equivalent measure of the radiative flux by demanding the
flux emitted from the disk’s surface to be equal to the locally
dissipated energy within the disk. This temperature definition
in the 1-D approximation relies entirely on an energy balance
argument, no detailed radiative transfer needs to be considered.
Incidentally, here and in the following, too, it is tacitely assumed
that energy transport takes place exclusively in the vertical di-
rection where the gradients are much steeper than in the radial
direction.

Within the more general framework of the so-called
(1+1)-approximation the disk is assumed to be vertically in strict
hydrostatic equilibrium. The basic evolutionary equations are, as
in the pure 1-D case, the z-averaged equations expressing mass
and angular momentum conservation. The method of determin-
ing the hydrostatic vertical stratification of the density, tempera-
ture, and pressure at each radial distance is very much the same
as the one used for stellar structure calculations. Of course, to
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be able to proceed in this manner, gradients in the radial direc-
tion are neglected. The connection between the basic 1-D models
and the z-hydrostatic assumption is the obvious demand on the
z-integrated density, i.e., the column density, to be always equal
to the surface density which is known by solving the basic 1-D
evolutionary equations.

Preplanetary disk models based on the one-zone approx-
imation have been published by Ruden & Pollack (1991);
Cassen (1994); Schmitt et al. (1997); Gail (1998); more elab-
orate (1+1)-D model calculations have been carried out, e.g., by
Ruden & Lin (1986); Bell et al. (1997); Gail (2001, and fur-
ther references cited therein). With the exception of Gail (2001)
all other authors use analytic approximations to the (Rosseland
mean) extinction coefficient of the disk material. Here, the sit-
uation is most unsatisfactory and must be decisively improved
in the future, because it is difficult, if not impossible, to esti-
mate the errors that arise due to the use of inconsistent extinction
coefficients.

To our knowledge, global, fully 2-D models of preplanetary
accretion disks with axial symmetry have not yet been discussed
in the published literature. In this paper we present very first re-
sults pertaining to the mechanical, thermal, and chemical struc-
ture and evolution of such disks which are considered to be the
precursory sites of planetary formation. The guideline of our
approach is to preserve as much consistency as possible when
modelling the hydrodynamical, chemical, transport/mixing pro-
cesses and their mutual interactions in preplanetary disks. This is
the only way to interpret properly the exciting findings of recent
space missions like Star Dust or Deep Impact – clear imprints
of a past hot chemistry conserved in the cold cometary environ-
ment – and to arrive at a coherent picture of how, where, when,
and to which extent, mass transport takes place in preplanetary
nebulae.

The paper is organized as follows: Sect. 2 exhibits the set
of our model equations. For the sake of definiteness, we rewrite
them at full length with cylindrical (r, z)-coordinates. Section 3
contains a compilation and discussion of the material func-
tions (viscosity, equation of state, chemical network, opacity).
In Sects. 4 and 5 we outline the numerical strategy which we
adopted to conduct our calculations and present the results, re-
spectively. The final Sect. 6 is devoted to final remarks on the
most conspicuous achievements and to a short outlook for fur-
ther investigations.

2. Basic equations

We write our basic model equations expressing the conservation
laws of physics in cylindrical coordinates. With axial symmetry
the two independent spatial coordinates of the position vector
are the radius r and the vertical height z. Denoting by ur and uz

the velocity components in the radial and vertical direction, re-
spectively, the continuity equation which expresses bulk mass
conservation then reads

∂ρ

∂t
+

1

r

∂

∂r
(rρur) +

∂

∂z
(ρuz) = 0. (1)

Protoplanetary “fluids” are necessarily multi-component flows
consisting of many gaseous species and microscopically small
solid dust particles. In different parts of the disk the concentra-
tions of the various species will differ due to chemical reactions
and other processes like combustion of soot particles or conden-
sation and evaporation of other dust particles (silicates). Both
advective transport and diffusive mixing therefore play a fun-
damental role in the evolution of protostellar disks. Hence, in

addition to the continuity Eq. (1), for each species, an advection-
diffusion equation with source term of the type

∂
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holds. ci, Ri are the concentration per weight (
∑

i ci = 1) and
the source or sink (

∑

i Ri = 0) of the ith species, respectively,
and D is the diffusion coefficient. There is a qualitative relation
between the (turbulent) kinematic viscosity, νturb (cf. Sect. 3.1),
and the diffusion coefficient, D, which is expressed by the
Schmidt number,

S :=
νturb

D
· (3)

S is expected to be of the order of unity. In a recent local study of
turbulent mixing processes in the outer solar nebula, Turner et al.
(2006) suggest that the widely adopted “canonical” value, S =
1, would indeed be a realistic choice. This finding is based on
3-D MHD calculations in the shearing-box approximation with
vertical stratification. However, whether or not results of such
purely local investigations are really representative for the global
mixing patterns in the disk is an open question.

Large Schmidt numbers indicate substantially reduced diffu-
sive mixing, that is, D → 0 if S → ∞. In this asymptotic limit,
advection is the only mechanism to drive transport and mixing
of the disk material.

As long as relative flow velocities between the various
species – in particular, the dust grains – are either constant or
sufficiently small, conservation of momentum is expressed by
the minimum set of the three equations of motion in the radial
and vertical direction (linear momentum) and in the azimuthal
direction (angular momentum). Dust particles of (sub-)micron
size which we are dealing with are strongly coupled to the gas
and, hence, will exhibit only negligibly small drift velocities.

If Φ denotes the gravitational potential, η := ρνturb the dy-
namical viscosity, and uφ the azimuthal velocity, the Navier-
Stokes equations in the radial and vertical direction are given
in explicit form as
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and
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respectively. Though of minor importance for preplanetary
accretion disks, the radiation acceleration terms, ρκFr/c
and ρκFz/c, are included in the respective Navier-Stokes Eqs. (4)
and (5) for the radial and vertical direction. κ is the (grey) extinc-
tion coefficient, c the speed of light. In principle, the vector of the
radiative force is given via the integral of the product of the (non-
grey) extinction coefficient, κν, times the radiative flux, Frad,ν

over all frequencies, ν, i.e., the expression (1/c)
∫ ∞

0
κν · Frad,ν dν

is the radiation pressure force per unit mass, with Frad,ν =

(Fr,ν, 0, Fz,ν) having non-trivial components only in the r- and
z-direction by virtue of the assumed axial symmetry.

The third Navier-Stokes equation relates to the conservation
of angular momentum:
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. (6)

For the sake of completeness, if necessary, the self-gravitation
of the disk material is taken into account by solving Poisson’s
equation

1

r

∂

∂r

(

r
∂Φdisk

∂r

)

+
∂2Φdisk

∂z2
= 4πGρ, (7)

where G is the gravitational constant and Φdisk denotes the grav-
itational potential of the disk. The total gravitational potential,
Φ, appearing in the Navier-Stokes Eqs. (4) and (5) is the sum
of both the central protosun’s and the disk’s potential, that is,
Φ = Φsun + Φdisk.

Two energy balance equations, one for the matter and the
other one for the radiation, together with the equations of state,
complete the set of the basic equations. Let ε, εrad be the spe-
cific internal energy of the disk material and the radiation en-
ergy density, respectively, Frad := (Fr, Fφ ≡ 0, Fz) the (total)
radiation flux integrated over all frequencies, κν the frequency-
dependent extinction coefficient, and aν, 0 ≤ aν ≤ 1, the albedo.
Both κν and aν depend, in general, on the frequency of the radi-
ation field, Iν(t, x, k), which is a function of the time, t, the spa-
tial position, x, and the direction of the wave vector (=unit vec-
tor), k. However, in this study, we will deal exclusively with the
widely used, but rather crude, approximation of the frequency-
independent (grey) radiative transfer. To this end, appropriate
average values of the extinction coefficient, κν, and the “true ab-
sorption”, κabs

ν := κν (1 − aν), are adopted. In fact, in the calcula-
tions so far carried out, we go even further and neglect scatter-
ing, i.e., aν ≡ 0, which is not too bad an approximation in the
low temperature regime (T <∼ 2000 K), and take the Rosseland
mean, κR, of the absorption coefficient plainly as the effective
opacity, κ := κR.

For writing down the equations which couple the thermal and
radiative energy, it is, above all, more instructive and transparent
to retain the basic frequency-dependent quantities in the respec-
tive terms rather than to start with frequency-integrated quanti-
ties right from the beginning. In so doing – for the simplest case
of isotropic scattering – we start out with the source function of
radiation, S ν, which is the sum of the albedo-weighted thermal
emission and pure scattering, that is,

S ν = (1 − aν) · Bν(T ) + aν · Jν, (8)

where Bν(T ) is the Planck function at the temperature, T , and Jν
denotes the zeroth moment of the radiation field, Iν(t, x, k), thus
Jν(t, x) = (1/4π)

∮

4π
Iν(t, x, k) |dk|. Furthermore,

εrad =
4π

c
J, J :=

∫ ∞

0

Jν dν (9)

is the (total) radiation energy density. Analogously, the first and

the second moment, Hν := (1/4π)
∮

4π
Iν · k |dk| and Kν :=

(1/4π)
∮

4π
Iν · (k ⊗ k) |dk|, respectively, relate to the radiation

flux vector, Frad, and the radiation pressure tensor, Prad, by

Frad = 4πH, H :=

∫ ∞

0

Hν dν (10)

and

Prad =
4π

c
K, K :=

∫ ∞

0

Kν dν. (11)

By introducing the frequency-integrated source function (ex-
actly valid for vanishing albedo, aν ≡ 0),

S :=

∫ ∞

0

S ν dν =
σ

π
T 4, (12)

(σ denotes Stefan-Boltzmann’s constant) the first law of ther-
modynamics governing the balance of the internal energy is
expressed as

∂

∂t
(ρε) +

1

r

∂

∂r
(rρurε) +

∂

∂z
(ρuzε) + P

[

1

r

∂

∂r
(rur) +

∂uz

∂z

]

=

4πρκ (J − S ) + Q̇vis + Q̇chem. (13)

The source term on the right hand side consists of three contribu-
tions, the radiation term, the energy dissipation term, Q̇vis, due to
(turbulent) viscosity and/or shock waves, and the “thermochem-
ical” term, Q̇chem, arising from the chemical reactions. Note that
exothermal and endothermal reactions are, by definition, char-
acterized by Qchem < 0 and Qchem > 0, respectively, so that the
rate of chemical heat, Q̇chem, released/consumed per unit volume
reads

Q̇chem = −
∑

all reactions, r

k
(r)

i, j[,l]
(T ) ni n j [nl] Q

(r)

chem
.

Here, k
(r)

i, j[,l]
(T ) denotes the temperature-dependent rate constant

of the rth reaction (three-particle-reactions are indicated by
square brackets) with ni, n j, [nl] being the respective number

densities of the reacting species and Q
(r)

chem
the chemical heat per

reaction (cf. Sect. 3.3.1, Eq. (24), and Table 4). The two (alge-
braic) equations of state

P = P (ρ, T ), ε = ε (ρ, T ) (14)

relate the gas pressure, P, and the internal energy, ε, with the
mass density, ρ, and the temperature, T , respectively.

We have restricted ourselves to the Eddington approxima-
tion, that is, with E denoting the unit tensor, we have set K =
(J/3) E in our simulations. Expressed with cylindrical coordi-
nates, the balance equation for the radiative energy density, εrad,
being proportional to J according to Eq. (9), then reads (see, e.g.,
Castor 1986) in explicit form

∂J

∂t
+

1

r

∂

∂r
(rurJ) +

∂
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(uzJ) +

J
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+ c
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∂
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∂Hz

∂z

]

+ cρκ (J − S ) = 0. (15)
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Hr and Hz refer to the radial and vertical component of the first
moment of the radiation field, respectively. By definition of axial
symmetry, the azimuthal component, Hφ, vanishes identically.
Then, the Eddington approximation is expressed as

Hr = −
1

3ρκ

∂J

∂r
, Hz = −

1

3ρκ

∂J

∂z
. (16)

In case the “Eddington-flux” as defined by Eq. (16) above for-
mally exceeds the radiative energy, we introduce an appropri-
ate limiting factor, 0 < θ ≤ 1, to make sure that the inequality
|H| ≤ θ · J holds everywhere. To stay on the safe side, we have
set θ = 1/3 throughout.

Aside from model-dependent initial and boundary condi-
tions (cf. Sect. 4 for details), the system of Eqs. (1)–(6), (13),
(15)–(16), and the equations of state (14) plus the other consti-
tutive relations, e.g., the opacity and the rate coefficients for the
chemical reactions (cf. Sect. 3 for details) is now complete.

3. Constitutive relations

It has already been emphasized that, in addition to the system of
partial differential equations expressing the usual conservation
of mass, momentum, and energy, a series of functional relations
between the physical quantities must be taken into consideration.
They characterize the material properties and are necessary to
close the model equations. These “material functions” pertain
to the particular choice of the “turbulent” viscosity coefficient,
the equations of state (14), the rate constants of the chemical
reaction network, the vapor pressure of condensable species, and
the opacity.

3.1. Viscosity

Duschl et al. (2000) have shown that the classic Shakura &
Sunyaev (1973) α-prescription for the “turbulent” viscosity co-
efficient leads to a fundamental physical inconsistency when the
self-gravitation of the (stationary) disk is taken into account.
The authors propose a viscosity that should depend exclusively
on purely mechanical quantities. This assumption is a necessary
condition to avoid inconsistent physics and its validity is further
supported by the idea that the turbulence is driven essentially by
the (quasi-)Keplerian shear flow in accretion disks and not so
much by their thermal structure.

However, with regard to the great success of the α-disk mod-
els in other fields of accretion disk theory, e.g., cataclysmic vari-
ables, any other simple one-parameter viscosity model should in
some way or another approach the standard α-model for van-
ishing self-gravitation. According to Duschl et al. (2000) this
requirement can be fulfilled if the coefficient of the “turbulent”
dynamic viscosity, η, takes on the form

η := ρ · β · r2Ω, (17)

where β is a free parameter scaling with the inverse of the “criti-
cal” Reynolds-number, Recr, which is expected to be in the range
102...4. Hence, we may justly define

β := Recr
−1 ≃ 10−4...−2. (18)

A comparison with the α-prescription yields, after some simple
algebra, the relation

β = α ·
(

h

r

)2

. (19)

Thus, the β-viscosity is even identical with the classic
α-viscosity if the disk’s half-thickness, h := cs/Ω, with cs and
Ω := uφ/r being the speed of sound and the Keplerian angu-
lar velocity, respectively, exhibits a strictly linear dependence on
the radial distance, r. Moreover, if we restrict ourselves to the
so-called dissipation limit by demanding that the turbulent ve-
locities must not exceed the speed of sound, it can be shown
that the more general β-prescription includes the more familiar
α-prescription as a special case in the limit of negligible self-
gravity. Again, details are given in Duschl et al. (2000).

The β-prescription for the turbulent viscosity is an important
generalization of the classic α-prescription. Already for appar-
ently low-mass disks containing only a few percent of the cen-
tral mass, M⋆, that is, if the inequality Mdisk/M⋆ >∼ 0.03 . . .0.05
holds, the disk’s self-gravity in the vertical direction becomes
comparable to, or greater than, the vertical component of the
central star’s gravitational acceleration. In general, the transition
takes place for disk masses well below the limit at which self-
gravitation affects the radial disk structure, too. In that sense
“moderately” self-gravitating disks will still very nearly show
Keplerian rotation and may be referred to as self-gravitating
Keplerian accretion disks. It is our opinion that preplanetary neb-
ulae belong to this “intermediate” category of self-gravitating
disks, at least during their initial evolutionary stages.

This is the reason why we have favored the β-prescription
from the very beginning, although we have not yet implemented
an appropriate Poisson solver in the code. This will be done
in the next step. In our calculations we have set β = 10−3

throughout.

3.2. Equation of state

The main constituents of the material in preplanetary disks are
molecular hydrogen and helium (≈98% per weight, cf. Table 2).
For the temperature and density range (T >∼ 20 K, ρ <∼
10−8 g cm−3) we are dealing with here, the disk material can be
treated as an ideal gas. If ni denotes the number density of the ith
species, i = 1, . . . , L, and T the temperature, then the gas pres-
sure, P, is given by the sum of the partial pressures, Pi = ni ·kB T ,
thus

P =

L
∑

i=1

Pi =

L
∑

i=1

ni · kB T. (20)

Introducing the mean molecular weight by

µ :=

∑L
i=1 Aini
∑L

i=1 ni

=
1

∑L
i=1(ci/Ai)

,

where Ai and ci are the molecular weight of the ith species and
its concentration by weight, respectively, the equation of state
reads

P =
R
µ
ρT, R = kB · A, (21)

where R and kB are the universal gas and Boltzmann’s constant,
respectively, andA denotes Avogadro’s number.

To calculate the internal energy of the gas, ε, we have as-
sumed that the ratio of the specific heats, γ := cp/cv, at constant
pressure and volume is a specific constant for every species
depending on whether it exists as a monatomic, diatomic, or
polyatomic molecule with 3, 5, and 6 degrees of freedom, that
is, γ = 5/3, 7/5, and 4/3, respectively. This is not too bad
an approximation for moderate temperatures, say, in between



W. M. Tscharnuter and H.-P. Gail: 2-D preplanetary accretion disks. I. 373

150. . . 200 K and 1300 K, where the rotational degrees of free-
dom are excited. The relation between the temperature, T , and
the specific internal energy, ε, then is determined easily by sum-
ming up the relative contributions of the various species to the
internal energy according to their abundance, ci, i = 1, . . . , L.
This yields the desired relation

ε = R T ·
L
∑

i=1

ci

Ai (γi − 1)
· (22)

At decreasing temperatures (<∼150 K), the (diatomic) hydrogen
molecule – the most abundant species – starts quickly freezing in
its rotational degrees of freedom and tends to behave more and
more like a monatomic molecule. In fact, γ becomes close to 5/3
already at a temperature of about 80 K. Since we are mainly in-
terested in the warmer regions of the preplanetary disk, we have
neglected such thermodynamical subtleties as well as the action
of the latent heat pertaining to the sublimation and condensation
processes of, e.g., water and silicates in our current calculations.
We shall remove all these relatively weak shortcomings in future
simulations.

3.3. Chemical reactions

For the sake of simplicity, we have restricted ourselves exclu-
sively to the gas-phase chemistry of neutral atoms and molecules
consisting of hydrogen, carbon, and oxygen. These are the most
abundant volatile elements which also provide the most abun-
dant molecules in the gas phase, except for nitrogen. The nitro-
gen chemistry and the chemistry of less abundant elements is
not yet implemented. Helium is treated as an inert species which
contributes to the pressure but is not involved in the chemistry.

The chemistry does not consider ion-molecule reactions be-
cause the model calculation presented later considers the disk
region between 0.8 and 5.8 AU where according to our previ-
ous results (Finocchi & Gail 1997) the chemistry is dominated
by reactions between neutral species. Also surface reactions on
dust grains, in particular catalytic reactions, are not implemented
(though they may be important, see the general discussion of the
chemistry in the Solar Nebula by Fegley Jr. & Prinn 1989).

Also the combustion of the microscopic graphite/soot par-
ticles have not yet been included in our explorative numerical
calculations. As a consequence, we have not yet dealt with the
formation of hydrocarbons, which is closely tied to the oxida-
tion of solid carbon (soot) by the hydroxyl radical (El-Gamal
1995). Otherwise there is no theoretical constraint to extend the
chemical network to arbitrary sizes except the actually available,
always finite computing power.

Concerning sublimation and condensation processes, we
have assumed that an equilibrium state according to the respec-
tive vapor pressure of the condensable species – water ice and
magnesium silicates (forsterite) in our case – is set up instanta-
neously. Again, the model assumptions can and will be refined in
future simulations. A way of how a more sophisticated approach
can be implemented is explained by Gail (2003, and references
cited therein) in a comprehensive treatise on the formation of
minerals in accretion disks and stellar outflow.

3.3.1. The chemical network

The present network for the C-, H-, O-chemistry comprises a set
of 90 gas-phase reactions between the 13 species, H, H2, O, O2,
OH, H2O, HO2, H2O2, CO, CO2, HCO, H2CO, and (gaseous) C
from the elements H, O, and C. Figure 1 illustrates the network

Fig. 1. Schematic representation of the reaction network considered in
the present work.

in a schematic way. This set of chemical compounds contain-
ing hydrogen, carbon, and oxygen comprises the most abundant
molecules, H2, H2O, CO, and CO2, radicals (e.g., OH) and the
respective free atoms, according to a standard cosmic element
mixture. Because of the aforementioned reasons, hydrocarbons
are not yet included.

From the above set of atomic and molecular species, five of
them, i.e., H, H2, H2O, OH, and CO enter into the calculation
of the opacity coefficient for higher temperature regions in the
disk, where the refractory dust grains evaporate (cf. Sect. 3.4).
This subset of species covers the atomic and molecular species
that are the most important sources of extinction in the dust-free
region of the disk (cf. Fig. 7 of Alexander & Ferguson 1994) –
see also Ferguson et al. (2005) – except perhaps for TiO which,
however, is not the dominating sources of opacity for the still
relatively low temperatures (<1500 K) in our disk model.

Methane, CH4, may contribute to the gas-phase opacity at
temperatures <1800 K as it does in Brown Dwarf atmospheres
(cf. Geballe et al. 2002), but the total opacity at low tempera-
tures is dominated by dust, and methane has not proved to be
an important opacity source, for instance, in the opacity calcu-
lations of Ferguson et al. (2005). Likewise, neglecting nitrogen
compounds as possible contributors to the gas opacity is uncrit-
ical. This is because in the oxygen-rich environment only N2

is abundant, however, molecular nitrogen does not contribute to
the opacity. Other N-bearing compounds are rare and are at best
minor opacity sources in an oxygen-rich element mixture.

Despite the present limitation of the chemistry of the gas
phase to a rather small set of species this already accounts for
the full non-linear coupling between chemistry, radiative trans-
fer, the temperature structure of the disk, and the disks hydrody-
namic evolution, because all important gas phase opacity sources
are already included. Any future extension of the set of species
considered in the calculation of the gas phase chemistry will not
add any new aspects to the problem of disk structure and evo-
lution since no important new opacity sources will be added by
this. The only major shortcoming may be that the different ther-
mal behavior of ortho- and para-H2 at temperatures of the order
of 100 K and less is not considered in the model since presently
the chemistry does not discriminate between ortho- and para-H2.

We allow for reactions between two and at most
three species. The 90 respective temperature-dependent rate con-
stants, k = ki j[l](T ), i, j, l = 1, . . . , 13, are assumed to be express-
ible in terms of the three so-called Arrhenius parameters, A, b,
T0, that is,

k = A · T b · exp (−T0/T ).
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The Arrhenius parameters and the amount of heat, Qchem, re-
leased/consumed by the respective exothermal (Qchem < 0) or
endothermal (Qchem > 0) reaction are listed in Table 4. The num-
bers are compiled from various sources that are given at the end
of the table.

The net change of the number density, ni, of the ith species
per unit time results from balancing the individual constructive
and destructive reactions that raise and diminish, respectively,
the value of ni. Thus, the following set of 13 ordinary differential
equations for each of the 13 species listed above holds:

dni

dt
=

13
∑

j,l=1

k
(→i)

jl
(T ) n jnl +

13
∑

j,l,m=1

k
(→i)

jlm
(T ) n jnlnm

−
13
∑

j=1

k
(i→)

i j
(T ) nin j −

13
∑

j,l=1

k
(i→)

i jl
(T ) nin jnl; (23)

i = 1, . . . , 13.

The label “→ i” indicates constructive reactions that build up
the ith species, “i →” marks destructive reactions. The solu-
tion of the system of Eqs. (24) yields, at the fixed density,

ρ =
∑all

species Ai ni/A, both the change of the species concentra-

tions, i.e., the source term Ri on the right-hand side of Eq. (2),
and the accompanied net rate of the reaction heat, Q̇chem, with
time, regarded as a function of the (variable) temperature. In this
sense, the right-hand sides of the equation of state, (21) and (22),
are then known functions of the two state variables, density and
temperature, which are for their part governed by the balance
equations for the mass (Eq. (1)) and energy (Eqs. (13) and (15)),
respectively. The numerical strategy based on the method of op-
erator splitting (see Sect. 4.1) is perfectly adapted to transform
these theoretical considerations into an efficient and robust com-
puter code.

3.3.2. Sublimation and condensation processes

Among the many volatile species in the gas phase, which can
condense out to form “ice” mantles on the refractory grains (sili-
cates, soot/graphite, . . . ), e.g., H2O, CO, CO2, NH3, only to men-
tion the most abundant molecules, up to now, we have only taken
the evaporation/condensation of water (H2O) ice and silicates,
however rather schematically, into account. It is assumed that
the partial pressure of the condensable species in the gas phase
amounts at most to its vapor pressure. Any surplus molecules of
this species are regarded to belong to the condensed phase.

Water ice. This is assumed to condense on top of the existing
dust grains of any kind. At the low pressures typical for preplan-
etary disks in the region at several AU distance from the star
water ice condenses at temperatures of about 150 K. The va-
por pressure of H2O over water ice at low temperatures (in units
dyn cm−2) is calculated from the analytical interpolation formula
of Lichtenegger & Kömle (1991),

log10(PH2O
eq ) = −2445.6/T + 8.23 log10(T ) − 3.632

− T (1.677 × 10−2 − 1.205 × 10−5 T ). (24)

The fraction fice of the water vapor condensed into ice is given by

fice = max
(

1 − (PH2O
eq /P

H2O), 0
)

, (25)

where PH2O corresponds to the totally available H2O.

Silicates. The treatment of silicate evaporation is somewhat
complicated since silicates decompose on evaporation (cf. Gail
2003). Since solid iron disappears by evaporation under the pres-
sure conditions prevailing in a pre-planetary disk at almost the
same temperature as forsterite (Mg2SiO4) – the last stable of
the main silicate dust components upon heating – we calculate
the degree of condensation of iron and take this as a substitute
for the degree of condensation fd of silicate dust.

The equilibrium pressure PFe
eq of iron (Fe) (in units dyn cm−2)

is calculated from the analytical expression

log10(PFe
eq) = −21340.7/T + 13.7781− 2.45567× 10−4 T. (26)

This follows from the expressions for the free enthalpy of for-
mation of solids given in Sharp & Huebner (1990). The degree
of condensation is given by

fd = max
(

1 − (PFe
eq/ǫFe 2PH2

), 0
)

. (27)

With respect to condensation of silicates there arises the prob-
lem that some kind of seed particle is required. While this poses
no problem for ice condensation since at the low temperatures of
ice condensation in any case some kind of dust is present which
may serve as condensation center, this is not automatically guar-
anteed for the high temperature condensates. We will assume in
this explorative calculation that there exist still more refractory
“seeds” consisting, e.g., of solid titanium oxide or some other ex-
tremely refractory compounds, onto which silicates will be able
to condense out again. A much more involved situation would
emerge if such seeds were completely absent and effective nu-
cleation processes had to be identified. The problem of calcu-
lating realistic nucleation rates is presently not yet solved and
recourse to rather crude approximations has to be taken in case
that no seed particles from external sources are available (cf. the
discussion by Patzer 2004).

3.4. Opacity

The effective opacity, κ, results as the sum of the contributions
according to essentially three individual types of absorbers:

1. dust grains with water-ice mantles, κ = κice
d

;
2. “naked” dust grains, κ = κd;
3. gaseous species, κ = κg.

Concerning the individual contribution of the two types of dust
particles to the opacity, we adopt the canonical1 temperature
dependence, that is (Bell & Lin 1994),

κice
d = 2 × 10−4 T 2 (28)

and

κd = 0.1
√

T , (29)

respectively. If fice and fd (with 0 ≤ fice, fd ≤ 1), denote the
fraction of ice-coated dust particles and “naked” dust particles,
respectively, the resulting total dust opacity, κtot

d
, is calculated as

κtot
d = fice κ

ice
d + fd · (1 − fice) κd. (30)

Water ice sublimates at much lower temperatures than the refrac-
tory dust grains. This is why the sublimation of the volatile dust

1 Abundance of heavier elements according to Population I, size dis-
tribution of the dust particles according to Mathis et al. (1977); see also
Gail (2001).
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components at the so-called “snow line”, which is the relatively
narrow border between “cold” and “warm” zones of the disk
where water is frozen out on the silicate grains or is sublimated
in the form of water vapor, respectively, is also spatially well sep-
arated from the region where the refractory particles evaporate.
So, in Eq. (30), we can always assume fice ≡ 0 when fd < 1.

As long as a population of dust grains exists the contribution
of the gaseous species to the effective opacity is negligibly small.
However, if the temperature rises above 1100–1200 K the dust
particles commence to decompose and, finally, will evaporate
completely. Then, the only sources of opacity are the remaining
molecules in the gaseous state. Molecular hydrogen, the most
abundant species, is only a weak absorber. Other molecules, for
instance carbon monoxide and water vapor, are more efficient
absorbers, but compared to dust their opacity is always relatively
small. As a consequence, the disappearance of dust grains opens
a deep “opacity gap” where the opacity drops several orders of
magnitude (more details are given in Gail 2001).

In our calculations, we have included the contribution of the
four molecules, H2, OH, H2O, CO, to the gas opacity,

κg = κH2
+ κOH + κH2O + κCO. (31)

According to Keeley (1970) and Marigo (2002) these various
contributions can be approximated in terms of the number den-
sities, n, of the molecules and the temperature, T (with the ab-
breviation T4 := 10−4 T ), as follows:

ρ · κH2
= (nH + nH2

) ·
5.55 × 10−27 T 4

4

1 + 10 T 6
4
+ 3.42 × 10−5/T 6

4

ρ · κOH = nOH ·
1.4 × 10−21 T 6

4

0.1 + T 6
4

ρ · κH2O = (1 − fice) nH2O ·
⎡

⎢

⎢

⎢

⎢

⎣

2.6 × 10−27

4.23 × 10−4 + T 4
4

+
9.72 × 10−21

1 + 3780 T 10
4

exp

(

− 3.2553

0.37 + T4

)
⎤

⎥

⎥

⎥

⎥

⎦

ρ · κCO = nCO · 2.75 × 10−26. (32)

By combining Eqs. (28)–(32) we end up with the final
expression

κ = κtot
d + κg (33)

for the effective opacity, κ. It is evident that the value of κ, de-
rived in the straightforward manner as indicated above, is only
a very crude approximation to the true Rosseland mean of the ab-
sorption coefficient we ought to use in our calculations. Within
the framework of (1+1)-D models, an important step to over-
come this unsatisfactory situation has been made by Gail (2001)
in his successful attempt to treat self-consistently, by assuming
chemical equilibrium, the condensation and vaporization of the
minerals that dominate the absorption properties of the disk ma-
terial. How to derive reliable numbers concerning the optical
properties of (generally many-layered) ice-coated dust particles
and, even more intriguing, their agglomerates, is still an open
problem (see, however, Voshchinnikov et al. 2005, 2006). With
regard to our simplified treatment of radiative energy transfer
(Eddington approximation) we have restricted ourselves, for the
time being, to the approximate determination of the opacity, κ,
according to Eq. (33) above.

4. Numerical method

To begin with, it may be illustrative to make a few general state-
ments about why there is a need to consider spatially fully 2-D
and, eventually, 3-D models of protoplanetary disks.

Simplified radially 1-D, vertically one-zone models or more
elaborate (1+1)-D have proven to be very powerful for explor-
ing the overall features of disk evolution. With these approxima-
tions, the basic effects of turbulence within the disk, comprising
both an efficient redistribution of angular momentum and dif-
fusive radial mixing of the disk material, can be well studied.
However, there remain specific shortcomings which can be re-
moved only if the assumption of the disk to be strictly hydro-
static in the vertical direction is abandoned. For instance, within
the framework of the (1+1)-D disk models it is, by definition,
impossible to determine the real structure of the disk’s veloc-
ity field, e.g., its dependence on the vertical coordinate, z, nor
can mixing processes in the z-direction be described adequately:
only a z-averaged radial net “drift” of material – in the outward
or inward direction, depending on the radial distance from the
center – is available. In particular, the investigation of detailed
advective mass transport and mixing is clearly beyond the scope
of the (1+1)-D models.

Thus, in order to be able to describe the various physical
and chemical processes, being effective in protoplanetary disks,
in a more realistic way, honest 2-D models with axial symme-
try must be taken into consideration. This means, together with
solving the extensive chemical network including not only pure
gas-phase reactions, but also combustion, chemi-sputtering as
well as sublimation and condensation processes of microscopic
dust particles, to set about an extremely computer time consum-
ing exercise. It does not seem appropriate to aim at even more
involved, fully 3-D, disk models in the first step. At this point it
is worth emphasizing that, after all, we are going to present in the
following the outcome of the first pilot study for fully 2-D disk
models with axial symmetry.

4.1. Numerical strategy

Global hydrodynamical models of protoplanetary disks extend-
ing from about 0.1 astronomical units (AU) up to, say, 100 AU
would strictly demand the use of implicit numerical schemes,
owing to the fact that accretion disks exhibit largely dispersed
characteristic scales. This leads to prohibitively small Courant-
Friedrichs-Lewy (CFL-) timesteps, δtCFL, which set a severe
constraint for the efficiency of explicit schemes. If∆ri := ri−ri−1,
i = 1, . . . , I, and ∆zk := zk − zk−1, k = 1, . . . ,K denote
the spatial step sizes according to an appropriate discretisation
(ri, zk)i=0,...,I; k=0,...,K of the (r, z)-plane (see Sect. 4.1.1 below),
a useful estimate of δtCFL for our purposes turned out to be the
expression,

δtCFL = min
i,k

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∆ℓi,k

(cs)i,k +

√

(u2
r + u2

z )i,k + 12(νtot)i,k /∆ℓi,k

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (34)

As an abbreviation, we have set ∆ℓi,k := min(∆ri,∆zk) and νtot :=
νturb + νavis, being the sum of the turbulent and artificial viscosity
coefficient; cs denotes the sound velocity.

However, implicit methods, which are not subject to the
restrictive CFL-condition on the timestep, are in general very
costly and have been successfully applied so far only to the
purely hydrodynamical aspect of accretion disks (Keller 2003).

As a compromise, mixed explicit-implicit numerical
schemes seem to be best suited for simulating selected parts
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of the disk at the expense of being forced to invent well-
educated, but inevitably somewhat artificial, boundary condi-
tions. Nevertheless, there is good hope that the general numer-
ical strategy just briefly outlined will translate into a robust
computer code that could serve as the working horse for many
years to come.

4.1.1. Discretisation

We use a finite-volume scheme and discretise the Navier-Stokes-
Eqs. (1)–(6) for compressible fluids on a staggered (r, z)-grid of
a cylindrical coordinate system, where (r, φ, z) denotes the radial,
azimuthal, and vertical coordinate, respectively. Scalar quanti-
ties are defined in the interior, the individual components of vec-
torial quantities are tied to the respective boundary surfaces of
the numerical cells. As we have already pointed out in Sect. 3.1,
turbulent viscosity is parameterized according to the β-disk pre-
scription by Duschl et al. (2000). Self-gravitation, i.e., a suitable
Poisson solver, is currently not yet implemented in the existing
code.

Since we restrict ourselves to axially symmetric geometry,
shock fronts in the azimuthal direction (spiral- or bar-like struc-
tures) are excluded. The artificial tensor viscosity term is tailored
in a way as to smooth out shock fronts in the (r, z)-plane without
changing the local distribution of angular momentum. A chem-
ical network for the C-, H-, O-chemistry (“CHO-chemistry” for
short) is implemented and the various species undergo diffu-
sive mixing according to Eq. (2). Depending on whether the
dust grains are ice-coated or not, grey opacities are calculated
from respective fit formulae, the albedo is assumed to be zero.
To model the (grey) radiation transport (Eq. (16)) we employ
the Eddington approximation with flux delimiter (the absolute
value of the 1st moment |H|must not exceed the 0th moment J!).
Finally, we take the two energy balance Eqs. (13) and (15) into
account.

4.1.2. Two-step solution procedure

The equations are numerically solved by a two-step operator-
splitting procedure according to Norman & Winkler (1986). In
the first source step yielding intermediate updates of the various
physical variables – such as the velocity components, concentra-
tions, etc. – for the timestep, δt < δtCFL, only the source terms in
the equations are taken into account. In the second transport step
the remaining advection terms are evaluated to perform the final
updating. A nominal second-order van-Leer scheme is applied
to carry out the transport step.

As already mentioned, energy transport by radiation is mod-
elled according to the Eddington approximation. The energy
balance equation for the radiation field then reduces to a spa-
tially 2-D diffusion equation with a source term that couples to
the energy balance equation for the disk material. In optically
thin regions, where the density (or the opacity) is low and the
Eddington approximation becomes increasingly worse, the re-
spective “radiative” CFL-timestep,

δtrad
CFL ≃

min (∆r,∆z)

c
∆τ, (35)

would easily become much lower than the usual “hydrodynam-
ical” CFL-timestep, δtCFL, as defined in Eq. (34). In (35), the
effective optical depth ∆τ = min(∆r,∆z)κρ, and min(∆r,∆z)/c
is the minimum light travel time through the numerical cell of
size ∆r × ∆z. As a consequence, the source step for the energy

equation – with the mass density, ρ, kept constant by construc-
tion of the two-step algorithm – must be solved implicitly. The
combination of a Newton-Raphson scheme combined with the
GMRES algorithm to solve the linearized equation iteratively
turned out to be a very efficient strategy to determine the tem-
perature, pressure, and radiation energy density in a consistent
fashion.

4.2. Network of chemical reactions

The Eqs. (23) of the chemical network are solved by a simple
backward Euler scheme for each numerical cell independently
during the source step. At that interface the code can easily be
parallelized. Moreover, this nice property does not touch upon
deciding whether or not a more accurate and/or efficient solver
ought to be implemented.

Sublimation and condensation of water ice and silicates are
outstanding test cases for the code with respect to their implica-
tions on the numerical stability of the radiative energy transport
term. For the sake of simplicity, we assume equilibrium between
the solid and the gas phase to be established instantaneously. In
the inner, hot zones of the disk where the silicates evaporate the
opacity drops abruptly several orders of magnitude, in this way
giving rise to dramatic changes of the radiation field. Likewise,
though to a much lesser extent, a similar situation is encoun-
tered across the “snow line”, where the temperature gradients of
the opacity become also very steep.

Particularly, the highly non-stationary initial “switch-on”
phase, during which the biggest changes in the physical quan-
tities take place, set the greatest standards on the numerical ro-
bustness of the code. Although the timesteps have become occa-
sionally quite short (around 1% of the CFL-timestep), they have
never dropped to extremely small values so as to cause a lethal
stop of the calculation.

4.3. Initial conditions

In order to test the robustness of our explicit-implicit 2-D ra-
diation hydrodynamical code we choose an initial configu-
ration which forces the “disk” to evolve into a pronounced
dynamical regime in the first place. Only after this non-
stationary “switch on” phase our disk model would asymp-
totically approach a quasi-stationary state that is assumed by
the (1+1)-D description from the beginning. This situation is
achieved by choosing an initially homogeneous distribution of
the disk material. Table 2 contains a compilation of the initial
data we used in the simulation.

We discretise the equations on a (48 × 64) Eulerian tensor-
product (r, z)-grid. In the z-direction the gridpoints z j, j =
0, 1, 2, . . . , 64 with z0 = 0 AU are chosen to be equally spaced,
i.e., ∆z = const. ≈ 0.0234 AU (because of the assumed
equatorial symmetry we need to cover only the “upper half”
of the disk); the distribution of the radial gridpoints, ri, i =
0, 1, 2, . . . , 48 with r0 = 0.8 AU, is tailored according to a ge-
ometrical law. The radial mesh sizes, ∆ri := ri − ri−1, i =
1, 2, . . . , 48, expand monotonically from ∆r1 ≈ 0.034 AU to
∆r48 ≈ 0.235 AU (cf. Table 2 for the actual numbers inserted).

The cosmical abundances of the chemical elements, H, He,
C, O, N, Mg, Si, S, Fe, Al, and Ca, according to Population I is
adopted (cf. Table 1). The heavier elements, Mg, Si, S, Fe, Al,
and Ca, are tied up in solid grains (mainly in forsterite, Mg2SiO4,
troilite, FeS, and corundum, Al2O3) referred to as “dust” in
Table 2. In principle, 70% of the carbon would be present in the
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Table 1. Initial abundances, ǫ, of the various gaseous, mantle, and
grain core species relative to the total number of hydrogen atoms
(NH = 1000). The initial gas temperature, Tini = 20 K (cf. Table 2).

gaseous mantle grain core
species ǫ species ǫ species ǫ

H2 499.762 H2O 0.238 Mg‡ 0.0720
He 97.500 Si 0.0358
CO 0.355 Fe 0.0324
N2 0.047 (Tini = 20 K) S 0.0185
[ C 0.355 ] ∗ Al 0.0061

[ O 0.746 ] † Ca 0.0022

∗ Carbon is completely tied up in CO.
† Oxygen is completely tied up in CO, H2O, Mg2SiO4, Al2O3.
‡ Enhanced abundance of Mg, so that Si is completely in forsterite
(Mg2SiO4).

form of condensed soot/graphite particles, with diameters typi-
cally smaller than 0.1 µm, but since we have not yet addressed
combustion processes together with the ensuing chemistry of hy-
drocarbons in our calculations, we assume carbon to be already
entirely transformed into (gaseous) CO. The surplus of oxygen
is tied up in water, H2O. Thus, initially the gaseous component
is assumed to contain only the species H2, He, N2, CO, H2O;
helium and nitrogen do not participate in the chemical reaction
network. All other species listed in Sect. 3.3.1 above form later
in the evolution.

4.4. Boundary conditions

Besides axial symmetry, we also assume symmetry of the disk
with respect to the “equatorial” plane, z = 0. There, the
z-derivatives of the scalars like density, temperature, pressure,
etc., and the vertical velocity component, uz, must vanish. At
both the inner and outer boundary we fix the radial velocity com-
ponent, ur, by taking the respective stationary drift velocity as
a result of the redistribution of angular momentum according to
the β-viscosity (cf. Sect. 3.1), with β = 10−3 in our simulation.
At the inner boundary material leaks out at a (computed) total
rate, Ṁib, while at the outer boundary the net incoming mass
flux, Ṁob = 10−6 M⊙ yr−1, is kept constant throughout the sim-
ulation. It is worth noting that there, for any height z, only the
case of radial inflow of material is considered; it is assumed to
be chemically unprocessed with a composition equal to the ini-
tially chosen one (cf. Table 2). Mass infall from “above” the disk
is neglected.

The thermal boundary conditions are chosen as follows:
(1) The incoming radiation from “above” is assumed to have
an equivalent temperature of 20 K. Within the framework of the
Eddington approximation we have been using so far in our calcu-
lations, this radiative boundary condition is a rather crude sim-
plification of the true situation. A more accurate description is
possible, only if a more realistic radiation transport is taken into
consideration. (2) There is no radiative energy transport across
both the inner and the outer radial boundary. Note that the condi-
tion of neglecting radiative energy transfer in the radial direction
is a basic general assumption for the (1+1)-D disk models; in our
fully 2-D model this assumption is restricted just to the inner and
outer boundary of the disk.

Further refinements of the boundary conditions could be en-
visaged if the structure of both the transition zone between the
disk and the central star and the parent cloud in which the disk
is embedded were known in more detail.

The “vacuum” density above the disk proper is given by
a fixed lower limit of ρvac = 1.91 × 10−15 g cm−3 in our sim-
ulation (cf. Table 2). The velocity field is artificially reset to zero
after each timestep if the density shows a tendency to decrease
further below this lower limit. Briefly, this – physically moti-
vated – strategy is a simplistic way to successfully cope with
a “disguised” form of a mathematically rather subtle free bound-
ary value problem.

These particularly chosen boundary conditions allow for
stationary disk models where the equality Ṁib = Ṁob ≡
10−6 M⊙ yr−1 holds. Numerical experiments have revealed that,
for practical purposes, a quiescent state, approaching the asymp-
totically steady state, adjusts itself already after 20–30 revolution
periods of the outermost part of the disk. Complete stationarity
is expected to be established only after β−1 revolution periods,
that is, after 1 . . . 2 × 104 yr.

5. Results

We start out from a highly artificial disk configuration which
is far off the mechanical equilibrium in the vertical direction
(cf. Table 2 for the actually chosen initial data). Driven by the
gravitational pull of the central sun the disk commences to col-
lapse. Typical dynamical timescales are of the order of the lo-
cal Keplerian revolution period being shortest – around 1 yr –
for the innermost part of our model disk. The main evolutionary
phases are the violent dynamical “switch-on” phase and the en-
suing quiescent accretion phase within which the flow is devel-
oping asymptotically into a stationary state. The first phase lasts
only a few revolution periods of its outermost part, that is, a few
tens of years. Heat and pressure waves travel through the disk,
shock waves transform kinetic energy into heat which is even-
tually radiated away. Radiative losses of the – due to our choice
of the initial data – surplus amount of energy have an efficient
damping effect on the disk’s internal motions. After a few tens
of revolution periods, that is, after several hundred years, a quasi-
stationary flow pattern emerges and the disk luminosity is sus-
tained just by the “slow” viscous energy dissipation. Evidently,
the final outcome is exactly what can be referred to as a fully
2-D model of a preplanetary accretion disk.

In the following Sects. 5.1–5.3, we first discuss the role of the
water-gas shift reaction for producing CO2 in our model nebula.
How much CO2 can actually be produced has become an impor-
tant question, since CO2 has recently been observed in the in-
ner regions (<∼10 AU) of protostellar disks (Lahuis et al. 2006).
We then outline briefly the main results relating to the initial
“switch-on” phase. Finally, we discuss the role of the advective
material transport driven by large-scale circulations in the disk
as compared to the diffusive transport and mixing processes that
are expected to take place in turbulent media anyway.

5.1. The water-gas shift reaction

Among the various chemical reactions related to the basic chem-
istry of the molecules containing carbon, hydrogen, and oxygen
(except hydrocarbons) we focused our attention, in the first in-
stance, to the so-called water-gas shift reaction,

CO + H2O←→ CO2 + H2, (36)

comprising the forward and reverse reaction, reaction #55
and #54 in Table 4, respectively. If this reaction became effective
in preplanetary nebulae in some way or another, it could serve
as the most efficient source of carbon dioxide. It is well known
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Table 2. The initial data.

Quantity Symbol Value Dimension

Central mass M⋆ 1 M⊙
Disk mass Mdisk 0.01 M⊙
Radial extension r 0.8 ≤ r ≤ 5.8 AU
Vertical extension z −1.5 ≤ z ≤ 1.5 AU

Radial velocity ur 0 km s−1

Vertical velocity uz 0 km s−1

Azimuthal velocity uφ ∼33 . . . 12 (Keplerian rotation) km s−1

Density ρ 1.91 × 10−11 g cm−3

Gas temperature Tkin 20 K
Radiation temperature Trad 20 K
Mean molecular weight µ 2.377 –

Gas pressure P 1.336 × 10−2 dyn cm−2

Minimum (“vacuum”) density ρvac 10−4ρ = 1.91 × 10−15 g cm−3

Species Abundances (concentrations) per weight

Molecular hydrogen, H2 cH2
0.708933

Helium, He cHe 0.274615
Molecular nitrogen, N2 cN2

0.000920
Carbon monoxide, CO cCO 0.006997
Water (ice mantle), H2O (solid) cH2O 0.003020

“Dust” † cdust 0.005515
∑

X cX ≡ 1

† Dust grains consisting mainly of forsterite (Mg2SiO4) with an admixture of corundum (Al2O3), Fe, S, and Ca.

that, at a temperature around 1100 K, the water-gas shift reac-
tion is used to produce, via carbon combustion, a mixture of H2,
CO, and CO2, with a surplus of water vapor present, on a large
technical scale. This is why the chemical equilibrium constant
is of practical importance only in the high-temperatures range
of 800–2000 K (see, e.g., Günther 1974; Kraus 2003); at lower
temperatures the water-gas shift reaction is becoming inefficient
for technical applications.

Above all, the equilibrium constant, Kp, of an arbitrary
chemical reaction,

s
(r)

1
X1 + . . . + s(r)

n Xn → s
(p)

1
Y1 + . . . + s

(p)
m Ym,

with n reactants, X1, . . . , Xn, and m products, Y1, . . . , Ym,

and the respective stoichiometric coefficients, s
(r)

1
, . . . , s

(r)
n and

s
(p)

1
, . . . , s

(p)
m , is available for any temperature by making use of

the thermodynamic relation,

RT · ln (Kp) = −
n
∑

i=1

s
(r)

i
∆GXi

+

m
∑

j=1

s
(p)

j
∆GY j

. (37)

The quantities, ∆GXi
and ∆GY j

, refer to the free enthalpy of for-
mation of the species, Xi and Y j, respectively. For a huge variety
of chemical compounds the necessary data to compute the ∆GX,Y

are compiled, e.g., in Chase Jr. (1998).
Whereas the equilibrium constant of the water-gas shift reac-

tion can easily be calculated, there seems to be an almost com-
plete lack of measurements and/or calculated numbers for the
rate coefficients. Until recently, there was only one – meanwhile
to be considered entirely obsolete – reference to the rate con-
stant of the reaction, H2 + CO2 → H2O + CO (reaction #54 in
Table 4), in the UMIST data base (Le Teuff et al. 2000). The
Arrhenius parameters that were given there are of category “C”,
i.e., the rate constant itself ought to be accurate within a fac-
tor of two in the temperature range of 268–300 K. However,
based on quantum chemical investigations Talbi & Herbst (2002)
pointed out that the pure gas-phase reaction, CO2 + H2→ CO +
H2O, “. . . possesses an extremely large potential energy barrier,

Table 3. Properties of the model sequences.

sequence
Schmidt

number, S
water-gas shift reaction:

rate constants

A 1 realistic (Talbi & Herbst 2002)
B1 1 obsolete (Le Teuff et al. 2000)
B2 ∞ obsolete (Le Teuff et al. 2000)

far in excess of the reaction endothermicity.” (cf. reaction #54 in
Table 4).

As a consequence, the water-gas shift reaction in the pure
gas-phase is ruled out as a main source of carbon dioxide in
preplanetary nebulae. However, the presence of an appropriate
catalytic agent, e.g., elementary iron (cf. Ford 1981), could
raise the efficiency of the water-gas shift reaction substantially.
In principle, micron-sized particles of pure iron are to exist in
preplanetary nebulae, unless there is a major contamination by
sulphuric compounds (e.g., H2S) so as to transform iron (Fe)
gradually into troilite (FeS), which would again turn down the
importance of the water-gas shift reaction.

With regard to the large uncertainties related to the water-
gas shift reaction, we conducted our simulations with the new
as well as with the obsolete rate constants. Altogether, we have
considered two distinct model categories, A and B, with charac-
teristics as listed in Table 3. In the category A the most realis-
tic rate constants according to Talbi & Herbst (2002) are used;
the two model sequences, B1 and B2, served as very first pilot
studies and are devoted to explore the effects of diffusive mix-
ing by choosing the Schmidt number, S = 1 and S = ∞, re-
spectively. Hence, concerning the water-gas shift reaction, in the
model sequences of category B, we have still used the (obsolete)
UMIST rate constants as defined by (40) and (41) below.

In the sequel, we shall label quantities relating to the forward
and reverse reaction by “→” and “←”, respectively.
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Table 4. The network for the gas-phase C-, H-, O-chemistry. The three Arrhenius-numbers, A (in cm3 s−1 and cm6 s−1 for two- and three-particle
reactions, respectively), b, and T0 (in K), represent the respective rate constant, k(T ) = A T b exp (−T0/T ), at the temperature, T . Qchem is the heat
of formation (in kJ/mol).

# chemical reaction A b T0 Qchem T -range source

1 H + H + H → H2 + H 8.82E-33 0.000 0. −433.52 50–5000 K (3)
2 H + H2 → H + H + H 4.50E-08 −0.100 52500. 433.52 600–5000 K (3)
3 H + H + H2 → H2 + H2 2.70E-31 −0.600 0. −433.52 100–5000 K (2)
4 H2 + H2 → H + H + H2 1.50E-09 0.000 48350. 433.52 2500–8000 K (2)
5 H2 + OH → H2O + H 1.70E-16 1.600 1660. −62.82 300–2500 K (2)
6 H + H2O → OH + H2 7.50E-16 1.600 9270. 62.82 300–2500 K (2)
7 H + OH → H2 + O 8.10E-21 2.800 1950. −7.81 300–2500 K (13)
8 O + H2 → OH + H 8.50E-20 2.670 3160. 7.81 300–2500 K (2)
9 OH + OH → H2O + O 2.50E-15 1.140 50. −70.63 250–2500 K (2)

10 O + H2O → OH + OH 8.20E-14 0.950 8571. 70.63 250–2400 K (8)
11 O + OH → O2 + H 2.40E-11 0.000 353. −70.16 1000–2000 K (2)
12 H + O2 → OH + O 1.62E-10 0.000 7470. 70.16 300–5000 K (2)
13 H + HO2 → H2 + O2 7.10E-11 0.000 710. −220.09 300–1000 K (2)
14 H2 + O2 → HO2 + H 2.41E-10 0.000 28505. 220.09 300–2500 K (13)
15 H2 + O2 → OH + OH 3.16E-10 0.000 21900. 77.97 800–1250 K (1)
16 OH + OH → H2 + O2 8.90E-12 0.000 12520. −77.97 (cbr) to #15
17 O + HO2 → OH + O2 5.30E-11 0.000 0. −212.28 300–1000 K (2)
18 OH + O2 → O + HO2 3.70E-11 0.000 26500. 212.28 300–2500 K (13)
19 H + HO2 → OH + OH 2.80E-11 0.000 440. −142.12 300–1000 K (2)
20 OH + OH → H + HO2 5.81E-15 0.000 17530. 142.12 (cbr) to #19
21 H + HO2 → H2O + O 5.00E-11 0.000 866. −212.74 300–1000 K (2)
22 H2O + O → H + HO2 1.13E-13 0.000 26450. 212.74 (cbr) to #21
23 H + H2O2 → H2 + HO2 2.80E-12 0.000 1890. −79.80 300–1000 K (2)
24 H2 + HO2 → H2O2 + H 5.00E-11 0.000 13100. 79.80 300–2500 K (13)
25 OH + HO2 → H2O + O2 2.91E-11 0.000 200. −282.90 300–2500 K (15)
26 H2O + O2 → OH + HO2 7.72E-12 0.000 37300. 282.90 300–1000 K (10)
27 H + H2O2 → OH + H2O 1.70E-11 0.000 1800. −284.72 300–1000 K (2)
28 OH + H2O → H + H2O2 2.85E-12 0.000 36040. 284.72 (cbr) to #27
29 O + H2O2 → OH + HO2 1.10E-12 0.000 2000. −71.99 300–500 K (2)
30 OH + HO2 → O + H2O2 2.90E-13 0.000 10658. 71.99 (cbr) to #29
31 HO2 + HO2 → H2O2 + O2 3.11E-12 0.000 775. −140.29 550–1250 K (2)
32 O2 + H2O2 → HO2 + HO2 9.00E-11 0.000 20000. 140.29 300–2500 K (13)
33 OH + H2O2 → H2O + HO2 1.30E-11 0.000 670. −142.62 300–1000 K (2)
34 HO2 + H2O → H2O2 + OH 4.60E-11 0.000 16500. 142.62 300–1000 K (9)
35 H + H2O → OH + H + H 5.80E-09 0.000 52900. 501.29 2000–6000 K (2)
36 OH + H + H2 → H2O + H2 2.30E-26 −2.000 0. −501.29 300–3000 K (2)
37 H2 + H2O → OH + H + H2 5.80E-09 0.000 52900. 501.29 2000–6000 K (2)
38 OH + H + H2 → H2O + H2 6.10E-26 −2.000 0. −501.29 300–3000 K (2)
39 H + OH → O + H + H 4.00E-09 0.000 50000. 430.66 300–2500 K (13)
40 O + H + H → OH + H 1.30E-29 −1.000 0. −430.66 300–2500 K (13)
41 H2 + OH → O + H + H2 4.00E-09 0.000 50000. 430.66 300–2500 K (13)
42 O + H + H2 → OH + H2 1.30E-29 −1.000 0. −430.66 300–2500 K (13)
43 H2 + H2O2 → OH + OH + H2 2.01E-07 0.000 22900. 216.56 700–1500 K (2)
44 OH + OH + H2 → H2O2 + H2 8.00E-31 −0.780 0. −216.56 250–1400 K (2)
45 H + O2 → O + O + H 3.00E-06 −1.000 59400. 500.82 300–2500 K (13)
46 H + O + O → O2 + H 5.21E-35 0.000 −900. −500.82 200–4000 K (13)
47 H2 + O2 → O + O + H2 3.00E-06 −1.000 59400. 500.82 300–2500 K (13)
48 H2 + O + O → O2 + H2 5.21E-35 0.000 −900. −500.82 200–4000 K (13)
49 H2 + HO2 → O2 + H + H2 2.00E-05 −1.180 25400. 215.91 200–2200 K (13)
50 H2 + H + O2 → HO2 + H2 5.80E-30 −0.800 0. −215.91 300–2000 K (2)
51 H + O → OH + hν 9.90E-19 −0.380 0. −430.66 (12)

5.1.1. The equilibrium constant

We are now going to discuss in more detail how to derive the
missing rate constant, k→, in the Arrhenius form if both k← and
the equilibrium constant, Kp, are known. By definition of chemi-
cal equilibrium, Kp is expressed as the ratio of the rate constants,
for instance, Kp := k←/k→. From this relation the (formal) solu-
tion, k→ = k←/Kp, follows immediately. Obviously, this kind of
reasoning is valid for any conjugated pair of chemical reactions.
Moreover, if two of the three quantities, k←, k→, Kp, are

represented in the Arrhenius form, so must be the third one in
order to maintain consistency.

In Kraus (2003) the equilibrium constant, Kp, is approx-
imated by a sixth order polynomial in the temperature range
500–1600 ◦C, i.e., roughly 800–1900 K:

Kp(T ) =

6
∑

i=0

qi ·
(

T

1 ◦C

)i

, (38)
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Table 4. continued.

# chemical reaction A b T0 Qchem T -range source

52 OH + CO → H + CO2 1.05E-17 1.500 −250. −103.95 300–2000 K (2)
53 H + CO2 → OH + CO 2.50E-10 0.000 13300. 103.95 300–2500 K (13)
54 H2 + CO2 → H2O + CO 1.05E-15 1.500 56900. 41.14 1000–2000 K (14), cf. Sect. 5.1
55 H2O + CO → H2 + CO2 1.92E-21 2.687 51561. −41.14 (cbr) to #54
56 O2 + CO → CO2 + O 4.20E-12 0.000 24000. −33.79 300–2500 K (13)
57 O + CO2 → CO + O2 2.80E-11 0.000 26500. 33.79 300–2500 K (13)
58 CO + HO2 → CO2 + OH 2.50E-10 0.000 11900. −246.07 300–2500 K (13)
59 CO2 + OH → CO + HO2 1.18E-11 0.000 41500. 246.07 (cbr) to #58
60 H + HCO → CO + H2 1.50E-10 0.000 0. −372.05 300–2500 K (2)
61 CO + H2 → H + HCO 6.77E-10 0.000 44750. 372.05 (cbr) to #60
62 O + HCO → OH + CO 5.00E-11 0.000 0. −364.24 300–2000 K (2)
63 OH + CO → O + HCO 1.02E-10 0.000 43810. 364.24 (cbr) to #62
64 O + HCO → CO2 + H 5.00E-11 0.000 0. −486.19 300–2000 K (2)
65 CO2 + H → O + HCO 2.70E-07 0.000 58480. 486.19 (cbr) to #64
66 OH + HCO → H2O + CO 1.70E-10 0.000 0. −434.87 300–2000 K (2)
67 H2O + CO → OH + HCO 3.76E-09 0.000 52300. 434.87 (cbr) to #66
68 H + H2CO → HCO + H2 2.10E-16 1.620 1090. −58.58 300–1700 K (2)
69 HCO + H2 → H + H2CO 3.00E-19 2.000 8970. 58.58 300–2500 K (13)
70 O + H2CO → HCO + OH 6.90E-13 0.570 1390. −50.77 250–2200 K (2)
71 OH + HCO → O + H2CO 1.67E-14 0.570 7500. 50.77 (cbr) to #71
72 OH + H2CO → H2O + HCO 5.70E-15 1.180 225. −121.40 300–3000 K (2)
73 H2O + HCO → OH + H2CO 3.90E-16 1.350 1310. 121.40 300–2500 K (13)
74 O2 + H2CO → HO2 + HCO 1.00E-10 0.000 20460. 161.51 700–1000 K (2)
75 HO2 + HCO → O2 + H2CO 7.27E-10 0.000 1030. −161.51 (cbr) to #74
76 HCO + HCO → H2CO + CO 5.00E-11 0.000 0. −313.47 300–2500 K (2)
77 H2CO + CO → HCO + HCO 4.22E-09 0.000 37700. 313.47 (cbr) to #76
78 H2O2 + HCO → HO2 + H2CO 1.69E-13 0.000 3490. −21.22 300–2500 K (13)
79 HO2 + H2CO → H2O2 + HCO 5.00E-12 0.000 6580. 21.22 600–1000 K (2)
80 CO + H → C + O + H 6.00E-09 0.000 129000. 1076.34 (11)
81 C + O + H → CO + H 2.00E-34 0.000 0. −1076.34 8000 K (6)
82 H + CO2 → CO + O + H 6.46E-10 0.000 53900. 532.14 3600–6500 K (7)
83 H + CO + O → CO2 + H 1.70E-33 0.000 1510. −532.14 300–2500 K (13)
84 H2 + CO2 → CO + O + H2 6.46E-10 0.000 53900. 532.14 3600–6500 K (7)
85 H2 + CO + O → CO2 + H2 1.70E-33 0.000 1510. −532.14 300–2500 K (13)
86 HCO + H2 → CO + H + H2 2.61E-10 0.000 7930. 63.94 600–2500 K (2)
87 CO + H + H2 → HCO + H2 5.30E-34 0.000 370. −63.94 300–2500 K (2)
88 H2 + H2CO → HCO + H + H2 2.00E+17 −6.900 48600. 377.41 1000–3000 K (13)
89 H2 + HCO + H→ H2CO + H2 7.31E-24 −2.570 215. −377.41 1560–2270 K (5)
90 C + O → CO + hν 6.09E-20 0.732 0. −1076.34 (4)

Sources of data: (1) Azatyan et al. (1975); (2) Baulch et al. (1992); (3) Cohen & Westberg (1983); (4) Dalgarno et al. (1990); (5) Eiteneer et al.
(1998); (6) Fairbairn (1969); (7) Kiefer (1974); (8) Lifschitz & Michael (1991); (9) Lloyd (1974); (10) Mayer & Schieler (1968); (11) Mitchell
(1984); (12) Le Teuff et al. (2000); (13) Tsang & Hampson (1986); (14) Talbi & Herbst (2002); (15) Warnatz, private communication; (cbr)
computed back-reaction.
Three-particle reactions are in most cases estimated from corresponding reactions with noble gases or N2 as third species.

with the coefficients

q0 = 4.8095× 10−1 , q1 = −2.9970 × 10−3 ,

q2 = 6.1170× 10−6 , q3 = −3.8770 × 10−9 ,

q4 = 3.9220× 10−12, q5 = −2.3900 × 10−15,

q6 = 4.7059× 10−19.

Furthermore, by applying Eq. (37) to the water-gas shift reac-
tion, we obtained a list of Kp-values from the relevant data com-
piled in Chase Jr. (1998) in the temperature range between 0 K
and 6000 K.

Both representations of Kp can easily be transformed by
a standard best-fit procedure into the desired Arrhenius form
for Kp (in cm3 s−1):

Kp = 5.484 × 105 T−1.187 exp (−5339/T ). (39)

The result is displayed in Fig. 2. In our applications we restricted
ourselves to temperatures below 2000 K. In the high-temperature

regime (right panel), the Arrhenius-fit (full line) is practically
identical with both the polynomial representation (dash-dot line)
and the numbers derived from the Chase Jr. (1998) data (dashed
line). Likewise, the lower left panel of Fig. 2 shows the variation
of Kp for low temperatures. Again, the Arrhenius approxima-
tion (full line) matches remarkably well the calculated Chase Jr.
(1998) values (dashed line).

Realistic rate constants. According to Talbi & Herbst (2002)
the rate constant, k←, of the water-gas shift reaction, CO2 +

H2 → CO + H2O (reaction #54), is several orders of magnitude
lower than the one given in the UMIST data base (Le Teuff et al.
2000, see Eq. (41) below).

Obsolete rate constants. Since there is an almost complete
lack of both experimental and theoretical data for the water-
gas shift reaction at low temperatures, we are free to choose a
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Fig. 2. The water-gas shift reaction, CO+H2O ←→ CO2 +H2: Arrhenius form of the equilibrium constant, Kp := k←/k→, for lower (left panel)
and higher (right panel) temperatures. Dash-dot line: polynomial representation according to Kraus (2003) (cf. Eq. (38)). Seemingly, for higher
temperatures above 1800–1900 K the deviations are increasing rapidly. Dashed lines: computed equilibrium constant from the thermodynamical
data for the species CO, CO2, H2O, H2 in Chase Jr. (1998).

practically arbitrary pair of rate constants. For example, based
on the UMIST data (Le Teuff et al. 2000) the respective rate
constants read

k→ = 3.10 × 10−21 T 1.687 exp (−2211/T ), (40)

k← = 1.70 × 10−15 T 0.500 exp (−7550/T ). (41)

From the known (UMIST) Arrhenius parameters of the reverse
water-gas shift reaction, k←: CO2 + H2 → CO + H2O, the pa-
rameters of the forward reaction, k→: CO + H2O → CO2 + H2

are tailored so as to be consistent with the equilibrium constant,
Kp := k←/k→ (cf. Fig. 2). The (obsolete) rate constants, (40)
and (41), are used only for exploring the importance of the dif-
fusive material transport in the vertical direction. Comparative
studies of this kind, by varying the Schmidt number, S, are car-
ried out in the model sequences B1 and B2.

5.2. The dynamical “switch-on” phase

Since we start out with a homogeneous and isothermal disk-like
configuration, vertical pressure gradients have not yet built up
to compensate the vertical gravitational pull the central protosun
exerts on the disk material. As a consequence, the initial con-
figuration commences to collapse essentially in the z-direction,
while the radial direction is less affected. This is due to the fact
that the initial disk is a Keplerian one (cf. Table 2) and is there-
fore radially sustained by centrifugal forces.

Figure 3 displays the contour lines of several important phys-
ical quantities according to their distribution in the (r, z)-plane.
It represents a snapshot of the non-stationary collapse-like
“switch-on” phase of our model disk after one revolution pe-
riod as measured at a radial distance of 1 AU. As expected,
the highest compression occurs in the innermost regions of the
disk near the equatorial plane. This happens also at the inner
boundary, which is an artifact of our adopted “almost-rigid-wall”
condition: the mass flow across the inner border of the disk
ceases with vanishing viscosity. Though highly artificial, mas-
tering such a complex dynamical situation is, nevertheless, again
a firm test for the robustness of the code. In the very early phases
(within about the first 0.2 yr) Mach numbers of above 40 were

present, declining to about 11 after 1 yr (cf. Fig. 3, lowest left
panel) and to 4.5 after 12 yr which is the revolution time of the
outermost disk layers (r <∼ 5.8 AU). In other words, the flow ex-
hibits strong shock fronts almost from the beginning. However,
they become weaker and eventually disappear when after sev-
eral dynamical time scales, i.e., several tens of years, a smooth
viscosity-driven accretion flow remains, which is on the way to
asymptotically approach a stationary state.

The temperatures in the maximum compression zones rise
well above the silicate dust sublimation temperature, thus cre-
ating a deep opacity gap and, accordingly, a noticeable differ-
ence between the kinetic and the radiation temperature. The hot
gas cannot cool fast enough because the dust, as the principal
absorber, does not exist anymore, while the radiation energy
quickly diffuses away (cf. the panels of Fig. 3 showing the distri-
bution of the opacity, radiation temperature, and kinetic tempera-
ture, respectively). A heat wave originating from the hot interior
and a pressure wave propagate radially toward the outer regions
of the disk and the “snow line” is continually shifted to larger
radii.

Along with the rather violent dynamical and thermal evo-
lution of our model disk the various gas-phase reactions in the
chemical network comprising 90 reactions are activated in the
“warm” zones. This is illustrated by Fig. 4 for the “most real-
istic” case A. It shows the distribution of all reactive gaseous
species (except those not exceeding a minimum concentration
of 10−15) that we have taken into consideration, again at an age
of 1 yr. Carbon dioxide (CO2) is produced to some extent in the
hottest regions of the disk.

5.3. Asymptotic, quasi-stationary accretion phase

In the following we discuss results of the numerical experiments
pertaining to the mechanical/thermal structure of the disk and to
the abundance and spatial distribution of the various gas species
at a evolutionary time of 300 yr. We focus our attention on the
relation between advective and diffusive mixing by varying the
Schmidt number.
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Fig. 3. Sequence A. Snapshot of the mechanical and thermal structure of the model disk after 1 yr, i.e., one revolution of the disk around the
central protosun at a radial distance of 1 AU. Depicted are the contour lines of the different physical quantities. The left uppermost and the second
right panel from above show the distribution of the density and the radiation temperature, and the arrow fields represent the velocity field and the
radiative flux (in erg cm−2 s−1), respectively. The scales are indicated by the single arrow in the lower right corner of the respective panels. The
opacity gap relates to the high temperature region where the dust particles evaporate (panels in the second row from below); it is also visible in the
depression of the contours of equal vertical optical depths, τz. The “surface” of the disk defined by τz = 1 is indicated by the heavy contour line
(third left panel from below). The “snow line” coincides exactly with the head of the heat wave and the accompanying pressure wave travelling
through the disk in the outward direction (right panels). The bottom row shows the distribution of the Mach numbers, Ma, and the sound speed,
cs, in the left and right panel, respectively. The tick marks perpendicular to the Ma contour lines point toward the “downhill” direction.

5.3.1. Mechanical and thermal disk structure

In all our simulations so far carried out, we have been deal-
ing with just one “mean” dust species having ice mantles at
low temperatures, T <∼ 150 K, which determines the absorp-
tion properties of the disk material. The much lower gas opac-
ities that depend on the chemistry become important only at
higher temperatures, when the refractory grains evaporate and
the opacity gap opens (cf. Fig. 3, second row of panels from

below). Since we have not yet taken into account effects of de-
tailed gas-solid-phase chemistry (heteromolecular evaporation
and condensation) and mineralogical metamorphosis such as an-
nealing, which both determine the optical properties of the dust
grains and, hence, the opacity of the disk material to a large ex-
tent, the overall mechanical and thermal properties of our model
disks are essentially the same for all three model sequences, A,
B1, B2 (cf. Table 3).
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A

Fig. 4. Sequence A. Distribution of the concentration, c, that is, the relative abundance (per weight) of the gaseous species after 1 yr, i.e., after one
revolution of the disk around the central protosun at a radial distance of 1 AU. The title line of the panels contains the respective chemical formula
of the species whose concentration contour lines are shown. The color bar indicates the range in between the concentrations, c, vary (logarithmic)
over the (r, z)-plane. The lower limit of log(c) = −16 means zero abundance. In the panel showing the distribution of water vapor (H2O, first panel
in the third row) the snow line (cf. Fig. 3) is again visible as a distinct feature. Because of the extremely low abundance of the species, HO2, H2O2,
and (gaseous) C, their respective concentrations, c (altogether <10−15), are not shown.

Figure 5 shows the distribution of the physical quanti-
ties after 300 yr or about 20 revolution periods of the outer-
most parts of our model disk that is gradually evolving into a

stationary accretion state. Quasi-hydrostatic equilibrium in the
vertical direction has already been established, the velocities
within the disk are extremely subsonic. The Mach numbers
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Fig. 5. Sequence A. The same drawings of the physical quantities as in Fig. 3, but at the end of the simulation. Somewhat less than 500 000 timesteps
were necessary to cover the entire evolutionary period of 300 yr. The radiating “surface” at unity vertical optical depth, τz = 1, is emphasized
by the heavy contour line in the left third panel from above. Note the extremely low Mach numbers, Ma, particularly in the region of 1–2 scale
heights (z/r ≃ 0.1 . . . 0.25) “above” the equator (z = 0); the intermediate Mach numbers in the upper right corner of the panel are a result of the
somewhat artificial inflow boundary condition: the mass elements entering at high altitudes find themselves off mechanical equilibrium and gain
velocity under the surplus gravitational pull.

reached within the scale height of the disk, that is, within its
“half-thickness”, h/r ≃ 0.12 (cf. Fig. 7b), are considerably
smaller than 0.01. The fastest motions occur in the innermost
regions of the disk, slightly above its “surface”, within the nar-
row transition zone where the density rises above the fixed min-
imum density, ρvac = 1.91 × 10−15 g cm−3 (cf. Sect. 4.4). The
second left panel from above displays the distribution of the rev-
olution periods over the entire (r, z)-plane. The sub-domain con-
taining the disk proper is clearly visible. There the action of the
viscous forces drives the disk to establish a rotation law with
angular velocities being constant on cylindrical surfaces, that is,
∂Ω/∂z → 0, which is indicated by the contour lines of equal

revolution period, Π := 2π/Ω ≡ 2πr/uφ, in Fig. 5, second left
panel from above.

The maximum optical depth of the disk in the vertical
direction,

τz := −
∫ z

zmax

κρ dz, (42)

counted from the upper boundary of our integration domain
(z = zmax := 1.5 AU) down to the disk’s “equator” (z = 0), is
slightly greater than 103 (cf. Fig. 5, third left panel from above).
In the innermost parts of the disk, around 1 AU in the radial
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Fig. 6. Sequence A. Density contours and the velocity field after 300 years. Upper panel: overall view of the density distribution. Lower panel: the
magnified region as indicated by the grey-shaded rectangle in the upper panel. The outward motion of about 10–20 m s−1 near the equatorial plane
is clearly visible.

direction and extending to about 0.1 AU in the vertical direc-
tion the temperatures remain sufficiently high (>∼1300 K) so that
the dust particles evaporate and leave behind again an opacity
gap. On the cool (<∼150 K) edge at large radial distances (around
5 AU) and high altitudes (>∼0.8 . . .0.9 AU) water vapor con-
denses out on the dust particles to form ice-coated grains, in this
way defining the “snow line” as depicted in Fig. 5, second right
panel from below.

As is illustrated in Fig. 3, second and third right panel from
above, during the highly non-equilibrium “switch-on phase” the
(equivalent) radiation temperature, Trad, and the kinetic tempera-
ture, Tkin := T , may differ locally, e.g., due to drastically reduced
optical depths (formation of opacity gaps as a result of dust evap-
oration) or to compression waves and, though not particularly
exemplified here, to shock fronts exhibiting extended radiative
cooling zones if travelling in optically thin regions. However,
at our reference epoch of 300 yr, besides the mechanical equilib-
rium an almost perfect thermal equilibrium has been established:
Trad = Tkin throughout the disk, as is documented in Fig. 5, sec-
ond and third right panel from above. The opacity gap has re-
tracted to the hottest innermost part of the disk (cf. the “opacity
mountain” depicted in Fig. 9).

5.3.2. Circulation currents

A result of major importance is displayed in Fig. 6. It cor-
responds to the early qualitative finding that Kippenhahn &
Thomas (1982) derived in an extensive analytical investigation
on the compatibility of thermal and hydrostatic equilibrium in

thin radiative accretion disks. Within the framework of Keplerian
α-disks, the authors distinguish between two different cases de-
pendent on α being smaller or greater than the relative half-
thickness, h/r, of the disk, respectively. Owing to energy con-
servation, mechanical and thermal equilibria in the strict sense
cannot exist simultaneously. As a compensation for this dis-
crepancy, the mass elements are put in motion to form a pro-
nounced circulation pattern within the disk. If now α < h/r
(Case I according to Kippenhahn & Thomas 1982) or α > h/r
(Case II) the circulation is thermally or dynamically driven, re-
spectively. Dissipation of energy by turbulent friction keeps the
engine running.

Later, Urpin (1984) pointed out that the actual flow pattern
in (quasi-stationary) 2-D accretion disks is decisively more com-
plicated than the simple radial accretion flow which is inherent
to any one-zone or (1+1)-D model. Other investigations (e.g.,
Keller 2003; Keller & Gail 2004; Siemiginowska 1988; Kley
et al. 1993; Różyczka et al. 1994; Regev & Gitelman 2002)
have confirmed that the axially symmetric accretion flow ex-
hibits a huge circulation pattern. Near the equatorial plane, well
below one scale height of the disk where the mass density is
highest, a slowly moving flow in the outward direction develops.
The much faster, inwardly directed back flow occurs at larger al-
titudes, extending up to the disk’s “surface” which is situated, by
definition, at the vertical optical depth, τz = 1. There, the dissi-
pated energy is radiated away and the density decreases rapidly
with increasing vertical distance, z.

According to the relation (19) between the α- and
β-parameter and the result of our simulations pertaining to the
half-thickness, h/r, of the disk we may state: for the inner part,
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Fig. 7. Sequence A. Mechanical and thermal structure of the disk after 300 yr (cf. Fig. 5). Radial variation of physical quantities integrated over
the disk’s vertical dimension. a) Surface density, Σ (cf. Eq. (49)). The increase toward the outer boundary is a consequence of the particularly
chosen mass-inflow boundary condition. b) Half-thickness, h/r, of the disk (cf. Eq. (50)). Corresponding to the behavior of the surface density
(see panel a), h/r increases in the outermost parts of the disk, again being an artifact of the outer boundary condition. The relatively steep decrease
of h/r toward the inner boundary is due to a combination of the inner boundary condition and a lack of numerical resolution. c) Net mass accretion
rate, Ṁ ≡ dM/dt (cf. Eq. (51)). The strictly stationary state for which the condition, Ṁ = const, holds is not yet established: there is still more
mass leaking out of the disk through the inner boundary than is entering the disk at the outer boundary. d) “Surface” temperatures. Full line: gas
temperature, T (τz = 1), at the optical depth, τz = 1, counted from the “upper” boundary (z = zmax := 1.5 AU) down to the disk’s equatorial plane
(z = 0) in the vertical direction. Dashed line: effective temperature, Teff (cf. Eq. (52)). The conspicuous deviation from T (τz = 1) in the innermost
parts is to be attributed to both poor numerical resolution and the flux-limiting procedure for the Eddington approximation.

2 <∼ r/AU <∼ 5, sufficiently far off the inner and outer “rim” we
find h/r ≈ const. ≃ 0.115 (cf. 7b) and, together with β = 10−3

being our canonical choice, α = 0.076 < h/r. This inequality
refers to Case I in the classification scheme of Kippenhahn &
Thomas (1982), i.e., our circulation depicted in Fig. 6 is essen-
tially thermally driven. Note that h/r ≡ 0.1 indicates the transi-
tion from Case I to Case II (dynamically driven circulation).

By integrating the mass flux over the vertical (z-) coordinate,
it turns out that there is a net radial mass influx, Ṁ, throughout
the disk. The typical velocities in the back flow are 1–2 orders
of magnitude larger than those of the equatorial outward motion
ranging in between 10–20 m s−1. The expected fact that, in addi-
tion to the remarkable large-scale circulation flow, there is a net
accretion rate is depicted in Fig. 7c. Strict stationarity would de-
mand Ṁ = Ṁob = −10−6 M⊙ yr−1 at every radial distance, r,
according to our inflow boundary condition (cf. Sect. 4.4).

The radial variation of the net mass flux, in particular the dif-
ference between the fluxes at the outer and inner radial bound-
ary, Ṁob and Ṁib, respectively, is a measure of how closely sta-
tionarity has already been established. At our reference epoch

of 300 yr about five times as much mass is leaving the inner
boundary as enters the disk at its outer boundary. A long-term
test calculation has shown that after another 1300 yr the ratio of
the mass fluxes, Ṁib/Ṁob, would decrease from the initial num-
ber of five to about three. It is thus obvious that our model disk
is asymptotically approaching a stationary state.

A sensitive indicator of how the model disk approaches the
stationary state is the evolution of the total disk luminosity ver-
sus the total dissipation rate, Q̇vis,tot, due to turbulent friction,
which is strongly enhanced by shock waves forming during
the dynamical “switch-on” phase. As is displayed in Fig. 10,
Q̇vis,tot is a smooth function of time throughout (full line); by
contrast, the total luminosity, Ldisk, of the disk exhibits oscilla-
tions of rather large amplitudes (dashed line). This behavior mir-
rors the huge variations of the opacity in the inner disk regions
where (instantaneous) sublimation and recondensation processes
of the dust grains take place. Hence, small temperature vari-
ations can cause large changes in the opacity, which leads to
largely varying radiative fluxes. After one revolution time of
the disk as a whole (≈10 yr) the short-period variations of the
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A

Fig. 8. Sequence A. The same drawings of the distribution of the chemical species as in Fig. 4, but at the end of the simulation, after 300 yr.

luminosity cease. During this “final” period, a slightly growing
fraction (Ldisk/Q̇vis,tot >∼ 0.7) of the entire dissipated energy is
radiated away; the remaining 30% partly keep the large-scale

circulation (cf. Fig. 6) running, partly drive the enhanced mass
outflow (4.8 . . .3.8 × 10−6 M⊙/yr in between 300 and 900 yr) at
the inner “rim” of the disk.
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Fig. 9. Sequence A. The “opacity mountain” associated with the disk
model at an age of 300 yr. The inner gap and the outer enhancement of
the opacity, κ, are caused by evaporation of the refractory dust compo-
nent (silicates) and by condensation of water vapor to form ice-coated
dust particles, respectively.

Fig. 10. Evolution of the total disk luminosity, and the total rate of en-
ergy dissipated by viscous processes (turbulence, shocks) in units of
solar luminosity, L⊙, as calculated for a three times more extended time
span of about 900 yr (as compared to our standard reference epoch of
300 yr). Full line: total energy dissipation rate, Q̇vis,tot. Dashed line:
disk luminosity, Ldisk. Dotted line: disk luminosity for strictly stationary
1-D disk models according to Eq. (43) with mass flux Ṁ = 10−6 M⊙/yr.

The horizontal dotted line in Fig. 10 illustrates the disk lumi-
nosity according to a strictly stationary 1-D model. The respec-
tive expression is worked out, e.g., in Frank et al. (2002) and
reads:

Ldisk(rib, rob) =
3GM⋆Ṁ
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where M⋆, R⋆ cm are the central star’s mass and radius and
rib, rob the inner- and outermost radius of the disk, respectively;
G denotes the gravitational constant. For our disk model, we

adopted the following set of numbers:

Ṁ = 10−6 M⊙/yr

M⋆ = 1 M⊙, R⋆ = R⊙ ≃ 7 × 1010 cm

rib = 0.8 AU, rob = 5.8 AU.

Inserting these numbers into Eq. (43) yields a total disk luminos-
ity, Ldisk(rib, rob) = 0.22 L⊙.

5.3.3. Mixing processes

Such large-scale circulations are an efficient means to transport
advectively material that has been processed in the warm inner
regions of the disk into its cool outer parts. The time, tadv, it
takes to transport a mass element over a radial distance,∆r, given
a flow velocity, ur, only slightly dependent on the radial distance,
r, is easily estimated to be simply

tadv ≃
∆r

ur

· (44)

For our model disk with a maximum ∆r ≃ 5 AU and an equato-
rial outward flow, ur ≃ 15 m s−1 (cf. Fig. 6), the corresponding
tadv ≃ 1500 yr. Accordingly, within our reference time span of
300 yr a mass element near the disk’s equator has travelled only
a distance of somewhat less 1 AU. As an – admittedly risky – ex-
trapolation of our numerical findings, by inserting an appropriate
number, ∆r, for the typical spatial extension of real preplanetary
disks, e.g., ∆r = 100 AU, we end up with a characteristic time
scale, tadv ≃ 30 000 yr. This is an astounding short timescale, but
even if tadv were to be 1–2 orders of magnitude larger, advec-
tive mass transport would play a significant role in the evolution
of the preplanetary nebulae, provided the large-scale circulation
pattern also evolves within, and is maintained for, the whole disk
extension over such long periods of time.

It is interesting to compare the “advective” timescale, tadv,
with the diffusive mixing timescale, tdiff , which is defined by

tdiff :=
∆r2

D
, (45)

with D being the diffusion coefficient. According to the
β-prescription (17) for the (turbulent) kinematic viscosity coeffi-
cient, νturb, and the definition (3) of the Schmidt number, S, we
can express the diffusion coefficient in the form D = S−1β · r2Ω.
Hence, for Keplerian disks the proportionality D ∝

√
r holds.

The diffusive mixing timescale, tdiff , defined above in Eq. (45)
can now be rewritten in the form

tdiff =
Π

2π β
· S ·
(

∆r

r

)2

, (46)

where Π = Π (r; M⋆) is the Keplerian rotation period of a mass
element at the radial distance, r, and for a central mass, M⋆.
Now Π (r) ∝ M−0.5

⋆ r1.5 (Kepler’s third law) and, hence, tdiff ∝
M−0.5
⋆ r1.5 (∆r/r)2, whereas tadv ∝ r (∆r/r) with the assumption

that the velocity, ur, in Eq. (44) is approximately constant. Since
radial transport and mixing will become, by definition, effective
if ∆r/r ≃ 1, there exists a distinguished radial distance, rmix, be-
yond which mass elements near the disk’s equator are predomi-
nantly transported by advection. Obviously, rmix results from the
condition that the advective and the diffusive mixing time scales
be equal. In fact, if the equality tadv = tdiff is to hold, we find

rmix

1 AU
=

4

S2

(

β

10−3

)2 ( ur

15 m s−1

)−2
(

M⋆

1 M⊙

)−1

· (47)
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An immediate consequence of the timescale estimates given
above is that for our model disks with Schmidt number, S = 1,
which comprise the sequences A and B1 (cf. Table 3), diffusive
mixing dominates the advective mass transport in the inner zones
of the disk (r <∼ 4 AU). Further outside (r >∼ 4 AU), the dominant
process for mass transport is advection. At the radial distance,
r = 4 AU, the advective and the diffusive timescales coincide
and are equal to roughly 1300 yr. The implications of this im-
portant fact on the distribution of the various chemical species
are discussed in more detail below.

Equation (47) shows that there is a relatively strong
(quadratic) dependence of rmix on the ratio, β/ur. However, the
strength of the large-scale circulation is expected to increase
with increasing β, that is, the higher (lower) the parameter β is
chosen, the faster (slower) the motions in the circulation will be.
It could even be that β/ur is essentially constant for β varying in
between 10−4 and 10−2. For the moment being, of course, taking
this possibility into consideration is nothing more than a wild
guess. Further extended numerical experiments are necessary to
clarify this interesting issue.

Mixing processes in the vertical direction are of equal im-
portance. Due to the well-ordered large-scale circulation the ad-
vective exchange of mass elements belonging to the outgoing
equatorial stream with those of the incoming high-altitude flow
will be rather ineffective. Mixing in the vertical direction is per-
formed almost entirely by diffusion. We now can estimate the
respective diffusion timescale, t⊥

diff
, by re-interpreting the rather

unspecified length scale ∆r in (46) to be the typical vertical
length scale of the disk, for which twice the disk’s half-thickness,
h := cs/Ω, may serve as an appropriate estimate. This yields

t⊥diff =
2Π

π β
· S ·
(

h

r

)2

· (48)

For our numerical simulations with the given standard param-
eters, β = 10−3, S = 1, together with the calculated rela-
tive half-thickness, h/r ≃ 0.10 . . .0.12 (cf. Fig. 7b), we have
t⊥
diff
/Π = 5 . . .9, which leads to diffusive mixing timescales

roughly in between 5 yr (at 1 AU) and 100 yr (at 5 AU) across
our model disk in the radial direction. So we can safely state that
at the reference epoch of 300 yr the distribution of the various
chemical species in the vertical direction is, to a large extent,
modulated by diffusive mixing.

5.3.4. Relation to 1-D models

As a link to the one-zone and (1+1)-D approximation, Fig. 7
displays the radial stratification of some physical quantities in-
tegrated over the vertical (z-)coordinate and other quantities re-
lated to the vertically outgoing radiative flux, Fz. In particular,
panels (a)–(c) show the disk’s surface density,

Σ ≡ Σ (r) := 2

∫ zmax

0

ρ (r, z) dz, (49)

its relative “half-thickness”,

h

r
:=

1

2 r
· Σ (r)

ρ (r, z = 0)
, (50)

and the net accretion rate,

Ṁ ≡ dM

dt
:= 4π r

∫ zmax

0

ρ (r, z) ur(r, z) dz, (51)

respectively. Figure 7d displays two quantities that are related to
the effective temperature, Teff. The full line represents the radial

dependence of the gas temperature, T (r, τz), at the optical depth,
τz := τz (r) = 1 (cf. Fig. 5, third left panel), counted from the
“upper” boundary at z = zmax ≡ 1.5 AU “down” to the equatorial
plane at z = 0 in the vertical direction. The quantity, T (r, τz),
ought to be close to Teff which is, by definition, the equivalent
black-body temperature corresponding to the outgoing radiative
flux, Fz (r, z = zmax), in the vertical direction, thus

σT 4
eff = Fz (r, z = zmax). (52)

The dashed line depicts the radial variation of the effective tem-
perature, Teff , as defined in Eq. (52) above. For r >∼ 1.8 AU the
coincidence between the two curves is, indeed, almost perfect.
A major deviation occurs only at lower radial distances.

5.3.5. Numerical constraints and demands

The main reason for this behavior of the numerical solution
for r <∼ 1.8 AU, which is also indicated by the sudden, rela-
tively steep decrease of the disk’s relative half-thickness, h/r
(cf. Fig. 7b), toward the inner boundary (situated at r0 =

0.8 AU), is the extremely poor numerical resolution of the
pressure-supported hydrostatic quasi-equilibrium in the vertical
direction. Only 7–10 gridpoints are available to cover 5–6 orders
of magnitude in the density or gas pressure. Adjacent numeri-
cal cells exhibit large changes in the optical depth, there are big
jumps from heavily opaque to fairly transparent layers where the
Eddington approximation must be most probably modified by
using an appropriate, but otherwise rather artificial, flux limiter.
In this way, large numerical errors are introduced. This can be
avoided only if, first of all, the numerical resolution is decisively
improved and, equally important, the flux-limited Eddington ap-
proximation is replaced by a more sophisticated treatment of ra-
diative transfer.

Despite this somewhat uncomfortable, but natural, lack of
numerical resolution and accuracy in the vicinity of the inner
boundary, we can fairly state that the code has proved to be ex-
tremely stable and robust. In the simulations carried out so far an
exceptional stop never occurred, neither was any “fine-tuning”
of control parameters ever necessary to continue the calculation.
We presume that the main stabilizing effect in our numerical
operator splitting scheme relates to the implicit source step for
solving the energy balance equations. There, the (kinetic) tem-
perature, pressure and internal energy of the gas, and the radia-
tion energy density are iteratively determined – under the con-
straint of constant (known) mass density and velocity field – so
as to yield a set of intrinsically consistent physical quantities.

In other words, on the source-step level the gas pressure
is controlled by taking the total energy balance into account,
which would not be possible within the framework of an explicit
scheme. On the other hand, it is worth noting that, according
to the so-called pressure-correction method, it is known that for
far subsonic, i.e., nearly incompressible, flows – which are typ-
ical in quasi-stationary accretion disks – the gas pressure must
be determined as the solution of a certain Helmholtz-type ellip-
tic differential equation (see, e.g., Harlow & Amsden 1968; Bijl
& Wesseling 1998; Keller 2003) in order to warrant numerical
stability. Again, besides fulfilling the equation of state, which is
the trivial part of the game, an implicit step for solving the asso-
ciated Dirichlet boundary-value problem is necessary. To which
extent there might (or might not) exist a logical connection be-
tween this pressure-correction method and the implicit one we
have been using in our calculations is an exciting mathematical
question.
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In physical terms, the intermediate implicit source step
which is, after all, the most costly part of the update scheme
for one timestep, causes an effective damping, or even complete
suppression, of the spurious small-scale pressure waves that are
continually generated by unavoidable discretisation errors. Since
the advection terms are negligibly small in extremely subsonic
regimes, no efficient damping mechanism is inherent to explicit
schemes. This is why purely explicit methods applied to low-
Mach flows tend to steepen these waves, particularly in stratified
media. As a most undesirable result, an artificial small-scale ve-
locity field would build up giving rise to an unstable numerical
solution which becomes wiggly or even saw-toothed already af-
ter a few timesteps and does not at all converge to the, in any
case, smooth physical solution.

During the violent dynamical switch-on phase the (nonlin-
ear) advection terms are important. This is why they deserve
a careful numerical treatment. The operator-splitting method of
Norman & Winkler (1986) we have adapted for our purposes
makes use of the spatially second-order monotonic van Leer
(1977, 1979) advection scheme which has proven to be deci-
sively superior to the old-fashioned first-order donor-cell ap-
proximation as is discussed in detail by LeVeque et al. (1998).
We can thus be sure that the advection errors remain small.
Hence, our treatment of the advection terms would neither bias
the numerical results referring to the dynamical phase nor, all
the less, the most important findings pertaining to the quiescent,
viscosity-dominated long-term evolution of the disk.

5.3.6. Chemistry and mixing

As has already been pointed out, the main goal of carrying out
calculations for the model sequences A, B1 and B2 (see Table 3)
was twofold: firstly, to test the relation between advective and
diffusive mass transport by varying the Schmidt number, S, and,
secondly, to identify and investigate those chemical reactions
which could play an important role for producing a sufficient
amount of carbon dioxide (CO2) in preplanetary nebulae. It is
worth noting again that the primordial material with which we
start out only contains molecular hydrogen (H2) as the dominant
gaseous component with an admixture of carbon monoxide (CO)
and water (H2O) frozen out on the dust grains (cf. Table 2). Any
other species participating actively in the C-, H-, O-chemistry,
among them CO2, appear later in the evolution of the disk.

Let us first discuss the “realistic” case A. In the same man-
ner as arranged in Fig. 4, the 10 individual panels of Fig. 8 dis-
play the distribution of the logarithmic abundance (per weight),
log cX , of each reactive gaseous species, X, over the (r, z)-plane.
Because of the very low abundance of C (gaseous), HO2, and
H2O2 (<∼10−15), these species are not plotted. As can be read off
from the (log-)density contours in Figs. 5 and 6 the disk proper
is confined to the region, | z |/r <∼ 0.25 . . .0.3; there is only a tiny
amount of “frozen” material kept “above” the disk’s surface for
technical reasons (“vacuum” density, ρvac, cf. Sect. 4.4), which is
physically irrelevant. In this quasi-vacuum region, only the pri-
mordial concentrations of the gaseous species, H2, H2O, and CO
are retained.

The depletion of water vapor onto dust grains at tempera-
tures below about 150 K, indicated by the steep decrease of
gaseous H2O, is visible in the right upper corner of the re-
spective panel with label “H2O” in Fig. 8. This structure ex-
hibiting enhanced opacity (cf. Fig. 9) related to ice-coated dust
grains is limited by the “snow line” (cf. Fig. 5) and is vaguely
alike a terrestrial high-altitude ice cloud. By contrast, in the hot
(T >∼ 103 K) innermost regions at radial distances smaller than

about 2 AU and a vertical extension of about one scale-height
(| z |/r <∼ 0.15) atomic hydrogen (H) and the hydroxyl radi-
cal (OH) have already become moderately abundant. A good
deal less prominent is the abundance of atomic oxygen (O).
Because of its low abundance relative to OH, it is expected that
the combustion of the microscopic soot/graphite particles will be
dominated by surface reactions with OH to form the ketenyl rad-
ical (HC2O). The ensuing gas-phase chemistry would then yield
a large diversity of hydrocarbons. All other species – O2, HO2,
H2O2; H2CO, HCO – remain so much less abundant in the disk
proper and are only important as intermediate products of the
chemical reaction network.

In Fig. 11, we summarize the results of the two comparative
model calculations labelled B1 and B2, in order to find out to
which extent diffusive transport of material is an important mix-
ing mechanism. As estimated by Eq. (48), diffusive mixing in
the vertical direction is expected to be the dominant transport
process. Already a glimpse to Fig. 11-B2 (diffusive transport
switched off; Schmidt number S = ∞) and Fig. 11-B1 (“re-
alistic” transport; S = 1) is sufficient to prove the validity of
this assertion. The advective transport in the radial direction is
nicely visible as the distortion of the contour lines above one
half-thickness of the disk, where the inflow velocities are rela-
tively high.

Comparing the Figs. 11 and 8 (cf. the respective panels
for CO2) reveals immediately a possible significance of the
water-gas shift reaction for a large-scale distribution of CO2 in
preplanetary nebulae – provided it becomes ever efficient, which
could happen only if an appropriate catalytic agent, like micro-
scopic dust grains consisting of elementary iron, were available.
If the water-gas shift reaction is turned down to realistic rates
(model sequence A) the remaining C-, H-, O-chemistry will
yield CO2 predominantly in the hot inner regions (cf. Fig. 8).

6. Final remarks and outlook

In this paper we have documented first steps toward construct-
ing fully 2-D models of preplanetary disks including chemical
reactions and diffusive mixing of the various chemical species.
The results of the numerical experiments verify the remarkable
robustness and numerical stability of the hydrodynamical code.
It is based on a combination of an explicit operator-splitting
method, that is, by taking consecutively the source step and the
transport step into account, with an implicit solver of the energy
balance equation including the gas pressure. The solution of the
chemical network is obtained at the source-step level. Thus, for
each numerical (r, z)-cell a system of stiff ordinary differential
equations for the abundance of the various chemical species (see
Eq. (23)) is solved independently. It is obvious that this particu-
lar feature of the numerical method allows for a massive paral-
lelization of the code. However, the main advantage of the nu-
merical procedure is its uniform efficiency in dealing with either
high or low Mach number flow types.

The following results are the main outcome of the numerical
experiments:

1. The formation of a stable large-scale circulation within
the disk, i.e., a slow “equatorial” flow and a faster “high-
altitude” stream in the outward and inward direction, respec-
tively, superimposing the net accretion flow (cf. Fig. 7).

2. The importance of advective transport of material in the ra-
dial direction as compared to diffusive mixing at larger radial
distances, i.e., the existence of a finite radial distance, rmix,
beyond which radial advective transport dominates diffusive
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B1 B2

Fig. 11. Distribution of the (except H2) three most abundant species CO, CO2, H2O for model category B – with B1 and B2 referring to the Schmidt
constant, S = 1 and S = ∞ (diffusive mixing switched off), respectively (cf. Table 3) – after 250 yr, illustrating that diffusion is the dominating
mixing process. Note that the total concentration (vapor + ice) of the water molecule (H2O) is shown.

mixing (see Eq. (47)), provided a stable long-lasting large-
scale circulation is maintained.

3. The general importance of diffusive mixing in the vertical
direction (see Eq. (48)).

4. The successful coupling of evaporation and condensation
processes referring to both refractory grains and their volatile
(water-)ice mantles with the opacity, at least in the simpli-
fied approximation of instantaneously established equilib-
rium according to the local vapor pressure of silicates (the
vapor pressure of iron is taken as a useful substitute) and
water, respectively.

Simulations relating to more massive preplanetary disks contain-
ing up to 0.39 M⊙, as has recently been derived from 3 mm-
observations of disks around several stellar objects belonging to
the Orion Nebula cluster (Eisner & Carpenter 2006), demand the
implementation of an appropriate Poisson solver in the 2-D code.
This will be the first task to be accomplished for improving on
the hydrodynamical component of the code.

Concerning the last item above, the extension of our sim-
plified evaporation and condensation models to more general
non-equilibrium models is almost straightforward. The only
big uncertainties refer to the lack of reliable data for the
heteromolecular gas-solid chemistry with its various reaction
paths on the surface of silicate grains. Somewhat more com-
fortable is the situation for homomolecular grain growth at low
temperatures, i.e., the formation and destruction of ice mantles

consisting of frozen water, carbon monoxide, and further volatile
species.

Another important solid-gas reaction process to be imple-
mented in the next model series is the combustion of the sub-
microscopic graphite/soot particles which form the most con-
spicuous dust component following the silicate grains. Carbon
combustion is the only way to form the hydrocarbons that are
found in cometary material. At temperatures above 800–900 K,
that is, in the innermost parts of the disk, the surface reaction
with the hydroxyl radical (OH) yields the ketenyl radical (HC2O)
which, in turn, serves as the starting compound for building up
a large number of hydrocarbons (e.g., Finocchi et al. 1997; Gail
2002). Subsequent outward transport of the material into the
outer, cold regions of the preplanetary disk make the hydrocar-
bons, together with other volatile species like H2O, CO, etc.,
condense out on the refractory grains. In summary, all these pro-
cesses give rise to the specific composition of the raw material,
out of which cometary bodies eventually form.

A further challenge is to take coagulation of the dust grains
into account. Changing the particle size distribution and forming
dust agglomerates of different composition have great influence
on the optical properties and, hence, on the opacity of the mate-
rial. Mineralogical and physicochemical processes, e.g., anneal-
ing and diffusion or chemical transition fronts in dust grains, re-
spectively, will change their absorption properties considerably,
too. Sooner or later, all these processes must be taken into con-
sideration in the calculations so as to have a chance to arrive at
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realistic models of preplanetary nebulae whose properties can be
confronted with the empirical findings.

For the time being, it is not feasible to cover the evolu-
tion of preplanetary disks in their whole spatial extension (in
between 0.01 AU and 100 AU) and time span of the order of
106 yr with the existing code. The limiting factor is the restric-
tive Courant-Friedrichs-Lewy (CFL-)condition on the timestep
for explicit numerical schemes. Fully implicit 2-D codes, which
would not be subject to the CFL-condition, are so much less
available if additional source terms like chemical reactions are
to be taken into account. Domain decomposition with addi-
tional inner boundary or fit conditions will probably improve
the situation to some extent without claiming to aim, in this
way, at a universal solution of the overall problem. Nevertheless,
elaborate methods to investigate 2-D models may serve, on the
one hand, as a useful supplement to (1+1)-D studies, and, on the
other hand, as a firm guideline for the construction of conclusive
3-D preplanetary disk models in the future.
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Różyczka, M., Bodenheimer, P., & Bell, K. R. 1994, ApJ, 423, 736
Ruden, S. P., & Lin, D. N. C. 1986, ApJ, 308, 883
Ruden, S. P., & Pollack, J. B. 1991, ApJ, 375, 740
Schmitt, W., Henning, T., & Mucha, R. 1997, A&A, 325, 569
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Sharp, C. M., & Huebner, W. M. 1990, ApJS, 72, 417
Siemiginowska, A. 1988, Acta Astron., 38, 21
Talbi, D., & Herbst, E. 2002, A&A, 386, 1139
Tsang, W., & Hampson, R. F. 1986, J. Phys. Chem. Ref. Data, 15, 1087
Turner, N. J., Willacy, K., Bryden, G., & Yorke, H. W. 2006, ApJ, 639, 1218
Urpin, V. A. 1984, Soviet Ast., 28, 50
van Leer, B. 1977, J. Comput. Phys., 23, 276
van Leer, B. 1979, J. Comput. Phys., 32, 101
Voshchinnikov, N. V., Il’in, V. B., Henning, T., & Dubkova, D. N. 2005, A&A,

429, 371
Voshchinnikov, N. V., Il’in, V. B., Henning, T., & Dubkova, D. N. 2006, A&A,

445, 167


