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Abstract: Classical artificial potential approach of motion planning is extended for emulating human driving behaviour in 
two dimensions. Different stimulus parameters including type of ego-vehicle, type of obstacles, relative velocity, relative 
acceleration, and lane offset are used. All the surrounding vehicles are considered to influence drivers’ decisions. No 
emphasis is laid on vehicle control; instead, an ego vehicle is assumed to reach the desired state. The study is on human-like 
driving behaviour modelling. 
The developed motion planning algorithm formulates repulsive and attractive potentials in a data-driven way in contrast to 
the classical arbitrary formulation. Interaction between the stimulus parameters is explicitly considered by using 
multivariate cumulative distribution functions. Comparisons of two-dimensional (lateral and longitudinal) performance 
indicators with a baseline model and generative adversarial networks indicate the effectiveness and suitability of the 
developed motion planning algorithm in mixed traffic environment. 
 
1. Introduction 

The transition from human-driven to Autonomous 
Vehicles (AVs) may take several decades [1]. In the transition 
period, these two types of vehicles constitute mixed traffic. 
Coordination and cooperation between them are essential to 
ensure safety [2, 3]. AVs should also make the occupants and 
other road users feel safe [4]. AVs are publicly acceptable 
only if its driving behaviour is comprehensible and 
comparable to human drivers [5, 6]. Hence, the AVs need to 
emulate human-like driving behaviour. 

Microscopic traffic parameters including speed, gap, 
and accelerations maintained by human drivers characterize 
their driving behaviour. A driving behaviour model is said to 
be human-like if it can replicate microscopic parameters that 
are equivalent to that of humans [7]. According to Waymo, 
human drivers drive by answering the following questions [8]:  

(i) where am I?  
(ii) what is around me?  
(iii) what will happen next? and, 
(iv) what should I do? 
AVs should, therefore, be able to answer these 

questions to navigate through the mixed traffic. Vehicle 
localization module (or a map-matching algorithm) answers 
the first question for the AVs. Sensors used for environment 
perception respond to the next two questions. A motion 
planning algorithm addresses the fourth question. Its task is 
to determine the future position(s) (and other states including 
speed, heading, and acceleration) of an AV considering the 
states of the surrounding obstacles to safely and comfortably 
navigate through dynamic traffic [9]. Motion planning 
enables AVs to navigate through dynamic traffic. This study 
develops a human-like motion planning algorithm for AVs. 

A review of recent literature presented in Table 1 
indicates the inability of classical motion planning techniques 
to emulate human-like driving behaviour. Though the 
advanced machine learning and artificial intelligence 
techniques can learn to model human-like driving behaviour, 
they have issues regarding interpretability, require a large 

data set, and are computationally expensive [10]. Extending 
a classical model to perform human-like motion planning can 
alleviate these issues [11]. Artificial potential field approach 
is enhanced in this study to develop a human-like motion 
model. 

Further, human drivers’ responses are naturally 
derived from several stimuli, which are called stimulus 
parameters. Drivers’ responses (in lateral and longitudinal 
directions) in this study are modelled as a function of seven 
stimulus parameters, as shown in Fig. 1:  

Stimuli from the surrounding 
• Proximity to obstacles • Type of obstacle 
• Relative velocity • Relative acceleration 
• Relative position  
• Type of ego vehicle 

• Lane offset 

 
 

 
Fig. 1. Stimuli-Response model used in the study 

where, Latv  and Longv  respectively are lateral and longitudinal 
speeds. 

The present study assumes that human drivers 
naturally try to minimize perceived threats. These threats are 
expressed as repulsive potentials around the obstacles. 
Reactions of drivers are generated based on these potentials. 
A reactive motion planning approach is adopted to address 
uncertain and dynamic environments [12].  

Further, this study does not focus on vehicle control; 
instead, it assumes that an AV can attain the desired states, as 
suggested by the motion planner. The whole emphasis of this 
study is on emulating human-like driving behaviour in lateral 
and longitudinal directions to support AVs in mixed traffic. 
The subject vehicle is termed as Ego Vehicle (EV), which is 

Drivers responses or reactions 
Speeds: Latv  and Longv   
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an AV. Hence the terminologies AV and EV are 
interchangeably used. 

2. Literature review 
The motion planning algorithm developed in this 

study derives its inspiration from artificial potential field 
approach and hence termed as APF-MPA (Artificial Potential 
Fields-based Motion Planning Algorithm). A brief review of 
this approach is presented. The literature review also focuses 
on the factors enticing human drivers’ reactions. Readers are 
referred to [9, 13–16] for recent literature on motion planning 
of autonomous land vehicles. 

2.1. Artificial Potential Fields 

The obstructions to an EV, be it static or dynamic, are 
termed as obstacles in this paper. Obstacles are to be avoided 
by the EV during navigation. In a nutshell, artificial potential 
field approach considers the obstacles to possess repulsive 
potentials to repel the EV. Repulsive forces are generated 
proportional to the repulsive potential field. These repulsive 
forces prevent the collision between an EV and the obstacles 
[17]. Similarly, a goal attracts the EV.  

This empirical approach to motion planning is 
prevalent because of its ease in implementation and 
computational efficiency [18]. This approach is (i) collision-
free, simple, and elegant, (ii) suitable for dynamic 
environment, and (iii) suitable for real-time applications [19]. 
It also permits to quantify the threat perceived by drivers. 
Threat from an obstacle is modelled as the repulsive potential 
around it. Artificial potential field approach allows the 
utilization of several stimulus parameters to develop a 
human-like driver model and thus is used in this study. 

Human drivers perceive threats from surrounding 
obstacles and react. The parameters influencing human 
drivers’ reactions are called stimulus parameters. They are: 
1) Proximity between the EV and the obstacle, D 

2) Angle between the EV’s heading and the line joining EV 
and the obstacle, θ . This is referred to as obstacle angle 
in the rest of the paper. 

3) Type of the EV, e 
4) Type of the obstacle, o 
5) Relative velocity between the EV and the obstacle along 

the line joining them, rv   
6) Relative acceleration between the EV and the obstacle 

along the line joining them, ra  
7) Lane offset of the EV, L, which is the distance measured 

from lane centre to the EV’s centroid 

Conventionally, the repulsive potential of an obstacle 
is modelled as the function of its proximity to the EV [17, 20]. 
Obstacles should strongly repel the EV when they are in close 
proximity to prevent a collision. A quadratic functional form 
of EV’s proximity to the obstacle satisfies this criterion and 
is very popularly used [17, 21]. However, such an arbitrary 
formulation of the repulsive potentials may not reflect the 
way humans perceive the threat from the obstacles.  

Further, studies considering vehicle type and relative 
acceleration are scarce [22]. For developing a human-like 
reactive motion planning model, it is necessary to define the 
functional form of repulsive potentials considering all the 

aforementioned stimulus parameters. A data-driven approach 
for the computation of repulsive/attractive potential and 
repulsive/attractive force is adopted in this study.  

2.2. Factors Influencing Reaction of Human 
Drivers 

Humans can perceive not only velocities but also the 
accelerations [23]. Acceleration of an EV and relative 
acceleration between the EV and the obstacles provide 
valuable information regarding the passengers’ comfort and 
threat assessment. Similarly, the type of EV and type of 
obstacle play an essential role in EV’s reaction [24, 25]. A 
review of recent literature reveals that some of the vital 
stimulus parameters such as the acceleration of the EV, 
accelerations of the obstacles, obstacle angle, and type of the 
obstacles are not comprehensively utilized in modelling the 
human driving behaviour. However, it is necessary to 
incorporate such valuable stimulus parameters to develop a 
robust human-like reactive motion model.  

Further, existing artificial potential field approaches 
for motion planning consider the factors influencing drivers’ 
behaviour to be independent. Different artificial potentials are 
defined for each factor. Superposition principle is then used 
to obtain the net potential. However, in reality, these factors 
may not be independent. For example, the separation 
maintained by a driver from an obstacle can be a function of 
relative velocity. Not just that, it can also depend upon the 
type of the ego vehicle, type of obstacle, and relative position 
of the obstacle. Interaction among these variables is difficult 
to model. So, the present study constructs multivariate 
cumulative distribution functions (CDFs) (a data-driven 
approach) and formulates the repulsive and attractive 
potential fields. 

Additionally, drivers’ reactions as per existing car-
following models depend on stimuli from the leading vehicle 
[26–28]. However, drivers’ reactions can be influenced by all 
the surrounding obstacles. Therefore, the reactions of the EV 
are assumed to be influenced by all the surrounding vehicles 
in this study. Existing lane-changing models can only 
determine the feasibility of a lane change, but do not describe 
the lane changing manoeuvre needed for lateral motion 
planning. Studies that model both lateral and longitudinal 
motion of a vehicle are scarce. 

Moreover, most of the existing driving behaviour 
models ignore the influence of the type of obstacle in 
predicting drivers’ reactions. This is primarily because of the 
near homogeneous traffic that prevails in most of the 
developed countries [29]. However, considering the type of 
vehicles in the model can result in a better human-like driver 
model. It is also a prerequisite for modelling heterogeneous 
traffic prevalent in developing economies. 

 Considering all the aforementioned drawbacks, a 
two-dimensional human-like driving behaviour model is 
developed in this study. Seven stimulus parameters are used. 
A data-driven approach is adopted for describing the artificial 
potentials, leaving no room for arbitrary assumptions. 

Table 1 furnishes the different stimulus parameters 
(columns A to H) used in recent literature. Different fields 
used in Table 1 are described below it. Table 2 compares and 
contrasts the recent literature on motion planning, and also 
highlights the novelty of the present study. 
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Table 1 Stimulus parameters in recent human-like trajectory planning studies 

Authors A B C D E F G H I J K 
[30] Sharath and Velaga 

(2020)         NGSIM Enhanced intelligent driver model SE 

[31] Amini et al. (2018)         RD Gazis-Herman-Rothery car-following 
model n/a 

[32] Greveling (2018)         NGSIM Wasserstein Generative Adversarial 
Imitation Learning SE 

[2] Li et al. (2018b)         KI+SD CNN + DMN SE 
[22] Lin et al. (2018)         NGSIM Multi-mode hybrid automaton model n/a 

[26] Wang et al. (2018)         NGSIM Gated Recurrent Unit SE 
[33] Zhang et al. (2018)         NGSIM Gaussian mixture model SE 
[34] Kuefler et al. (2017)         NGSIM Generative adversarial networks SE 

[35] Lee et al. (2017)         NGSIM Discretionary lane change model SE 
[36] Zhou et al. (2017)         NGSIM Recurrent Neural Network SE 
[24] Ravishankar and 

Mathew (2011)         
NGSIM + 

RD Modified Gipp’s model SE 

Present study         NGSIM Artificial potential method SE 
 

Name Description 
A Velocity of EV 
B Velocity of obstacles 
C Acceleration of EV 
D Acceleration of obstacles 
E Headway 
F Type of EV and obstacles 
G Lane offset 

Name Description 
H Obstacle angle 
I Data Used 
J Methodology 
K Testing environment 
CNN Convolutional Neural Network 
DMN Decision Making Network 
KI KITTI vision dataset 

Name Description 
n/a Not applicable 
NGSIM Next Generation SIMulation 
RD Additional Real-world Data 
SD Simulator Data 
SE Simulation Environment 
 

 

Table 2 Comparison of recent literature on motion planning 

Type Stimulus 
parameters 

Lane 
keeping 

Smooth 
Trajectory Human-like Suitability Example studies 

RRT N N N N S [37–39] 
PRM N N N N S [40, 41] 

Graph search P* N N N S [42, 43] 
Visibility graph N N N N D [44] 
Invariant Sets P* N -- N S [45–47] 

MPC P* Y Y N D [48, 49] 
APF+ RN P* N N N D [50] 

Deep learning P** N Y N D [51, 52] 
GAN P*** Y Y Y D [32, 34] 
SVM P* N Y N D [53] 
GMM P* Y Y N D [54] 
IRL P** Y Y Y D [55, 56] 

End-to-end learning -- Y Y Y D [57] 
Present study Y Y Y Y D  

 

* Only relative velocity and proximity are considered 

** Relative speed, relative acceleration and proximity are 
considered 

*** Speed of subject vehicle, proximity, obstacle angle, lane 
offset and type of obstacle are considered 

APF Artificial Potential Field 
D Dynamic Environment 
GAN Generative Adversarial Network 
GMM Gaussian Mixture Model 
IRL Inverse Reinforcement Learning 

MPC Model Predictive Control 
N Not considered 
P Partially considered 
PRM Probabilistic Road Map 
RN Resistance Network 
RRT Rapidly exploring Random Trees 
S Static environment 
SVM Support Vector Machine 
Y Yes 

 
3. Proposed method 

3.1. Significance of CDF 

The probability that a random variable X taking a 
value less than or equal to x is defined by CDF(X ≤ x), where 

x is the realized value. In the context of motion planning, to 
highlight the significance of the CDF, a simple example is 
presented considering the proximity between an EV and 
obstacles as the random variable (proximity is the random 
variable X in this example). Empirical CDF(X) can be 
obtained by computing the proportion of observations that are 
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less than x. Similarly, empirical multivariate CDF(X1, X2,..Xn) 
can be obtained by computing the proportions of observations 
such that 1 1 ,X x≤ 2 2X x≤ … n nX x≤ . 

If the CDF of X is constructed (based on the realized 
values of proximities), the magnitude of the CDF at small 
values of x would be small. This indicates a few instances of 
proximities going below x. Whenever the proximity reduces, 
the driver of the EV reacts in a way to increase it to a preferred 
level. Small magnitudes of the CDF(X) (at a small value of x) 
can be the result of drivers’ unwillingness to maintain small 
proximities (or short headways) with the obstacles. The same 
can be hypothesized as the willingness of drivers to react to 
increase the proximity. Therefore, 1-CDF(X) can be 
considered as the potency of drivers to react. It may also be 
interpreted as the potential of obstacles to repel the EV, which 
consequently elicits reactions from the drivers. 

In the present empirical study, 1-CDF(X) is considered 
as the potential of obstacles to repel the EV. The human-
driven trajectory data available in the NGSIM dataset is used 
to describe the repulsive potentials mentioned in Eq. (5) and 
(7) by finding empirical multivariate cumulative 
distributions. A similar concept of employing CDF for data-
driven modelling is performed in [58]. 

3.2. Definitions and Overview 

Potential of obstacles to repel the EV is supposed to 
depend on stimulus parameters. Accordingly, three different 
repulsive forces proportional to the repulsive potentials are 
assumed to arise as follows: 

1RF : Repulsive force resulting from the proximity between 
an EV and an obstacle. The lower the proximity, the higher 
the 1RF . 

2RF : Repulsive force arising from the relative velocity 
between an EV and an obstacle. The smaller the relative 
velocity, the greater the 2RF . 

3RF : Repulsive force as a result of the relative acceleration 
between an EV and the obstacle. The lesser the relative 
acceleration, the higher the 3RF . A negative value of relative 
velocity or relative acceleration suggests that the EV and the 
obstacle are moving towards each other. 

Fig. 2 depicts the three components of the repulsive 
forces ( 1RF , 2RF  and 3RF ) exerted on an EV by surrounding 
obstacles (A, B and C). The centroids of the obstacles (EV is 
assumed to avail this information as a part of perception of 
environment) are taken as sources of artificial potentials and 
consequently generated repulsive forces. These repulsions 
prevent the collisions.  

All the obstacles (e.g., vehicles) surrounding the EV 
are considered to influence its motion. Apart from the 
repulsive forces, the EV also experiences an attractive force 
proportional to its offset from the lane centre (which is not 
shown in Fig. 2). This attractive force enables the EV to track 
a lane and prevents it from going off the road. Larger the lane 
offset of the EV, larger is the attractive force (by definition, 
the magnitude of lane offset cannot exceed half the lane 
width).  is the obstacle angle for obstacle A, where 

0 00 180 .θ≤ ≤  The magnitude of θ is around zero for 
obstacles ahead of the EV. Such obstacles invoke larger 

responses from drivers than obstacles behind the EV with 
larger θ.  

The flowchart presented in Fig. 3 provides an 
overview of APF-MPA. At any given instant, seven stimulus 
parameters are used to compute the variables using Eq. (1) to 
(4) to perceive the environment. The information generated 
during the calibration phase is then utilized to estimate the 
total repulsive and attractive forces acting on the EV using Eq. 
(9) to (11). The repulsive and attractive forces are eventually 
translated into the required displacement of the vehicle in Eq. 
(14) and (15). This information is then passed on to the 
vehicle control module for necessary actions. These steps are 
repeatedly performed at every time epoch. 

 
Fig. 2. Repulsive forces of different obstacles 

 
Fig. 3. Flowchart of the proposed trajectory planning 
algorithm 

3.3. Environment Understanding 

Seven stimulus parameters (see Section 2.1) are 
considered to influence the reactions of human drivers. 
Hence, they are used to formulate four reaction inducing 
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variables. For a given EV-Obstacle pair (e.g., car-truck), and 
at any given time instant, reaction inducing variables are 
defined as follows: 

{ }1 , , rX D vθ=  (1) 

2 r EVX v v= ×  (2) 

3 r EVX a a= ×  (3) 

4 EVX L=  (4) 
where,  

is proximity between an EV and an obstacle (m); 
 is obstacle angle (degrees); 
 is relative velocity between the EV and the obstacle 

along the line joining them (ms-1); 
ra  is the relative acceleration between the EV and the 

obstacle along the line joining them (ms-2); 
EVv  is magnitude of velocity of the EV (ms-1); 

EVa is magnitude of acceleration of the EV (ms-2); 

EVL is lane offset of the EV (m); 

3.4. Description of Reaction Inducing Variables 

1X : Proximity between an EV and an obstacle is 
popularly considered to describe the repulsive potential in the 
literature [22, 26]. However, the interactions among the 
stimulus variables are ignored. In this study, 1X  is a variable 
that explicitly considers the interactions between the five 
variables: proximity, obstacle angle, relative speed, type of 
ego vehicle, and type of obstacle.  

2 3 and X X : Formulations of the repulsive potentials 
based on relative velocity and relative acceleration are done 
in the past [26, 31]. However, these formulations have a 
disadvantage; a large magnitude of negative relative velocity 
or negative relative acceleration may be possible due to the 
motion of the obstacles despite the EV being at rest, 
warranting reactions from EV, which is preposterous. 
Whereas, a large magnitude of negative relative velocity or 
acceleration when the EV is moving at high velocity or 
acceleration should demand a response from the EV. This 
issue can be adequately addressed by considering the 
instantaneous velocity and instantaneous acceleration of the 
EV as shown in Eq. (2) and (3). The approach renders the 
repulsive potentials arising due to relative velocity and 
relative acceleration adaptive. X2 explicitly considers the 
interaction between relative velocity, type of obstacle and 
type of EV while X3 between relative acceleration, type of 
obstacle and type of EV. 

4X : Lane offset of an EV indicates its lateral position. 
An attractive force is generated proportional to the lane offset 
to motivate the EV to travel along the centreline of a lane. 
Attractive potential thus arising is described considering the 
interaction between lane offset, type of EV, and type of 
obstacle. 

3.5. Generation of Attractive and Repulsive 
Forces 

Traditionally, the negative gradient of an arbitrarily 
defined potential field is considered as the force. A data-
driven approach is adopted in this study to describe artificial 

potentials. The three repulsive potentials and corresponding 
repulsive forces are described as shown in Eq. (5) and (6). 
The attractive potential and the corresponding attractive force 
are provided as in Eq. (7) and (8). 

1 ( )  = 1 to 3j jRP CDF X j= − ∀  (5)  

 = 1 to 3j j jRF K RP j= × ∀  (6) 

4( )AP CDF X=  (7) 

4AF K AP= ×  (8) 
where, jRP  is the jth constituent of the repulsive potential; 

( )jCDF X is the value of cumulative distribution function of 
the variable jX ; jRF  is the jth constituent of repulsive force. 
All these force constituents are oriented along the line joining 
an obstacle and an EV; AP is the attractive potential 
developed due to the lateral offset of an EV; AF is the 
attractive force with which the lane centre attracts an EV;  and

jK  is the jth conversion factor that converts the 
repulsive/attractive potential to repulsive/attractive force. 

Total repulsive force from an obstacle to EV is 
obtained as: 

3

1
 obstaclesj

j
TRF RF

=

= ∀∑  (9) 

Lateral and longitudinal components of this total 
repulsive force is obtained as: 

cos( )  obstaclesLatTRF TRFθ= × ∀  (10) 
sin( )  obstaclesLongTRF TRFθ= × ∀  (11) 

Attractive force due to lane offset has only a lateral 
component. The net force on the EV due to repulsive and 
attractive forces from all the surrounding obstacles is 
resolved into lateral and longitudinal components as: 

 obstacles
Lat LatNF TRF AF

∀

 = + 
 
∑  (12) 

 obstacles
Long LongNF TRF

∀

= ∑ + N(0, 0.02) (13) 
A small Gaussian perturbation like in [57] is added in 

Eq. (13) to avoid getting stuck in local minima. The net force 
incites reactions in the EV. In the present study, the reactions 
are expressed in terms of velocity of the EV as done in [59]. 
Therefore, LatNF  and LongNF  are used as terms to correct the 
desired speeds respectively in lateral and longitudinal 
directions. The position update equations are: 

( )ˆ ˆt t t t
Lat Lat Lat LatP P DesiredSpeed NF t+∆ = + + ×∆  (14) 

( )ˆ ˆt t t t
Long Long Long LongP P DesiredSpeed NF t+∆ = + + ×∆  (15) 

where, ˆ t
LatP  and ˆ t

LongP  are the estimated lateral and 
longitudinal components of the position of an EV at time t. 
ˆ t t
LatP +∆  and ˆ t t

LongP +∆  are the estimated lateral and longitudinal 
components of the position to be occupied by the EV in the 
subsequent time epoch. t∆  is the time step, considered to be 
0.1s. 

Desired speed in lateral direction is taken as 0, while 
that in longitudinal direction is a parameter to be calibrated. 
Eq. (14) and (15) provide the future position of the EV by 
applying a correction to the desired lateral and longitudinal 

D
θ

rv
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positions. The equations are dimensionally homogeneous as 
jK have dimensions of speed. 

4. Performance evaluation 

4.1. Data Used 

Next Generation SIMulation (NGSIM) data of the US-
101 highway collected from 7:50 AM to 8:35 AM, on 15 June 
2005 is used in the study [60]. The data has trajectories of 
6,101 human-driven vehicles, each of which is approximately 
630m long (about 60 seconds, sampled at 10Hz). The freeway 
has five lanes and an auxiliary lane connecting a ramp. Any 
vehicle that enters the ramp is ignored, leaving us with 
trajectories of 5,470 vehicles as provided in Table 3.  

Table 3 Classification of NGSIM dataset used 
SL No. Class Calibration Validation 

1 Bike 26 12 
2 Car 3714 1591 
3 Truck 89 38 

Ignoring the vehicles does not mean the corresponding 
trajectories are deleted from the database, but the responses 
of the ignored vehicles are not modelled. However, the 
stimuli caused by such vehicles on the remaining trajectories 
are considered. Trajectory data is smoothed to reduce noise 
according to [61]. A more sophisticated trajectory 
reconstruction technique developed by [62, 63] may also be 
used to reduce errors in the trajectories. The NGSIM dataset 
has three categories of vehicles: bike, car, and truck. Table 3 
provides the number of trajectories available in each category. 
70% of the trajectories are randomly used for calibration and 
the remaining 30% for validation. The dataset encompasses 

trajectories exhibiting lane-changing and vehicle following 
behaviours. 

4.2. Calibration 

Reaction inducing variables are assumed to govern the 
reactions of drivers. Their distribution, extracted from the 
actual human-driven trajectory data, can prove essential in the 
development of a human-like driver model. Reaction 
inducing variables are computed for every epoch and for all 
the trajectories using Eq. (1) to (4). As their distributions do 
not follow any standard distribution, empirical multivariate 
CDFs are constructed from human-driven trajectory data.  

Fig. 4 depicts the repulsive potential due to relative 
velocity and relative acceleration, whereas Fig. 5 exhibits 
attractive potential due to lane offset. Fig. 6 portrays the 
repulsive potential due to X1 for a particular case of Car-Car 
(EV-Obstacle) interaction. The darker the colour, the higher 
is the repulsive potential. 

A sharp gradient can be noticed in Fig. 6 whenever 
0rv < . This suggests that the drivers efficiently perceive the 

relative velocity and react as the vr tends negative. Further, 
referring to Fig. 6, the repulsive potential is high for smaller 
proximities. Obstacles in front of EV (the obstacle angle θ 
would be around 00) incite greater responses than obstacles 
that are behind (with larger θ values). This can be observed 
in Fig. 6, where the white region (with lesser repulsive 
potential) increases with an increase in θ. 

The differences between these distributions can be 
observed in Fig. 4, Fig. 5, and Fig. 6. This serves as clear 
evidence that highlights the importance of considering 
multiple stimulus parameters in motion planning. This 
finding also aligns with [24, 29, 31, 64]. 

 

 
Fig. 4. Repulsive potential due to X2 and X3 for different EV-Obstacle pairs 
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Fig. 5. Attractive potential due to X4 

The magnitude of jK which converts attractive/ 
repulsive potential to the attractive/repulsive force has an 
effect on reactions of the EV as described by Eq. (6) and (8). 
Identifying the optimal combination of for different EV-
Obstacle combinations is key to the performance of the 
human-like driver model. For this reason, radial error, a 
performance measure is defined as shown in Eq. (16), similar 
to the definition in [26]. Since the radial error is a function of 
simulation horizon, the trajectory length is restricted to 10s as 
done in [34]. Radial error is given by: 

( ) ( )
100 2 2

, , , ,
1 1

1 1 ˆ ˆ
100

T
t t t t

Lat i Lat i Long i Long i
i t

RE P P P P
T = =

= − + −     
∑ ∑  (16) 

where, T is total number of trajectories; ,
t

Lat iP  and ,
t

Long iP  are 
the observed lateral and longitudinal positions of the EV at 
time t. 

1K , 2K  and 3K are considered in the range between 5 
and 10m/s with a step-size of 1m/s. 4K  is considered 
between 0 and 1m/s with a step-size of 0.2m/s. 
DesiredSpeedLong is taken in the range from 12 to 18m/s with 
a step-size of 1m/s. For all possible combinations of these 
parameters (systematic brute-force approach), the resulting 
radial errors using calibration trajectories are logged. The 
combination leading to the least magnitude of radial error is 
considered as the optimal combination. Mean and standard 
deviation of parameters calibrated at driver level are provided 
in Table 4. 

Table 4 Calibration result 

EV Type Bike Car Truck 
K1 (m/s) 6.62 (1.46) 7.42 (3.34) 7.86 (3.40) 
K2 (m/s) 7.60 (2.46) 6.02 (2.28) 6.34 (2.27) 
K3 (m/s) 6.35 (2.30) 8.47 (3.73) 6.60 (3.42) 
K4 (m/s) 0.25 (0.10) 0.72 (0.33) 0.62 (0.37) 
DesiredSpeedLong 
(m/s) 14.5 (3.02) 13.1 (1.21) 12.4 (0.52) 

Radial error (m) 5.53 (4.10) 3.83 (2.98) 4.03 (4.29) 

4.3. Baseline Model 

The popular intelligent driver model (IDM) is 
integrated with MOBIL lane-change model and is used as a 
baseline model to compare the performance [65, 66]. The 

parameters of IDM+MOBIL model are borrowed from [34], 
which also used the NGSIM dataset. Kuefler et al. have 
developed several generative adversarial networks for two-
dimensional human driver modelling [34]. This study also 
compares those machine learning approaches with the APF-
MPA. 

4.4. Validation 

The calibrated parameters are considered to be 
normally distributed with mean and standard deviation, as 
shown in Table 4. For each validation trajectory, the 
parameters are randomly chosen from Table 4. Instead of 
creating a hypothetical scenario for the simulation, the rich 
human-driving data available in the NGSIM dataset is used. 
A vehicle is randomly chosen and considered as an EV. The 
movements of all other vehicles are considered to happen 
according to the NGSIM dataset. The initial state of the EV 
is obtained from the NGSIM dataset. The variables that 
govern reactions of EV are determined using Eq. (1) to (4).  

Reactions of the EV are then computed dynamically 
for subsequent epochs as per the Eq. (5) to (13). The motion 
of the EV during the subsequent time epochs is then modelled 
by Eq. (14) and (15). The process is repeated for all the 
validation vehicles, one at a time. 

For a simulated variable v, the root weighted squared 
error is computed for all validation trajectories and for all 
time epochs as: 

( )2, ,

1

1 m
i t i t
sim obs

i
RWSE v v

m =

= −∑  (17) 

where m is the number of validation trajectories, v can be 
position or speed or lane offset. Subscripts sim and obs 
respectively indicate the simulated and observed values.  

Fig. 7 provides the evolution of root weighted squared 
error for different variables. APF-MPA consistently 
outperforms the baseline IDM+MOBIL model. Compared to 
results reported in Keulfer et al. [34], root weighted squared 
error of different variables after 10s is better (or at par with) 
than several generative adversarial networks. The advantage 
of using attractive force to motivate the EV to keep lane is 
evident where the lane offset is about 0.5m.  

Further, Fig. 8 to Fig. 11 exhibit the two-dimensional 
performance of APF-MPA. Fig. 8 and Fig. 9 respectively 
portray the distributions of acceleration and speed in 
longitudinal direction. A larger number of 0 accelerations is 
generated, thereby reducing the oscillations shown by human 
drivers about 0 accelerations. The longitudinal speed 
distribution appears to be similar to that of the observed 
distribution.  

Fig. 10 and Fig. 11 respectively furnish the 
distribution of acceleration and speed in lateral direction. 
APF-MPA models larger magnitude of negative or positive 
accelerations similar to that of the observed accelerations. 
The distribution of lateral speed is also similar to the observed 
distribution.  

The attractive force prevents the EV from going off 
the road while the repulsive forces from the surrounding 
vehicles prevent the collision. The occasional collisions 
experienced by the EV could be due to the hard-coded motion 
of the surrounding vehicles without regarding the presence of 
the EV. If the surrounding vehicles are imparted the 
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capability to react to the presence of EV, we believe that all 
the collisions can be avoided. 
 

 
 

Fig. 6. Repulsive potential due to X1 for Car-Car (EV-Obstacle) interaction. Darker the colour, greater is the reactive 
potential 
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The lateral and longitudinal performance measures 
presented in Fig. 7 to Fig. 11 indicate that APF-MPA can 
simultaneously model human-like vehicle-following and 
lane-changing behaviour. It can perform at par or better than 
generative adversarial networks presented in [34]. 

 
Fig. 7. Evolution of RWSE over a horizon of 10s 

 
Fig. 8. Distribution of Longitudinal acceleration 

 
Fig. 9. Distribution of longitudinal speed 

 
Fig. 10. Distribution of lateral acceleration 

 
Fig. 11. Distribution of lateral speed 

The distributions provided in Fig. 7 to Fig. 11 are 
compared with the observed distributions using Kullback-
Leibler (K-L) divergence test and the divergence values are 
reported in Table 5. Smaller the divergence value, the higher 
is the conformity between the two distributions being 
compared. 

Table 5 K-L divergence values 

Performance measure APF-MPA IDM+MOBIL 

Longitudinal acceleration 0.020 0.090 
Lateral acceleration 0.127 0.070 
Longitudinal speed 0.010 0.020 
Lateral speed 0.220 0.137 

Calibration and validation are performed for different 
types of vehicles. However, the measures provided in Fig. 7 
to Fig. 11 and Table 5 indicate the combined performance of 
cars, bikes, and trucks. Validation results for bikes and trucks 
are not separately furnished due to the limited number of 
trajectories. Furthermore, the algorithm can process data at 
over 300Hz on Intel i7 3.4GHz processor with 8GB RAM, 
rendering it suitable for real-time applications. 

The NGSIM dataset has known inaccuracies. 
Therefore, it is advisable to calibrate and validate APF-MPA 
with recently collected precise trajectory datasets like highD 
[67]. The methodology provided in this paper may be 
employed to model driving behaviour in different operating 
domains (such as intersections and curves). 
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5. Conclusions 
The classical artificial approach of motion planning is 

extended to obtain human-like driving behaviour of 
autonomous vehicles in a mixed environment. Several 
stimulus information including the type of an ego vehicle, 
type of obstacles, proximity, obstacle angle, lane offset,  
velocities, and accelerations of the ego vehicle as well as 
those of obstacles are considered to emulate the human 
drivers’ behaviour. 

Multivariate cumulative distribution functions of the 
reaction inducing variables are computed to define attractive 
and repulsive potentials. The explicit consideration of 
multivariate interactions and the influence of all the 
surrounding vehicles on drivers’ reactions resulted in the 
development of a human-like driver model, which can 
address both car following and lane changing behaviour. The 
novelty and contributions of this study are presented below: 

1. Extension of classical potential field method: This 
study enhances the artificial potential field method to 
develop a human-like motion model to overcome the 
drawbacks of machine learning approaches. 
2. Data-driven approach: Existing artificial potential 
field approaches describe the shape of the potential 
function arbitrarily [68, 69]. However, a data-driven 
approach is incorporated in this study to describe the 
potential fields. This approach can address complex 
driving behaviours, which cannot be modelled by 
arbitrary formulations. 
3. Stimulus parameters and their interactions: 
Several stimulus parameters were used to develop a 
human-like motion model. Multiple stimulus parameters 
were simultaneously used in describing artificial potential 
fields. Instead of resorting to the conventional 
superposition approach, multivariate cumulative 
distribution functions are applied in this study.  
4. Application of multivariate CDF: Artificial 
potential fields are described in a data-driven way by 
using multivariate CDFs. This approach also permitted 
the incorporation of interactions which may exist between 
stimulus parameters. 
5. Two-dimensional motion model: Existing studies 
primarily concentrate either on vehicle-following or lane-
changing behaviour (e.g., [70]). Any non-trivial vehicle 
motion will have both lateral and longitudinal 
components and are inseparable. The interaction between 
the lateral and longitudinal motions is ignored if they are 
studied separately [51]. Therefore, this study develops a 
two dimensional (lateral and longitudinal), human-like 
motion model. 

Like humans, APF-MPA considers several stimulus 
parameters for human-like motion planning. However, 
obtaining some of these stimulus parameters like type or 
acceleration of an obstacle, in real-time, may not be easy. The 
hardware requirements for such a task can be economically 
prohibitive. This issue may be alleviated with V2V 
communication. Computer vision techniques may also be 
used for this purpose [71]. 

The difference in obstacles has been accounted while 
generating human-like responses in this study. There is a 
scope to support the society of automotive engineers level 2 
or 3 [72] autonomous vehicles in a heterogeneous and mixed 
traffic environment. The research on AVs in developing 

countries may consequentially be accelerated. Further, APF-
MPA may be used in a microscopic traffic simulation model. 
It may be possible to account stimuli from multiple vehicles 
and comprehensively model complex interactions between 
different types of vehicles in the simulation. Consequently, 
the safety and traffic performance parameters of mixed traffic 
may be adequately studied. The human-like driving 
behaviour of APF-MPA promotes social acceptance and may 
subsequently accelerate the adoption of autonomous vehicles. 

Lastly, it would be interesting to study the changes in 
the traffic parameters due to the increase in the proportion of 
autonomous vehicles. Incorporation of the stimulus 
information in the machine learning models has a great 
potential to analyze the human-driving behaviour aptly. 
Using microscopic simulations, this study may be extended 
to understand safety and performance implications of 
autonomous vehicles in the mixed traffic environment. 
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