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Abstract 

Finite state automata recognize regular languages which can be used in text processing, compilers, and hardware design. Two 
head finite automata accept linear context free languages. In addition, pushdown automata are able to recognize context free 
languages which can be used in programming languages and artificial intelligence. The finite automaton has deterministic and 
non-deterministic version likewise the two head finite automata and the pushdown automata. The deterministic version of these 
machines is such that there is no choice of move in any situation while the non-deterministic version has a choice of move.  In 
this research the 2-head pushdown automata are described which is more powerful than the pushdown automata and it is able to 
recognize some non-context free languages as well. During this work, the main task is to characterize these machines. 
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1. Introduction 

Automata theory is the study of abstract computing devices or “machines” before there were computers 
(Hopcroft, Motswani and Ullman, 2001). In the field of automata theory; there are various kinds of automata 
recognizing various classes of languages (Hopcroft, Motswani and Ullman, 2001). The 2-head automata are 
equivalent to the Watson-Crick Automata (WKA) which was originally introduced as model of automata working 
on Deoxyribose Nucleic Acid (DNA) strands as input. The DNA molecule encodes the genetic instructions used in 
the growth and behavior of all living organisms  (Paun, Rozenberg and Salomaa, 1998).  
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DNA has double stranded helical structure one strand has 5' to 3' structure, and another is reverse ordered. The 

DNA’s two strands run in opposite directions to each other and they are anti-parallel. If we untwist the DNA, it will 
result in a double helix structure and from the study of molecular biology the DNA looks like two parallel strands in 
which  each of the strands has a linear sequence of Adenine, Cytosine, Guanine and Thymine (A, C, G, T) 
respectively.  

 
The exact arrangement of the letters contain the instructions that are coded such that one strand is an image that 

complements the other i.e. A always pairs with T, and C always pairs with G. So if you know the sequence of one 
strand, you can work out the sequence of the other. Watson and Crick discovered the double helix structure of DNA 
and the fact that the two chains run in opposite directions (Watson and Crick, 1953) WKA depicts an instance of 
mathematical model extracting biological properties for the purposes of computation computers (Czeizler and 
Czeizler, 2006). The WKA are finite automata, their two reading heads work on double stranded sequences. The two 
strands of the input are separately scanned by the read only heads and these read only heads are controlled by a 
common state. All regular languages can be accepted by the WKA (Freund, Paun and Rozenberg, 1997). If the two 
heads step together reading the same input letter at each transition then we simulate the work of a traditional finite 
state automata. But the accepting power of WKA is larger than one head finite automata.  The pushdown automata 
accept exactly the context free languages (Horvath and Nagy, 2014 and Hopcroft, Motswani and Ullman, 2001). Our 
new model, the 2-Head Pushdown Automata 2HPDA accept some non-context free languages; we as well also 
consider the subclass of the 2HPDA that is deterministic. 

2. Preliminaries 

2.1 5' 3' WKA 

A 5' 3'WKA, these are finite state automata working on double-stranded tapes, initiated to investigate the 
ability of DNA molecules for computing (Nagy, 2008) It has two heads in which the two heads are moving in 
opposite directions starting from the two extremes of the input. In the 5' 3'WKA, the 2 heads move in anti-parallel 
(opposite direction) and this is the difference between the traditional WKA (Freund, Paun and Rozenberg, 1997 and 
Paun, Rozenberg and Salomaa, 1998). the 5' 3' WKA (Nagy, 2008), moreover in the 5' 3' WKA the two heads 
terminate when they meet, and do not move on to the corresponding ends of the word. 

Formally, a 5'  3' WKA is a 7 tuple (Q, V, so, F, , $, ¥) as shown below: 
Q      =       the finite Set of States 
V          =        the input (tape) Alphabets 
$, ¥     =      end-markers of the Input Strings such that ($, ¥  V) 
so  Q     =     is the Initial state 
F  Q     =     the set of final (accepting) state 

            =     is the state transition, a mapping ((Q × V* × V*) 2Q)  ((Q × ($,  ¥)) 2Q)     

2.2 Accepted Language of a 5' 3' WKA 

The 5' 3' WKA accepts linear languages. Though linear languages are context free but not all context free 
languages are linear but every regular language is linear so a 5' 3' WKA accepts all regular languages. 

2.3 Pushdown Stack  

The stack is a LIFO (last in first out) memory which has two operations, push and pop when we use the pop 
operation, we read the top letter of the stack and at the same time we delete it and when we use the push operation 
we add some symbols to the top of the stack. The presence of a stack means that an automaton using a pushdown 
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stack can remember an infinite amount of information.

2.4 Pushdown Automaton

The Pushdown Automaton (PDA) is in essence a nondeterministic finite automaton with empty word transitions
((( -transition) permitted and one additional capability: a stack and on the stack it can store a string of “stack 
symbols” and the PDA accepts exactly the context free language computers (Hopcroft, Motswani and Ullman, 2001)

P = (P Q, T, Z, , q ,o, z ,o, F)FF
The meanings of the components are as shown below:
Q     =    finite set of states
T     =    finite set of input symbolst
Z =     finite stack alphabetk

=     the transition function,  controls the behaviour of the automaton, formally     takes as argument a
triple  (q, a , X ) where:X

q Q         =     q is a state in Q
a   is either an input symbol in T or a = the empty string which is assumed not to be an input symbol.
XX  is the stack symbol i.e. a member of ZZ
qo        n=     the initial state the PDA is in this state before making any transition
ZZo         ZZ =     the stack symbol, initially the PDA’S stack consist of one instance of this  symbol and nothing else
FF =     the set of accepting state or final state.

g g f2.5 Accepted Language of a PDA

The Pushdown Automata (PDA) accepts a class of language called the context free languages and a language L
= {anbn n 0} can be accepted by a PDA P t  such thatP

LL (P) = {anbn n 0}

3. Results

3.1 Informal Description of a 2HPDA

A 2HPDA is a theoretical device that has 2 reading heads that reads the input string (built by symbols) on a tape. g
The reading heads are anti-parallel to each other i.e. they move in opposite (anti parallel) directions. The 2HPDA
has a “finite-state control” and a “pushdown stack”. We can view the 2HPDA informallyaa as the device suggested in
figure2 below. A “finite-state control” reads two input symbols at the same time, the 2HPDA is allowed to observe
the symbol at the top of the stack or alternatively, it may make a spontaneous transition using “ ” as its input instead 
of an input symbol. It observes the symbol on top of the stack according to transition rules in the “finite-state
control”.

 

Fig.1. The Schematic Diagram of a 2HPDA 
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3.2 The Formal Definition of a 2HPDA  

The formal notation for a two head pushdown automaton (2HPDA) involves seven components. The 
specification of a 2HPDA H is as follows:  
M = <Q, T, Z, , Zo, qo, F> 
Q = finite set of states 
T = input symbols e.g. {a, b, c} 
Z = finite stack alphabet (it’s the set of symbols we are allowed to push onto the stack) 
  = it is the mapping from Q × (T  { })2  × Z  2Q × Z* 

qo  Q = it is the initial state 
zo   Z = initial stack symbol (initially the pushdown stack consisting of one instance of this symbol and nothing 
else) 
F = accepting states 

3.3 A Graphical Notation for 2HPDA 

The behaviour of a given 2HPDA can easily be understood through a transition diagram. A transition diagram of 
a 2HPDA is explained below: 

a) The nodes corresponds to the states of the 2HPDA 
b) The arrow that is labelled Start indicates the initial state, and double circled   states are the accepting states. 
c) The arcs represent the transitions of the 2HPDA in the following way:  an arc labelled   , , X /  from state 

q to state p means that  (q, ( , ), X) contains the pair (p, ) meaning that the arc label shows the inputs 
that are used and also shows the old and new tops of the stack. 

3.4 Instantaneous Description of 2-Head Pushdown Automata 

Intuitively the 2-head pushdown automata (machine) go from configuration to configuration in response to input 
symbols or sometimes no input symbol. The 2HPDA configuration includes the state and the content of the stack 
together with the input symbols and it has an instantaneous description. The standard step is when the 2HPDA reads 
its current state, current input letters, the top stack symbol then it finds an appropriate transition rule and changes its 
state. It moves to the next input letters and changes the top symbol of the stack to the appropriate word formally we 
say the 2HPDA can change its configuration from 
(q1, aub,  )  (q2, u,  )  
Here,   q1. q2  Q,   u  T*,   a, b  (T { }),      Z*   ,   Z 
q1 =  previous state 
q2   = new State  
(a, b) = a pair of input symbols (any or both of them could also be the empty word) 

 = new word on top of the stack 
 = previous symbol on top of the stack 

This move shows that by consuming (a, b) which may be ( , b) (a, ) ( , ) from the input and replacing  on top of 
the stack by  we consequently can go from the current state q1 to state q2. 

3.5 Acceptance of an Input String 

The word w is accepted if (qo, w, zo) * (p, , ), where   (qo, w, zo) is the so-called initial configuration, i.e.          

 qo  = initial state 
 w  = the whole input string 
zo  = initial stack symbol 
p  F      = accepting state 

  Z*    = string of stack symbols 
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3.6 Various Acceptance Conditions 

We have therefore guessed that a 2HPDA accepts its inputs when its input is consumed thereafter, entering an 
accepting state. We hence call this process “acceptance by final state” there is a second process to defining the 
language of a 2HPDA which means that we may also define for any 2HPDA the language 2HPDA the language 
“accepted by empty stack”  i.e. the set strings that cause the 2HPDA to empty its stack, starting from the initial ID. 

3.7 Accepted Language by Final State 

Let M = <Q, T, Z, , Zo, qo, F> be a 2HPDA, Then L(M) is the language that is  accepted by M by final state is: 
                                       {w | (qo, w, zo) * (p, , )}   
For some state p  F and any stack string . That is starting in the initial ID with w waiting on the input; M 
consumes w from the input and enters an accepting state. The content of the stack at that time is irrelevant. 
For the language L = {an bn cn : n  0} 
The 2HPDA = ( {qo,  q1,  q2},{ a, b, c},{a, Zo}, qo, Zo, ,{q2} )  has the following transition function: 
 (qo, (a, c), Zo ) = {(qo, aZo)} 
 (qo,  (a, c), a )  = {(qo, aa)} 
 (qo,   (b, ), a ) = {(q1, )} 
 (q1,   (b, ), a )  = {(q1, )} 
 (q1,   ( , ), Zo) = {(q2, Zo)} 

 
 
 
      

                                                           
 
 
 
 
 
 
 
 
 
 

Fig.2. 2HPDA that accepting by final state 

 

For the language L = {an bn cn  dn | n  0} Suppose a 2HPDA = ({qo,  q1,  q2}, {a, b, c, d}, {a, b, Zo}, qo, Zo, ,{q2}) 

Has the following transition function: 
 (qo, (a,  d), Zo) = {(qo,  aZo)} 
 (qo, ( a,  d), a) = {(qo,  aa)} 
 (qo, ( b,  c), a) = {(q1,  )} 
 (q1, ( b,  c), a) = {(q1,  )} 
 ( q1, ( ,  ), Zo) = {(q2,  Zo)} 
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Fig.3. 2HPDA accepting by final state 

3.8 Accepted Language by Empty Stack 

Here the automaton does not have any final state and the word is accepted if it can read the whole word and the 
stack is empty when the end of the input word is reached. 

For each 2HPDA M = <Q, T, Z, , Zo, qo, F> we also define  
                                     N (M) = ({w | (qo, w, Zo) * (p, , )} 
Now, because the set of accepting state is inapplicable, we shall sometimes discontinue the use of the last (seventh) 
component from the specification of a 2HPDA M, provided all we care about is the language that M accepts by 
empting its stack. Thus we could write M as a six-tuple.         2HPDA e   = (Q, T, Z, , Zo, qo)        
For any state q, i.e. N (M)  is  the set of  inputs w that M can consume and at the same time empty its stack. 
By empty stack L (2HPDA e) = {p  p  T*, (qo, p, Zo) *(p, , ), p  Q} 
e.g.  L= {anbncn  n  0} 
Suppose a 2HPDA e = ({qo,   q1,  q2},   {a, b, c},  {a, Zo}, ,  Zo,  qo})  
Has the following transition function: 
 (qo , (a, c), Zo)   =  {(qo, aZo)} 
 (qo, (a, c), a)   =  {(qo, aa)} 
 (qo, (b, ), a)   =  {(q1, )} 
 (q1, (b, ), a)   =   {(q1, )} 
 (q1, ( , ), Zo)   =  {(q2, )} 

 
 
 

                                        
                                       
 
 
 
 
 
 
 

Fig.4. 2HPDA accepting by emptying the stack 

Consequently, with 2HPDA we may accept non-context free language and below is the diagram of an (extended) 
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Chomsky Hierarchy with 2-head pushdown languages as proposed by this research.  
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Extended Chomsky Hierarchy 

3.9 Closure Properties 

3.9.1 Closed Under Union 

The 2HPDA is closed under union and for this, we use a prove that goes by automata; suppose 2HPDA1 accepts 
language L= {anbncn  n  0} and 2HPDA2 accepts a language L = {an bn cn dn | n  0}, then a 2HPDA1 2 is closed 
under union. 
Proof by Construction 
2HPDA1 2 = ( {qo,  q1,  q2,  q3},  {a,b,c,d },  {a,  Zo},  qo,  Zo,  ,  {q3} ) 
Has the following transition function: 
 (qo, ( , ), Zo)   =   {(q1, Zo)}                         (qo, ( , ), Zo)    =   {(q1, Zo)} 
 (q1, (a, c), Zo)   =   {(q1, aZo)}                (q1, (a, d), Zo)   =   {(q1, aZo)} 
 (q1, (a, c), a)    =   {(q1, aa)}                              (q1, (a, d), a)     =   {(q1,  aa)}  
 (q1, (b, ), a)    =    {( q2,  )}                               (q1, (b, c), a)     =   {(q2,  )} 
 (q2, (b, ), a)    =    {( q2,  )}                                          (q2, (b, c), a)     =   {(q2,  )} 
 (q2, ( , ), Zo)   =   {( q3,  Zo)}                                                (q2, ( , ), Zo)    =   {(q3, Zo)} 

 
 
 
 
                                                
 
 
 
 
 
 
 
 
 

Fig.6.The Union of 2HPDA 

3.9.2 Closed Under Reversal 

The 2HPDA is closed under reversal and for this, we use a prove that goes by automata; suppose 2HPDA accepts 

Z

Z

Z
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language L= {anbncndn  n  0} it is easily shown that it is closed under reversal. 

Proof by Construction 

2HPDA= ( {qo, q1,  q2} ,  { a, b, c, d },  { a, Zo},  qo,  Zo,  ,  {q2}  ) 
Has the following transition function: 
 (qo,  (a, d), Zo) = {(qo,  aZo)} 
 (qo,  (a, d), a) = {(qo,  aa)}       
 (qo,  (b, c), a) = {(q1,  )}    
 (q1,  (b, c), a) = {(q1,  )}    
 (q1,  ( , ), Zo) = {(q2,  Zo)}   

 
2HPDAR= ( {qo, q1, q2} ,  { a, b, c, d },  {a,Zo},  qo,  Zo,  ,  {q2} ) 
Has the following transition function: 
 (qo, (d, a), Zo) = {(qo, dZo)} 
 (qo, (d, a), a) = {(qo, dd)} 
 (qo, (c, b), a) = {(q1,  )} 
 (q1, (c, b), a) = {(q1,  )} 
 (q1, ( , ), Zo) = {(q2, Zo)} 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Fig.7.The Reversal of 2HPDA 

3.10 Deterministic 2-Head Pushdown Automata                                                            

3.10.1 The Formal Definition of a Deterministic 2HPDA 

M = < Q, T, Z, , Zo, qo, F >
The 2-head pushdown automata 2HPDA d = (Q, T, Z, qo, Zo, , F) is deterministic if and only if 
• For   every q  Q, every z  Z, if  (q, , z)   then for every a  T,  (q, a, z) = , a  move is possible from q 
with z on top only if no other move is possible. 
• For   every q  Q, every z  Z, every a  T  { }, |  (q, a, z) |  1. There is at most one allowed transition from 
any ID. 

2HPDA 
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Q             =        finite set of states 
T              =        input symbols e.g. {a, b, c} 
Z              =        a finite stack alphabet (it’s the set of symbols we are allowed to push   
                           onto the stack) 
               =        it is the mapping from Q × (T U { })2  × Z  Q × Z* 

qo  Q        =      it is the initial state 
zo   Z        =      the stack symbol (initially the 2HPDA stack consisting of one     
                           instance of this symbol and nothing else)  
F              =        accepting states 
 

It holds that the:    {(D2HPDA)}  {(2HPDA)} 
Since every D2HPDA is also a 2HPDA we show that there exist a non context-free language L which can be 
accepted by the deterministic version of the 2HPDA. 
A deterministic 2-head pushdown automata accepts a non context free language and below is an example of a non 
context free language that can be accepted by a deterministic 2HPDA 
L (M) = {anb2nan   n  0} 
Suppose a D2HPDA = ({qo, q1, q2, q3}, {a, b, c}, {a, zo}, qo, Zo, , {qo, q3}) 
Have the following transition function:
  (qo,  (a ,a), Zo) = {(q1, aZo)} 
  (q1,  (a ,a), a) = {(q1,  aa)} 
  (q1,  (b ,b), a) = {(q2,  )} 
  (q2,  (b ,b), a) = {(q2,  )} 
  (q2,  (  , ), Zo) = {(q3,  Zo)}  

3.10.2 Deterministic 2HPDA accepting a Non-Context-Free Language  

 
 
 
 
 
 
 
 
 

Fig.8. Deterministic 2HPDA accepting a non context free language 

4. Conclusion 

We have defined the 2HPDA and have shown that the 2HPDA can accept some non-context free language and 
deterministic version of the 2HPDA has also being defined and it is also shown that this version can accept some 
non-context-free language. This research has successfully modelled the properties of a DNA and has combined it 
with a pushdown stack such that an acceptance requires that we have an empty stack at the end of the computation. 
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