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W2'P-SOLVABILITY OF THE DIRICHLET PROBLEM 
FOR NONDIVERGENCE ELLIPTIC EQUATIONS 

WITH VMO COEFFICIENTS 

FILIPPO CHIARENZA, MICHELE FRASCA, AND PLACIDO LONGO 

ABSTRACT. We prove a well-posedness result in the class W2 P n W1 'P for the 
Dirichlet problem 

f Lu=f a.e.inQ, 

u = 0 onO0Q. 

We assume the coefficients of the elliptic nondivergence form equation that we 
study are in VMO nL?? . 

1. INTRODUCTION 

We consider the Dirichlet problem 

M*, I Lu= f a.e. in Q, 
( =;0 on&Q, 

in a bounded open subset Q of Rn . 
Here we assume L to be a linear elliptic operator in Q in nondivergence form 

whose possibly discontinuous coefficients are taken in the space VMO (for a 
precise definition see ?2 below). The space VMO, introduced by Sarason [S], is 
the subspace of the functions in the John-Nirenberg space BMO whose BMO 
norm over a ball vanishes as the radius of the ball tends to zero. This property 
implies a number of good features of VMO functions not shared by general 
BMO functions; in particular they can be approximated by smooth functions. 

It is easy to check that bounded uniformly continuous functions (BUC) are 
in VMO as well as functions of the Sobolev spaces WI n and W'9 n'/' (Q E 

]0, 1[) (see [CFL, ?2]). 
Our main result in this paper is the well-posedness of problem (*) in the 

class W2'P(Q) n w1 P(Q) for all p E ]l, +o?x. The result has been known for 
a long time in the BUC case. (See [K, Gr, GT].) Furthermore there is a classical 
result by Miranda [Ml] in the case of WI, n coefficients and p = 2. That the 
result should be true for p = 2 in the W', nl/ (i C 10, 1 [ ) case we heard to be 
an old conjecture of the same author. Regarding this, we wish to mention the 
interesting paper by Canfora and Zecca [CZ] which deals with the special case 
n = 3, 0 = 3/4. (For related results see [Cn, Zl, Z2].) 
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The largely standard techniques of our proof consist in obtaining suitable in- 
terior and boundary estimates for the solution of problem (*) and then, from 
these, an a priori estimate for the solutions of (*). By using the above men- 
tioned good behaviour of mollifiers in VMO we get the existence of the solution 
of (*). 

In realizing this program the technical difficulties arise in obtaining the inte- 
rior and boundary estimates and in proving the uniqueness of the solution to 
problem (*). 

Both the interior and boundary estimates are consequences of explicit repre- 
sentation formulas for the solution of problem (*) and the boundedness in LP 
of some integral operators appearing in those formulas. These operators appear 
to be new (in the sense that we were unable to explicitly find their bounded- 
ness properties studied in the literature), and are studied using very classical 
techniques to reduce them to simpler operators. In particular, for the interior 
estimates, which we studied in detail in our previous work [CFL], we used a 
spherical harmonics development to reduce the singular integral operators ap- 
pearing in the representation formula to a series of Calderon-Zygmund singular 
integrals and to a series of singular commutators like those considered by Coif- 
man, Rochberg, and Weiss in [CRW]. In the study of this last operator, the 
VMO assumption on the coefficients is of the greatest relevance. 

The boundary estimates are similar. Indeed, the representation formula ob- 
tained using the half space Green function involves the same integral operators 
of the interior case and two more, less singular, operators somewhat resembling 
Hardy's operator. 

Finally, for the uniqueness, the VMO assumption again played a crucial role, 
assuring that some operators in LP are contractions on this space. 

Some results close to ours have been obtained recently by Caffarelli in his 
deep paper [Cf]. These results, although of local character as stated in [Cf], 
could probably be extended to obtain another proof of our Theorems 4.3 and 
4.4. However, because of the essential use of the Pucci-Alexandroff maximum 
principle, Caffarelli's proof requires the assumption p > n. We take this op- 
portunity to thank Luis Caffarelli for discussing with us some aspects of his 
work. 

Also we mention here that, because of the technique we used, it appears 
possible to extend our results to higher order elliptic and parabolic equations. 
The development of this project will be our aim in the near future. 

2. SOME PRELIMINARY FACTS FROM REAL ANALYSIS 

We recall the definitions and some useful properties of the spaces BMO and 
VMO. The proofs of these by now well-known facts may be found in [S] or in 
some general reference texts, e.g., [G]. 

We say that a locally integrable function f in RIn is in the space BMO if 

sup J If(x) -fB I dx = lf II* <?+??, 
-BB 

where B ranges in the class of the balls in Rn Here fB is the average 

fBf(x) dx. 
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For f E BMO and r > 0 we set 

(2.1) suP f I(x) -fBl dx = j(r), 

where B ranges in the class of the balls with radius p less than or equal to r. 
We will say that a function f E BMO is in the space VMO if q (r) in (2.1) 
vanishes as r tends to zero. We will refer to ij(r) as the VMO modulus of f . 
We have 

Theorem 2.1. For f c BMO the following conditions are equivalent 

(i) f is in VMO; 
(ii) f is in the BMO closure of the set of the uniformly continuous functions 

which belong to BMO; 
(iii) limy-o ff(x - y) - f(x)11* = 0. 

We explicitly observe that if f E VMO with VMO modulus i1 there exists 
a constant c = c(n) such that 

iif(x - Y) - f(x)I11* ? cr(r), IYI < r, 

(see [G, pp. 250-251]); so that the usual mollifiers converge to f in the BMO 
norm. More precisely, given f c VMO with VMO modulus r(r), we can find 
a sequence of C?? functions {fh } converging to f in BMO as h -* 0 with 
VMO moduli qh such that jh(r) ? i (r) . 

We start by recalling the definition and some useful properties of singular 
integrals 

Definition 2.2. Let k: lRn\{0} R. We say that k(x) is a Calderon-Zygmund 
kernel (C-Z kernel) if 

(i) k E C?? (ln \ {O}); 

(ii) k is homogeneous of degree -n; 
(iii) k (x) d a = 0, where X={x E X R"XIl}. 

Theorem 2.3. Let Q be an open subset of Rn . Let k: Q2 x {li n\{0}} I l be a 
function satisfying 

(i) k(x, ) is a C-Z kernelfor a.a. x EQ 
(ii) maxljl<2n 11('/0z')k(x, Z)1lL-(Qx) = M < +cxD. 

For f e LP(Q), (< p < +oo), o e L(IItn), and x E Q, set 

Ke f(x) = 
> 

k(x, x - y)f (y) dy, 
YEs) 

Cg [ , f ](x) = tp (x)Kf (x) -K (qpf ) (x) 

= 
> k(x, x - y)[((x) - (p(y)]f(y) dy. 

yEQ 

Then, for any f E LP(Q) there exist Kf, C[Q, f ] E LP(Qi) such that 

lim IlKef - Kf IIJp(Q) = lim tlC1j, f - C[(p, f ]lIp(Q) = 0. 

Moreover, there exists a constant c = c(n, p, M) such that 

IlKf IlLp() < cllf IILP(Q), IIC[q, f ]IILP(Q) <? CH01*11f 1rP(Q) 
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Theorem 2.4. Let k and c be as in Theorem 2.3. Also let a E VMO nL`?(Rn), 
and let ij be the VMO modulus of a. Then, for any e > 0, there exists a 
positive po = po(e, rj) such that 

j1C[a, f IiiLP(Qr) < CClif IILP(Qr) Vf E LP(Qr), 

for any ball Br, r e ]O, po[, and Br n Q = Qr & 0. 

The proof of the first theorem follows closely a classical argument based on 
the expansion of the kernel into spherical harmonics (see, e.g., [Cl]). The proof 
of Theorem 2.4 is a straightforward consequence of Theorem 2.3 and property 
(ii) in Theorem 2.1. Both proofs are given in detail in [CFL]. 

For further developments we need to study the boundedness in LP of some 
other integral operators. The techniques we employ in the proofs here are also 
quite standard. Because we are unable to give a precise reference we give the 
complete arguments. 

Let Rn = {x = (x', xn): x' E Rln-k xn > O} and for x E Rn let x- 

(X', -Xn) - 

Theorem 2.5. Let f E LP(Rn), 1 < p < +oo. For x E Rn set 

Kf(x) = j 1 2yl dy 

Then there exists a constant c = c(n, p) such that IlKf iIP < clIf II,P where the 
norms are taken in LP(Rn1). 

Proof. For x E Rn let 

I(Xn) =Ln-i (I n (IX-y,12 +(Xn + Yn)2)n/2 dy) dx' 

- Ln-I (I (X ( I- y 12 +X n + Yn )2)n/2 dyi) dyn) dx'. 

Using the Minkowsky and Young inequalities we obtain 

I [ (Ln-1 if( y)I1 d) 2(fn iy' + (Xn + Yn)2)n/2) dYn] 

= j00 ~?~9~ dYn) ) (kd (ti ) 

(.; Xn + , Yn )(n-Il ( |tI2 + J )n/2) 

where we set 
r ~ ~~~~~~~~~ \/p 

(P=(Yn) 
I 

(Y', Yn) P dy) in-I 

Integrating in ]O, +oo[ we get 

IlKf IIPp < c(n, p) j /) I+ 

Again, by Minkowsky, we obtain 

iiKf iiP < c(n , p) (jn (JO (d01+Xx) ) )P 
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Theorem 2.6. Let f E LP(R n), 1 < p < +ox, a E VMO nLL(R )n. For xER n 

set 

C[a f ](x)=j a(x)a(y) f(y)dy. 

Then there exists c = c(n, p) such that IIC[a, f ]IIP < c(n, p)llalllif II. 
Proof. Let Q be a cube with sides parallel to the coordinate axes contained in 
Rn . Given (o E Lll ,(Rn) we set 

sup 1f(y)ldY, d4(X) = sup -f(y) - (QI;dy. 

QDx Q Q3x Q 

It is easy to adapt the usual proofs given in IRn (see, e.g., [GR]) to prove that, 
for (oELP(Rn), 1 <p<+o, 

IIM+gllp < c(n , p)ll?9IIp 11( Il?Ip < c(n , p) 1pl lip II 

Following an idea of Stromberg (see [T, pp. 417-418]) we will get the conclusion, 
using Theorem 2.5, as soon as we prove the following pointwise inequality 

Ci[a, f ] (x) < c(n , p)Illall*{(M+(IKf Ir)(x))1/r + (M+(If Ir)(x))1/r} 

where 1 < r <p. For Q c R1n denote by tQ the side of Q and by yQ its 
center. Also denote by eQ the cube centered at yQ with side 2i- IQ' / E N. 
We write for any Q containing x 

C[a, f ](x) = (a(x) - aQ)Kf (x) + K((aQ - a(.))f(.)X2Q)(X) 

+ K((aQ - a(.))f(.)XAvn,\2Q)('x) 

I(x)+J(x)+L(x), 

where XA is the characteristic function of the set A. 
We have 

1I(y) - IQ dy < 2 (j la(y) - aQl' dy) (I IKf(y) Ir dy) 

< c(n, r)lIall*(M?(IKf Ir)(x))lr (! + - = 1) 

where we used the John-Nirenberg lemma. Fix q, 1 < q < r. Using Theorem 
2.5 we have 

jQI J(Y)I dy ? c(n, q) ( j a - aQ(qlf I d) 

? c(n,S q, r)fa* ( 122Q1 JQn If IrdY) hr 

< c(n. q, r)llall* ( QlJ If 11 dy) 

< c(n , q , r)llall*(M (If 
I 
r) (x)) Ir 

where we set Q' for the cube contained in ]Rn containing 2Q n Rn and having 
the same measure as 2Q. 



846 FILIPPO CHIARENZA, MICHELE FRASCA, AND PLACIDO LONGO 

Finally we estimate LO . We have 

fL(y) - LQJ dy < 2fQ fL(y) - L(yQ) I dy 

and 

IL(y) - L(yQ)j < c(n) J j -t _ l lf(z) I la(z) - aQ I dz 

<c(n)Q f(z)Ir d I/r {z Ia(z) - aQr- dz /r' 
n ~Q- zjn?1 KRn IYQ - ) 

We now set Q equal to the cube in 1n symmetrical to Q and let X be the 

least integer such that AQ n ln 7 0 . Then we have 

f( 
Z dz 

= E 
ZJRn(Q\(.d)Q) 

2 dz 

c()+00 cn < c(n) 2 j If(z)lr dz <c( M+(lf r)(x), 
gQi,2Iil Ql Q 

where Q' is the cube contained in Rn containing 4Q n in and having the 

same measure as eQ . Obviously Q C Qi. 
In the same way we obtain 

f la aQlrt dz < c(n) +00aQir dz. 
JR, IYQ - Zn+1 d? Z2i1JQj I az Q z 

Recalling that laiQ - aQf < c(n)c IjaII* we obtain 

f la(z) - aQ r c(n, r) hal ; 
Qdz <?l 

JRn2Q - zln+14 

and then 

J L(y) - LQI dy < c(n, p)llall*(M+(lflr)(x))l!r 

In the following we will set 

B+ = {(x', x,) En: lxl < r, xn > 0} 

The following is an easy consequence of Theorems 2.1 and 2.6 (for a similar 
result see Theorem 2.13 in [CFL]). 

Theorem 2.7. Let 1 < p < +oo and c = c(n, p) as in Theorem 2.6. Let 
a E VMO nL?? (Rn) and I its VMO modulus. Then for any c > 0 there exists 
a positive po = po(j, e) such that for any r E 10, Po[ we have 

jjiC[a, f IILp(B+) ? Ccff ILP(B{) V E LP(B+). 

3. AN A PRIORI ESTIMATE IN A SPECIAL CASE 

Define W720P(Be+) to be the closure in W2 P of the subspace 

= {u: u is the restriction to B+ of a function 

belonging to Cg(B,), u(x', 0)- 0}. 
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We will make the following assumption, and we will refer to it as assumption 
(H). 

(3.1) 
Let n > 3, bii E VMO nL< (lln), i, j = 1, n................ , n 

bij = bji, i, j = 1 ...,n a.e. inB+, } 

(3.2) 3,u > 0: ,-IgI2 < E b1jjXjX < 1 iIX2 a.e. inB+, V8 E Rin 
i,j=l 

Also set 

L b= j axb00X 

and 

l n \ ~~(2-n)/2 

F'(x, t) = 
(n - 2)Wn(det bij)1/2 E Bij (x) ti tj ) 

Ji7(x, t) = f-0 r(x, t), Fjj(x, t) = 
a2 

F(x, t), 

for a.a. x E B+ and Vt E Rn\{O}, where the B1j are the entries of the inverse 
of the matrix (bij)i,j=1I,n 

We need some more notation: 

b(x)-=(bin(X))i=...,n T(x; y) = x- 2x, b(y) 

Finally set T(x) = T(x; x) and B(y) = T(e,; y) where, as usual, en = 

(O, O, ..., O, 1). We have 

Lemma 3.1. There exists a positive constant c = c(n, u) such that 

Lx - yl v cl T(x) - yl Vy E Rn and a.a. x E Ba+. 

Here x = (x', -Xn). 

Proof. Clearly IT(x) - yI ? Xn + Yn ? xn . Hence 

IT(x)-&Il <1I 2xbn(x) - = 2 b(x) < c(n p) 
IT(x) -yI x~ -b~x =2 enbnn(X)?cn ) 

then 

J.k - yl < IT(x) - xkl + IT(x) - y| -< (I + c(n, p))IT(x) - yl. 

In the following we will call Ba the subset of B+ where (3.1) and (3.2) hold. 

Theorem 3.2. Assume (H) and let u E W72P(B+). Then 

(3.3) 

uxixj(x) = P.V. FI1(x, x -y) {Z (bhk(x) - bhk(y))uXhXk(y) + Lu(y)} dy 

+ Lu(x) 1 i F(x, t)tj dat + Iij(x) 
.1 t1 

. 
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where: for i,j=1,...,n-1 

ij (x) = I j ii(x , T(x) -y) {E (bhk(X) - bhk(y))UX Xk(y) + LU(y)} dy 

for i=l,...,n 

Iin (x) = In i (x) = Fj, ij (x , T (x)-y) Bj (x) ) {-*}dy, 

and 

Inn(X) = + (Z: Fjj(x, T(x) - Y)Bi(X)B(x)) {B } dy; 

in the formulas above Bi(x) is the ith component of the vector B(x) and in the 
curly brackets there is always the same expression as in the first case. 

Proof. Let xo E B- and ut E C2,0. Setting 

n 

Lou(x)= Z bij(xo)ux,xj(x) 
i,j=l 

and using the half space Green function for Lo we obtain 

u(x) = j {F(xo x - y) - F(xo, T(x; xo) - y)}Lou(y) dy 

(3.4) = j F(xo, x - y)Lou(y) dy - j F(xo, T(x; xo) - y)Lou(y) dy 

Differentiating I' twice in (3.4) and writing Lou = (Lo - L)u + Lu we obtain 
by classical results (see [M2]) 

xixj(X) = PYV. jj(xo, x -Y) {Z (bhk(XO) - bhk(Y))Ux,X (y) + ?Lu(y)} dy 

+ Lu(x) / Ji(xo, t)tj dat Vx EB+. 

As for I" differentiation is easier because it is possible to differentiate inside 
the integral. Then, for u E C2,0, (3.3) is immediately obtained by setting x = xo 
in the formula giving the second derivatives of (3.4). A density argument, using 
Theorems 2.3, 2.5, 2.6 and Lemma 3.1, gives the conclusion for u E J . 

Theorem 3.2. Assume (H). Let q, p E ]O, +oo[, q < p . Set i = (EnZ 1 -i)112, 
where 4jj is the VMO modulus of bij, and 

M= max max | Fij(x, t) 
ij=1,...,nHaj<2n at' L?t(B+x) 

Then there exists a positive number po = po(n, q, p, M, u, q), po < , such 
that for any r e]O, po[ and any u e JyJ (B+) with Lu E LP(B+) we have 
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u e W2 P(B+) . Furthermore there exists a constant c = c(n, p, M, u, i1) such 
that 

(3.5) lluxixJ IILP(B+) ? cIILUIILP(B+)r 
Proof. Setfor i, j,h,k= 1, ...,n, 

Sijhk(f )(X) = P. V. j ij(x, x - y)(bhk((X)- bhk(y))f(y) dy, 

and for i, j = 1, ...,n - 1, h, k = , ...,n 

Sijhk(f) = j ij (x, T(x) - y)(bhk (x)- bhk(y))f(y) dy, 

for i= I n- 1, hi k= 1, ..., n 

Sinhk (f) = ( ri (x, T(x) -y)B (x)) (bhk (x)- bhk(y))f(y) dy, 

and finally for h, k = 1, ...,n 

Snnhk(f) = I (S ij (x, T(x) - y)Bi (x)Bj (x)) (bhk (X) - bhk (y))f(y) dy, 

where r E ]O, a] and f E LI(Br+). 
Recalling Lemma 3.1 and Theorems 2.4 and 2.7 we can fix po so small that 

Zijhk ||Sijhk + Sijhkll < 1 , where the norm of operators Sijhk + Sijhk is the 
norm in the space of linear operators from LI (B+) in itself if r E ]O, po and 
v E [q,pP] 

Consider u E W72'RP(B+) with Lu E LP(B+), r E ]O, po[, and set 

hi1(x) = P. V. j fij(x, x - y)Lu(y) dy 

r 

+ Lu(x) F 1(x , t)tj dat + h1(x), 
It1= 

where 

F ij(x, T(x) - y)L-u(y) dy, for i, j = I,... n - 1, 

Iij = | (B , eFj(x, T(x) - y)Be (x)) Lu(y) dy, 

for i= 1, ... n - 1, j =n, 

A ( l1ij(x, T(x) - y)Be(x)B (x)) Lu(y) dy for i = j =n 

Clearly hij e LP(B+). 
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Consider w E [LP(B+)]n' and define Tw: [LP(B+ )]n -t [LP(Bt+)]n by set- 
ting 

Tw = ((Tw)ij)i,j=l n... 

n\ 

E (Sijhk + Sijhk)(Wij) + hij| 
h, k=i i, j=l,., 

The operator T is a contraction in [LP(B+)]n22 and then has a unique fixed 
r~~~~~~~~~~~~~~~~~ 

point zw. Since, by (3.3), (u,ixj)i,j=l,.,n is also a fixed point in [Lq(B+n)] 2 

the uniqueness of fixed point implies 

uxix = Wbij E LP (B+) Vi, j = 1, . .., n. 

Then (3.5) is an easy consequence of formula (3.3), Theorems 2.3, 2.4, 2.5, 2.7, 
and Lemma 3.1. 

4. THE DIRICHLET PROBLEM 

In this section we make the following assumptions, and we will refer to them 
collectively as assumption (A). 

Let Q2 an open bounded subset of IRn, n > 3, with 09Q e C1 '1, 
n'2 

L= E aij(x)a'ax 
, l 

i, j=1 

where (A) 

(4.1) aij (x) E VMO nLL? (Rn ) Vi, j-1, ... , 
A 

(4.2) aij(x) = aji(x) Vi, j = 1, ... , n, a.e. in Q, 
n 

(4.3) 32 > 0: A-111 2 < E a?j(x)4jXj < AgI2 a.e. in Q, V8 c JRn. 
i,j=l 

Furthermore call tij(r) the VMO modulus of aij (i, j = 1, ... , n) and set 
i(r) = (Zn j=1 qI;(r)) 12. Finally let r, Fi, Fij(x, t) have the same meaning 
as in the previous section with aij replacing bij at any occurrence and set 

max max 9arF(x, t) LO(X;) M. 

Theorem 4.1. Assume (A). Let q, p c]l, +cc[, q < p, f e LP(Q), u E 

q(Q) n W,(2) and Lu f f a.e. in Q. Then u o Wjcj(?) Moreover 
given Q' cc Q, Q' open, there exists a constant 

c c(n, p, M, dist(52', OQ), A, r) 

such that 

(4.4) IIUt1W2,P(QI) ? C{IIUIILP(Q) + lf IILP(Q))} 

Proof. The proof, via a covering argument, follows closely the lines of Theorem 
3.2 above. A detailed exposition may be found in [CFL, Theorem 4.2]. 
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Theorem 4.2. Assume (A). Let q, p E]I, +co[, q < p, f E LP(Q), U E 

W2,q(Q) n Wol q(Q), and Lu = f a.e. in Q. Then u E W2JP(Q) and there 
exists a constant c = c(n, p, M, a2, A, Xi) such that 

(4.5) IIUIIW2,P(Q) < C{IIuUILP(Q) + Ilf IILP(Q)}. 

Proof. By a covering and flattening argument the conclusion follows in a stan- 
dard way from Theorems 3.2 and 4. 1. 

We wish only to make some comments on the effect of the stretching on 
our class of coefficients. More precisely, the assumption on the boundary im- 
plies the existence for all xo E aQ of a neighborhood U(xo) and of a C1 '- 
diffeomorphism G which maps U(xo) n Q onto Br+ (same notation as in the 
previous section). In the transformed equation the principal part coefficients 
are 

bij (y) =E ahk (G- (y)) 0 Gi (G-l(y)) d Gj (G-, W)) 

h,k=i a& Xk 

yEBB+, i, j = 1,..., n, and G-1 is the inverse of G. 
We observe that G may be extended to a diffeomorphism of Rn onto itself 

with preservation of the norm; we now have that the b1j(y) are defined and 
bounded in RnI. 

It is easy (changing variables) to check that aij(G-'(y)) is in VMO and 
its VMO modulus is comparable with the VMO modulus of aij(x) through 
the C1, '-norm of G. Then the bij are in VMO because of the bounded- 
ness and uniform continuity of aGi(G-I(y))/&xh, i, h = 1, ..., n, and their 
VMO moduli are easily estimated in terms of j, the C1 '-norm of G and the 
continuity moduli of the derivatives of G. 

Theorem 4.3 (Uniqueness). Assume (A). Then the solution of the Dirichlet prob- 
lem 

fLu = O a.e. in Q, 

{U E WI,2P(Q;) n W SP(Q) (< p < +Xo) 

is zero in Q . 

Proof. The function 0 belongs to Ln((Q). By Theorem 4.2 it follows that u E 
WI n(Q) n C?(Q); hence, recalling the Pucci-Alexandroff maximum principle, 
the conclusion follows. 

Theorem 4.4 (Existence). Assume (A). Let f E LP(Q), p E ]1, +oc[. Then the 
Dirichlet problem 

rLu =f a.e. inQ, 

lu E WI,P(Q) n Wl',P(Q) 

has a (unique) solution u. Furthermore there exists a positive constant c = 

c(n, p, M, aQ, A, ,) such that 

(4.6) IIUlIW2P(Q2) < Cllf IIIp(Q) 

Proof. First we prove (4.6). The existence result will then follow in a standard 
way, approximating the equation with a similar one with smooth coefficients. 
In fact it was observed in Theorem 2.1 that the q function of the smoothed 
coefficients is dominated by the ? of the original. 
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To prove (4.6) we argue by contradiction. If (4.6) is not true, there exists a 
sequence of operators 

{ L a (x)0x } 

verifying assumption (A) with the VMO moduli and the L??-norms of a(j , 
m e N, uniformly bounded by those of aij , and a sequence of functions {u(M) }, 
U(m) E W2P(Q) f WlP(Q) satisfying 

IjU(m)IIW2,P(Q) = 1, lim JJL(m)u(m) ILp(Q) = 0. 
m 

Fix any ball B c RnR. By Theorem 2.1 (iii) and the remarks following that 
theorem, the sequence {a(7) - (a(m))B} is compact in L1(B) by a well-known 

compactness result. Then it is possible to find a subsequence of {a7T) } con- 
verging a.e. in B. By considering an increasing sequence of balls with union 
Rn it is possible to find a subsequence, which we still call {a(7)}, converging 
a.e. in Rn to a function aij. Clearly the functions ai1 verify assumption (A). 
Set 

L(a) E - jxia(x) i) 
ij=1I 

Furthermore there exists a subsequence of {u(m)}, which we relabel as {u(m)}, 
converging weakly to a function U(a) W2 P (Q)n WI P(Q) and then Iu(m) ILP(Q) 

converges to JjU(a)jjLP(Q) - 

Since for 9 E LP'(Q), p' = p/(p - 1), we have 

j I(Lm)u m)- L(a) u(a))soI dx 

n 

? Z {I(a) - ai )p1K(Q) + j(u (0- u(??)a>p(p dx} 

{L(m) u(m) } converges weakly in LP (Q) to L(a) u(a) . Hence L(a) u(a) = 0 a.e. in 
Q and by Theorem 4.3 U(a) = 0. Thus jju(m) IL,(Q) converges to zero, which, 
on account of (4.5), contradicts IlU(m)HjW2,p(n) = I 

5. CONCLUDING REMARKS 

After this work was completed we noticed that our proofs could be modified 
in order to replace the VMO assumption by the smallness of the BMO norm 
(depending on p). Also let us observe that given a function f with weak-Ln 
derivatives, its BMO norm is bounded by the weak-Ln norm of the gradient. 

These remarks suggest that the sharp result of Alvino and Trombetti [AT], 
dealing with an existence and uniqueness result for p = 2, could be extended 
to cover some neighborhood of p = 2. 
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