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2-SPHERE BUNDLES OVER COMPACT SURFACES
PAUL MELVIN!

ABSTRACT. Closed 4-manifolds which fiber over a compact surface with fiber a
sphere are classified, and the fibration is shown to be unique (up to diffeomorphism).

It is well known that there are at most two orientable 4-manifolds which fiber over
a given compact surface with fiber the 2-sphere S2. (There is exactly one if the
surface has nonempty boundary, and two if it is closed.) If the orientability
condition is dropped, then the situation becomes more involved. In particular the
(mod 2) intersection pairing is no longer sufficient to distinguish among the mani-
folds that arise. One must also consider the ;-action on 7, and the peripheral
structure.

The purpose of this note is to classify all 4-manifolds (orientable or not) which are
total spaces of S2-bundles over compact surfaces. We shall work in the smooth
category. Since Diff(S?) deformation retracts to O(3), we may assume that all
bundles that arise have O(3) as structure group.

Along the way it is shown that the bundle structures are unique. That is, if any
two 4-manifolds, fibered as above, are diffeomorphic, then there is a fiber preserving
diffeomorphism between them which is orthogonal on fibers.

Our interest in S >-bundles arose in the study of Lie group actions (in particular of
SO(3)) on 4-manifolds. The results obtained here are used in the equivariant
classification of such actions [MP)].

1. Classification. In this section we establish notation and state our results. Proofs
are deferred to the next section.

Throughout the paper, all homology and cohomology groups will have coefficients
inZ,.

First observe that to classify the 4-manifolds of the title, one may consider one
surface at a time.

PROPOSITION. No 4-manifold is the total space of two different S*-bundles over
distinct compact surfaces.
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568 PAUL MELVIN

Hence we fix F, a compact connected 2-dimensional surface, and consider
S2-bundles
M4
& L op
F
with structure group O(3). Write w;(£) for the Stiefel-Whitney classes of ¢ in H'(F)
(recall that coefficients are in Z,), and w(§) for the total Stiefel-Whitney class.
Bundle theory shows that ¢ is classified up to bundle equivalence by w(§). In
particular one 1nay construct M, knowing w(§), as follows (we omit the proof):

STRUCTURE LEMMA. To construct the total space M of the bundle § (above), start
with F X S? and a properly embedded 1-manifold « in F representing the Poincaré dual
of wi(§). Then

(1) cut F X S? along w X S? and reidentify opposite S? fibers along the cut by the
antipodal map, and

(2) if wy(&) # O (F necessarily closed), then also cut along 3D X S? (where D is a
2-disc in F) and reidentify opposite fibers by using the diffeomorphism of 3D X S*
coming from the nontrivial element of m,(SO(3)).

Observe that distinct bundles may have diffeomorphic total spaces. For example
any diffeomorphism A: F — F induces a diffeomorphism between the total spaces of
£ and the pull back h*£, whereas w(§) need not equal w(h*§) = h*(w(£)). It turns
out that this example is generic:

THEOREM 1. Let
M M’
& | p ad & | P
F F

be two S2-bundles over a compact surface F. Then M and M’ are diffeomorphic if and
only if there is a diffeomorphism h: F — F with § = h*(§') (i.e. £ and &' are weakly
equivalent).

To give an explicit classification of the total spaces that arise, one needs a
classification of S2-bundles over F up to weak equivalence.

THEOREM 2. With the hypothesis of Theorem 1, & and &' are weakly equivalent if and
only if w,(§) ~ wi(&) and w,(§) = w,(&'), where ~ is the equivalence relation defined
below.

DEFINITION. Let w be a class in H'(F). Define two invariants, r(w) (a nonnega-
tive even integer) and s(w) (= 0, 1,2 or c0), as follows:

Set r(w) equal to the number of components of dF to which w restricts nontriv-
ially. (Dually, if w is a 1-manifold in F representing the Poincaré dual of w, then
r(w) is the number of components of 3F which contain an odd number of points of
dw.)

Set s(w)=0 if r(w)> 0. If r(w)=0 then consider two cases: F closed. If
w = w,(F) (the first tangential Stiefel-Whitney class of F) then set s(w) = oco0. If
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w = 0 # w,(F) (F necessarily nonorientable) then set s(w) = 0. If w # 0 or w (F),
then set s(w) = 1 or 2, respectively, according to whether w U w,(F) =1 or 0 (or
dually whether w is orientation reversing or preserving). F' bounded. Let F be the
closed surface obtained by capping off F along dF with 2-discs. Consider the exact
sequence
0> HY(F)—> H(F)-> HYF,F)-

of the pair (F, F). Since r(w) = 0, the image of w in H?*(F, F) is zero. So w is the
restriction of a unique class W in H'(F). (Dually, & may be chosen to be a closed
curve in F, and w is the Poincaré dual of the homology class represented by this
curve in F). Set s(w) = s(W).

Now for w and w’ in H'(F), define w ~ w’ if and only if (I) »(w) = r(w"), and
(II) s(w) = s(w’). This relation is designed so that w ~ w’ if and only if there is a
diffeomorphism s: F — F with w = h*(w’) (see Lemma 2 in the next section).

ReMARK. The referee observed that for the bundles under consideration, the
structure group reduces to O(2). A classification of S'-bundles over F with group
0(2) was given by Seifert [S] and Orlik-Raymond [OR] for F closed, and by
Fintushel [F} for F with boundary. The invariants used are the same as ours (in the
notation of [F], k corresponds to r and ¢ to s). Theorem 2 follows easily. For
completeness, we shall give an independent proof.

It follows from Theorems 1 and 2 that the total space M of the bundle § is
classified up to diffeomorphism by the invariants r(w,(£)), s(w;(£)) and w,(£). For
closed base surfaces F, r(w;(§)) = 0, wy(£) = 0 or 1, and s(w;(§)) can assume any
of the following values:

closed F s(wy(£)
S? 00
orientable # S? 2, 0

P? (projective plane) 0, oo

K? (Klein bottle) 0,1, 0
nonorientable # P2 or K ? 0,1,2, 0

Thus there are two S%bundles over S2, up to diffeomorphism, four over each
orientable surface # S? and over P2, six over K 2, and eight over each nonorientable
surface # P2 or K% If F is bounded, then w,(¢) =0 but r(w,(£)) may be any
nonnegative even integer < dim H,(dF). For example, there are 3 + [k/2] S*-
bundles over the k-punctured Klein bottle, up to diffeomorphism.

2. Proofs.

PROOF OF THE PROPOSITION. Suppose that a given 4-manifold M fibers over a
compact surface F with fiber S2. Evidently M and F have the same number of
boundary components. By the homotopy sequence of a fibration, m(F) = 7 (M).
Furthermore, if M has nonempty boundary then the double DM of M is an
S!'-bundle over the double DF of F, and so 7;( DF) = @,(DM). Thus from M one
may compute 7, ( F), #,( DF), and the number of components of 3F. It follows from
the classification of surfaces that F is uniquely determined by M. O
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We shall use two lemmas in the proofs of Theorems 1 and 2.
LEMMA 1. Let

M
&£ L op
F

be an S*-bundle over a compact surface F. Then p*: H*(F) — H*(M) is injective and
w(M) = p*(w(F) U w(§)) (where w(M) and w(F) are the total tangential Stiefel-
Whitney classes). In particular

() wi (M) = p*(w,(F) + wi(§)),

(b) wo(M) = p*(Wy(F) + wi(F) U wi(§) + wy(£)).

PrOOF. The injectivity of p* follows from the Gysin sequence
— H*“3(F) > H*(F) > H*(M) -

of £. To obtain the formula for w( M), note that by definition w(§) = w(Z), where =
is the B3-bundle ¢: V> — F associated to £&. Applying the Whitney product theorem
to 7o ® = = 7, (7 denotes tangent bundle) gives

w(V) = g*(w(F) U w($))

and to 7, @ € = 7,y gives w(M) = i*w(V) where i: M — V is inclusion. Since
p = qi, the lemma follows. O

LEMMA 2. Let w and w' be classes in H?(F). Then there is a diffeomorphism
h: F — Fwithw = h*(w") ifand only if w ~ w'.

Recall that w ~ w’ if and only if (I) r(w) = r(w’), and (II) s(w) = s(w’) (see the
previous section). Observe that condition II can be replaced by

(ID) If r(w) = O then

)w=w'ifw=0orw/(F),

(i) W U wy(F) = w' U wi(F),
where F = Fand w = wif Fis closed.

PrOOF OF LEMMA 2 (CF. [F)). First assume that 4 exists. Then h*(w,(F)) = w,(F),
and if F is bounded then h extends to a diffeomorphism A: £ — F with A*(W’) = W.
It follows readily from the definition of ~ that w ~ w’.

Conversely, assume that w ~ w’. We may also assume that w (and w’) #+ w,(F) or
0 (in those cases take & = identity).

Case 1: F closed. Represent the Poincaré duals of w and w’ by embedded loops w
and «’ with open tubular neighborhoods W and W’. Since w # 0, W is nonsep-
arating and so F — W is connected. Since w # w,(F), F — W and F have the same
orientability (they are either both orientable or both nonorientable). The same
argument for w’ shows that F — W and F — W’ have the same orientability and are
both connected. Since w U w(F) = w’ U w,(F), they also have the same number of
boundary components. By the classification of compact surfaces, F — W = F — W',
and so there is a diffeomorphism h: F — F carrying w to «’. Thus h*(w’) = w.
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Case 2: F bounded. Set r = r(w) = r(w’). If r = 0 then use the argument in Case
1. If r > 0, then the Poincaré dual of w (or w’) can be represented by r/2 properly
embedded arcs w (or w’). The rest of the argument proceeds essentially as in Case 1.
That F — W and F have the same orientability follows from the fact that w has a
minimal number of components among relative cycles dual to w. Minimality also
assures that all the points of dw lie in distinct components of W, whence F — W has
exactly r/2 fewer boundary components than does F. O

For the proofs of Theorems 1 and 2, we adopt the following notation: w; = w,(§)
and w/ = w,(§) (i = 1,2), r=r(wy), s = s(wy), r' = r(w)), s’ = s(w/). We begin
with Theorem 2.

PROOF OF THEOREM 2. If £ and £’ are weakly equivalent, then by definition there is
a diffeomorphism A: F — F with £ = A*(¢'). It follows that w, = h*(w/) (i = 1,2).
Thus w; ~ wj (by Lemma 2) and w, = w; (since h* is the identity on H?(F)).

Conversely, assume that w;, ~ w{ and w, = w;. By Lemma 2, there is a diffeomor-
phism h: F — F with w; = h*(wj). Since h* is the identity on HX(F), w, = h*(w})
as well. It follows that § = A*(¢'). O

ProoF oF THEOREM 1. First we make four assertions about the bundle £ (or §).

(1) r is the number of nonorientable boundary components of M.

(2) (For F # P%*)w, = 0 if and only if 7,( M) acts trivially on m,( M).

(3) w; = wy(F) if and only if w;(M) = 0.

(4) w, = 0 if and only if the self-intersections of all classes in H,( M) are zero.
Assertions (1) and (2) follow from the structure lemma. (For (2) observe that if
F # S? or P? then m,(M) = Z, generated by a fiber.) Lemma 1(a) gives (3). To
prove (4), observe that there is an isomorphism H,(M) = H,(F) @ H,(S?) (for
example from the Leray-Hirsch Theorem). Thus H,(M) is generated by a section (if
F is closed) and a fiber of £ By the structure lemma, the section has zero
self-intersection (mod 2) if and only if w, = 0. Since the fiber has zero self-intersec-
tion, (4) follows.

Now assume that M and M’ are diffeomorphic. It suffices to show that w; ~ w]
and w, = wj, by Theorem 2.

Case 1: F closed. By assertion (4), w, = w;, since H*(F)=Z,. Note that
r =0 = r’ since F is closed. Assertion (3) shows that w;, = w{ if w, = w,(F). This
implies that w, ~ wj for F = P2 and so we assume F # P2, Then by assertion (2),
w; = wy if w; = 0, establishing condition II(i) in the definition of ~ . It remains to
verify that w, U wi(F) = w] U w;(F) (condition II(ii)). But this is immediate from
Lemma 1(b) since w, = wj and p* is injective. Thus w; ~ wj.

Case 2. F bounded. Assertion (1) gives r = r’. It remains to show s = s". We may
assume r = 0. Recall that s = s(W,), where W, is the unique extension of w; to a class
in H'(F) (F = F capped off). Now M can be capped off along M with copies of
B? x S? to get an S*bundle £ over F with i*({) = £ (where i: F — F is inclusion)
and wz(é) = 0. Then wl(é) = W,. Let M be the total space of £. A similar construc-
tion gives £’ with total space M’ diffeomorphic to M. By Case 1, s(wl(é ) = s(wl(é’)),
and so s(W,) = s(W]). Thus s = s(W,;) = s(W]) = s’. This proves the bounded case.

The converse is trivial. O
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REMARKS. (1) Theorems 1 and 2 can be obtained without reference to the tangent
bundle of M, instead using a more delicate analysis of the ,( M )-action on 7,(M).
Our approach shortens the proof.

(2) Theorems 1 and 2 can also be generalized to all higher dimensions, that is to
S-bundles over compact surfaces with group G = O(n + 1). (If G = PL(S") then
the resulting classification still holds in the PL category, by results of Browder [B]
and Lashof-Shaneson [LS] on PL automorphisms of S$” X S'. What happens if
G = Diff(5")?)
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