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Abstract .  In a 2-visibility drawing the vertices of a given graph are rep- 
resented by rectangular boxes and the adjacency relations are expressed by 
horizontal and vertical lines drawn between the boxes. In this paper we want 
to emphasize this model as a practical alternative to other representations of 
graphs, and to demonstrate the quality of the produced drawings. We give sev- 
eral approaches, heuristics as well as provably good algorithms, to represent 
planar graphs within this model. To this, we present a polynomial time algo- 
rithm to compute a bend-minimum orthogonal drawing under the restriction 
that the number of bends at each edge is at most 1. 

1 I n t r o d u c t i o n  

Many algorithms for drawing graphs have been developed in the last years. Compar- 
ing them is a difficult task, because the quality of a drawing is not clearly defined, 
and depends highly on the application. So several models for the representation have 
been worked out to express the different properties of a graph [3]. 

One of the simplest and therefore most attractive ways of representation is to draw 
the edges as polygonal chains consisting of horizontal and vertical line segments. It 
is commonly used in the area of VLSI-design but also in data base schemes and 
organisational diagrams. Such drawings can be classified in various classes, where 
the most extreme ones are: a) orthogonaI drawings and b) visibility representations. 
In orthogonal drawings all vertices are restricted to have a small uniform size and 
the edges consist of (several) horizontal and vertical segments. If there are vertices 
with a degree of more than four, several methods have been worked out how to solve 
this problem [14, 1, tl]; we adopt the model from [5 t _ The latter algorithm computes 
a drawing with the minimum number of bends preserving a given embedding. In 
Figure 1 we examplify the model using a graph which arises in astrophysics and 
was already used in the PhD. thesis of Mutzel [10]. We use this graph as a running 
example to distinguish the different models and approaches in this paper. 

A visibility representation is a drawing where all edges are restricted to be single 
orthogonal line segments. No bends arise, but it is only possible to draw graphs in 
this way when we allow the vertices to have different sizes; it is even not possible to 
bound the size of the vertices. The advantages of visibility representations are: They 
yield very readable pictures for human spectators and the vertices have a suitable 
expansion in horizontal direction to write some text inside. The theory is quite de- 
veloped [12, 15] for the case when the edges are restricted to be uni-directional, say 
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Fig. 1. An orthogonal drawing of the astro-graph 

vertical. We call this model the 1.visibility model. Several distinctions are made: The 
strong visibility model requires that the boxes can see each other if and only if the 
corresponding vertices are adjacent. In the weak visibility model they may see each 
other even if they are not neighbours. We will only consider the weak model. 

Every planar graph can be represented in the weak model. There are efficient 
algorithms e.g. [7] with good bounds on the required area. 2-visibility representa- 
tions are a straightforward generalization of the 1-visibility model. Here vertical and 
horizontal edges are allowed. Figure 2 shows a 2-visibility drawing for the graph of 
Figure 1. 

Though the resulting drawings look very promising from a practical point of 
view, this model has not been considered very often [6, 9, 17, 18] and the known 
results are very preliminary. Notice that also 2-visibility representations of nonplanar 
graphs might be possible, though with crossing edges. In this paper we only consider 
planar graphs and planar representations. The purpose is to introduce this model as 
a practical alternative to the models used before and to demonstrate the quality of 
the produced drawings. 

We present several heuristics and efficient algorithms to get such representations. 
The basic idea here is to first draw the graph orthogonally and then stretch the ver- 
tices such that they become rectangles and cover all the existing bends. Obviously we 
have to stretch the vertices in such a way that the final rectangles do not intersect. To 
make such stretehings possible we produce orthogonal drawings with special proper- 
ties. Section 2 of this paper is devoted to methods for such orthogonal drawings. In 
Section 3 we use transform these drawings into visibility representations. Note that 
Tamassia & Tollis propose just the opposite way in [16]: Starting with a 1-visibility 
drawing they shrink the vertices and insert the corresponding edges with a number 
of bends to get nice orthogonal drawings. 
We will present the following methods and results concerning the 2-visibility model. 
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Fig. 2. A 2-visibility drawing of the astro-graph 

1. In Section 2.1 we present a linear time algorithm that computes an orthogonal 
drawing of a planar graph with at most one bend per edge. By applying local 
transformations this drawing is transformed to a 1-visibility representation or a 
compact 2-visibility representation (Section 3.1). 

2. Two polynomial time algorithms that produce 2-visibility drawings are given in 
Section 3.2, where the number of horizontal and vertical edges is balanced in 
some sence. The first algorithm is a modification of the min-cost flow approach 
of [13], while the latter uses the result developed in Section 2.2. There we show 
how to compute a minimum-bend orthogonal drawing under the restriction that 
each edge has at most one bend. In the resulting drawing in Section 3.2, each 
vertex has a uniform 'small' height. 

3. In Section 4 we give an efficient algorithm based on the canonical ordering and 
prove upper bounds on the used area. We present a class of graphs where the 
2-visibility drawing is always nearly as large as described before. 

4. Finally, Section 5 contains concluding remarks and directions for further research 
in this practical field of graph drawings. 

2 O r t h o g o n a l  d r a w i n g s  f o r  h i g h  d e g r e e  p l a n a r  g r a p h s  

In this section we present algorithms for drawing special orthogonal representations 
of planar graphs without any restriction on the maximum degree. We will use these 
results in Section 3 to achieve practical 2-visibility representations. 

We take the orthogonal drawing model from [5] (notice that this model is different 
from the usual orthogonal drawing definition for 4-planar graphs). Because of space 
limitation, we refer to Figure 1 where the properties of the model can clearly be seen, 
instead of giving formal definitions. Most noticeably, there is at most one straight 
edge on each side of every vertex. The idea for achieving 2-visibility representations 
is that the vertices are stretched to rectangles such that the bends on the edges 
disappear. Note that in general this method does not work on orthogonal drawings 
when edges with more than one bend exist, cf. Figure 4. The stretching is possible 
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if every edge is restricted to have at most one bend. The algorithms in our first and 
third approach use such orthogonal drawings as an intermediate step. The methods 
are probably interesting on their own. 

2.1 O r t h o g o n a l  d rawing  w i t h  at  m o s t  one  b e n d  p e r  edge  

T h e o r e m  1 For every planar graph G = (V, E) with a planar embedding there is an 
orthogonal drawing for G preserving the planar embedding with at most one bend on 
every edge and this drawing can be computed in linear time. 

Proof. At first we triangulate G, i.e., we add dummy edges to G such that every face 
of G is a triangle. Next we compute a canonical ordering for the triangulated graph 
G / [4]. That  means that the vertices are numbered 1 , . . . ,  n such that 

- the external face consists of the vertices 1, 2 and n and 
- for every i >_ 3 there is a vertex vi on the external face of G~ that has at least two 

neighbours in Gi-1 and at least one neighbour in G\G~ and Gi is biconnected. 
The neighbours of vi in Gi-1 form a consecutive sequence on the outerface of the 
embedding of Gi-1. Gi is the subgraph of G ~ consisting of the vertices v l , . . . ,  vi. 

De Fraysseix, Pach g~ Pollack [4] show how to compute a canonical ordering of 
a triangulated planar graph in linear time. Our algorithm places vertices vl and v2 
at coordinates (0,1) and (1,0) and adds the rest of the vertices in the order of the 
canonical ordering. The vertices are placed on grid points of an integer grid such 
that there is only one vertex on every line and on every column. By definition of the 
canonical ordering, the neighbours of vl in Gi-1 form an interval of the external face 
of G~-I; let v~ be the leftmost and vr the rightmost vertex in this interval. Insert a 
new grid line directly below the line of v~ and a new column directly to the left of 
vr, place vi on the intersection point of the new line and the new column and draw 
edges with one bend per edge such that edge (vz, vi) is incident to vi at its left side 
and all other incident edges in G~ are incident to vi at its bottom side (see Figure 3). 
To ensure that  this is always possible without creating crossings between edges or 
between an edge and a vertex we show the following invariant: The contour of the 
external face of Gi between vl and v2 (without the edge (v~, v2)) is a staircase from 
the left to the right. It is easy to see that the new edges do not cross any old objects 
if the invariant holds (Figure 3) and that adding a new vertex does not destroy the 
invariant. This proves the theorem. 

2.2 B e n d - m i n i m u m  drawings  w i th  a t  m o s t  one  b e n d  p e r  edge  

We want to apply the stretching idea to bend-minimmn orthogonal drawings hoping 
that fewer vertices might be stretched and/or vertices are stretched by a smaller 
amount when we minimized the number of bends before. In this subsection we show 
how to produce bend-minimum orthogonal drawings under the restriction that  each 
edge has only one bend. In Subsection 3.2 we discuss the properties of the draw- 
ing when we stretch the vertices. We also motivate this approach using the bend- 
minimum orthogonal drawing from Figure 1 and demonstrate in Figure 4 why it is 
important to restrict the number of bends per edge to be at most 1. 
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Fig. 4. From an orthogonal drawing Go a visibility representation. 

T h e o r e m  2 For every planar graph G = (V, E) with a planar embedding, we can 
efficiently compute a bend-minimum drawing under the restrictions that the planar 
embedding is preserved, the area for each face is non-empty and the number of bends 
on each edge is at most 1. 

Proof. To restrict the drawing such that  each edge has only at most one bend is 
easy in the case of the original model of Tamassia [13] where 0~ are forbidden 
and the graph is 4-planar. In this case we only need to restrict the capacities of the 
face-to-face-arcs in the network to be 1. Then at most one bend may happen per 
edge since only one unit of flow may use this edge. 

In the general case of higher-degree vertices we have to change the network con- 
siderahiy. We will motivate and describe only the changes that  have to be made with 
respect to the approach in [5]. Note that  we will again require that  the faces will be 
represented by a polygon with a non-empty area. 
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The key fact again is that for each 0~ there is a unique bend. We extend 
the  number of forbidden configurations, such that e.g. two bends on the same edge 
corresponding to different 0~ will not arise. Fortunately, the construction of 
the network becomes simpler than in [5]. We shortly review the original construction 
from [13]. The solution of such a flow problem leads to a orthogonal representation. 

Tamassia defined the network Nn as follows: N t t =  (U, A, s, t, b, e) where 
b : A --+ IR + is a nonnegative capacity function, c : A -4 IR is a cost function, 
U (the nodes of the network) = {s} U {t} 12 Uv U UF, where s and t are the source and 
the sink of the network, Uv contains a node for every vertex of G and UF contains 
a node for every face of G, A (the arcs of the network) contains 

a) arcs from s to nodes v in Uv with cost 0 and capacity 4 - deg(v); 
b) arcs from s to nodes f in UF, where f represents an internal face of G with 

deg(f) <_ 3; these arcs have cost 0 and capacity 4 - deg(f); deg(f) for a face f 
always denotes the number of edges in the list H(f ) ;  

c) arcs from nodes f in UF representing the external face or representing internal 
faces f with deg(f) _> 5 to t; these arcs have cost 0 and capacity deg(f) - 4 if f 
is an internal face and capacity deg(f) + 4 for the external face; 

d) arcs of cost 0 and capacity ~ from nodes v in Uv to nodes f in UF, if v is incident 
to an edge of H(f ) ;  

e) arcs of cost 1 and capacity c~ from a node f in UF to a node g in UF, whenever 
the faces f and g of G have at least one common edge. 

Every flow unit on an are between two faces stands for a bend on an edge between 
these faces. The flow on the arcs in d) defines the angles in the drawing: If z~,! is 
the flow from the node v E Uv to the node f E UF then the angle at vertex v in face 
f is (xv,f + 1) �9 90 ~ Every feasible flow of value Eub(s, u) : E~b(w, t) with cost B 
leads to an orthogonal representation with exactly B bends. Thus the cost minimum 
solution of the flow problem corresponds to the bend minimum drawing. 

Allowing 0~ is easy. We extend the rules as follows: 
According to the formula above such an angle corresponds to a flow of value -1 

from some v E Uv to some f E UF. We interprete this as a flow of value +1 in the 
opposite direction, from f to v. Thus, in the network there are some additional arcs: 

f) arcs of cost 0 and capacity deg(v) - 4 from nodes v in Uv to t, if deg(v) > 5; and 
g) arcs of cost 0 and capacity 1 from a node f in UF to a node v in Uv, whenever 

there is an arc of type d) from v to f .  

In [5], we solved the problem that certain configurations in the network should not 
happen by some quite complicated modifications. Now, we also have to modify the 
network such that there are no:two units of flow crossing one single edge. Therefore 
we replace the rules e) and f) bY the construction shown in Figure 5. 

Note that  all capacities are:!1 and all costs not indicated are 0. By the trick to 
punish the use of an arc first by. costs 2e + 1 and then to pay c costs twice back we 
make sure that  each edge is crossed only once. A cost of 1 remains, corresponding to 
a single bend as before. The additional use of the nodes Hj  and HIr ensures that  the 
forbidden configurations alread~r discussed in [5] will not occur. The introduction of 
nodes Hf~ is necessary since the'flow into the face-node f across e can only go directly 
into the vertex-nodes adjacent to e or into the face-node f via the arc (H/ , ,  f ) .  

Choosing the cost parameter c sufficiently large and solving the min-cost-flow 
problem as usually leads to a bend-minimum orthogonal drawing of the graph. 
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Fig. 5. Restricting the flow across each single edge 

3 T h r e e  a p p r o a c h e s  t o  2 - v i s i b i l i t y  d r a w i n g s  

3.1 A first heuristic using local improvements 

As a first result in this section we give an algorithm that computes a l-visibility 
representation of a given planar graph preserving a given planar embedding. The 
idea is to start with a 1-bend orthogonal drawing as described in Section 2.1 and to 
delete bends by expanding vertices. In particular, the algorithm chooses a direction 
(w.l.o.g. horizontal), stretches the vertices horizontally such that any two neighboured 
edges being incident to the same vertex at its bottom side have distance at least 1 
from each other; The vertex of the visibility drawing gets the y-coordinate of the 
vertex of the orthogonal drawing and will be extended in horizontal direction such 
that it covers all horizontally incident bends. The remaining edges are the vertical 
segments of the edges in the orthogonal drawing. It is clear that this method does 
not create any crossings. 

This leads to a 1-visibility drawing with an area being slightly larger than the 
corresponding orthogonal drawing because of the first stretching of the vertices. 

Our first approach to get a 'real' 2-visibility drawing (every 1-visibility drawing 
is a special case of a 2-visibility drawing) is to change locally the orthogonat drawing 
obtained by the algorithm described in Section 2.1 such that we save unnecessary 
bends. The resulting straight edges remain unchanged by the stretching algorithm 
and may run horizontally or vertically. The vertical segment of every edge that our 
algorithm from 2.1 creates is incident to some vertex at its bottom side; so there are 
two kinds of edges: Edges of type (i) are incident to the other vertex at its left side 
and edges of type (ii) are incident to the other vertex at its right side. So there are 
four ways to save a bend which are shown in Figure 6; operations (a) and (b) concern 
edges of type (i) and the other operations concern edges of type (ii). 

A bend-saving operation can only be applied if the graph (locally) fulfills some 
conditions; so there are some rules to decide which operation can be realized. 
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Fig. 6. How to save bends 

Operation (a) can be applied if 

1. e is the lowest edge being incident to vertex v at v's left side and 
2. e is the rightmost edge being incident to vertex u at u's lower side and 
3. there is no edge being incident to vertex u at u's right side. 

Operations (b),(c) and (d) can be applied in symmetric cases. It can be seen easily 
that there appear no crossings if the bend-saving part of the algorithm obeys these 
rules. It is not hard to implement these local improvement steps such that it works 
in linear time overall. Applying our first algorithm to the astro-graph we get the 
drawing of Figure 7. 

3.2 Two  a p p r o a c h e s  for  b a l a n c e d  2-vis ib i l i ty  d rawings  

In this subsection we give two more involved algorithms that lead to more balanced 2- 
visibility drawings. The algorithm of Section 3.1 produces vertices of uniform heights, 
but it clearly prefers one dimension against the other: The remainings of all the 
originally bending edges are drawn vertically, only edges being a result of the bend- 
saving step might run horizontally. Now we want to balance the two dimensions 
somehow. For that  purpose we minimize the number of 0~ between edges (a 
0~ arises whenever two neighboured edges are incident to a vertex at its same 
side). In other words: we try to use each side of the rectangle (representing the vertex) 
to connect edges at. Although this does not guarantee a bound for the ratio between 
the number of vertical edges and the number of horizontal edges, an equilibrium can 
be observed in pm/ctical examples. 

' N o n - u n i f o r m '  ver t ices .  We use a variant of the algorithms presented in Section 
[5] and [13], based on network flow techniques. We shortly reviewed it already in 
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Fig. 7. Applying the local improvement algorithm to the astro-graph. 

2.2. In these approaches a network is constructed having vertices and faces of the 
embedded planar graph as nodes. A feasible flow in this network corresponds to a 
drawing of the graph: A flow unit between adjacent faces characterizes a bend on 
an edge between these faces. A flow from a vertex v into a face f defines the angle 
between two edges of f having v as common vertex. In 2-visibility drawings we do not 
have any bends but angles of 0 6 are allowed arbitrarily. So we delete all arcs between 
two faces in the network. We add arcs from each face to each vertex being contained 
in the face with capacity 1 and positive cost defining the 0 ~ angles; as a consequence 
a min-cost flow in this network corresponds to a no-bend drawing having a minimum 
number of 0 ~ angles. Hence this yields a 2-visibility representation. Applying this 
algorithm to the astro graph yields the drawing of Figure 2 displayed before. 

K e e p i n g  t h e  size of  t h e  ve r t i ces  ' sma l l ' .  In this subsection we combine the net- 
work approach of [13] and [5], refined in Section 2.2 with the stretching idea already 
used in Section 3.1. We showed how to produce a bend-minimum orthogonal drawing 
where each edge has only one bend. Now we can easily stretch the vertices such that  
they cover all bends, even using only one direction (see Figure 4). Moreover, we can 
choose the stretching direction under some criteria like 'the used area ' or 'balance of 
horizontal and vertical edges' or 'sizes of the rectangles of the vertices'. Suppose we 
only stretch the vertices in horizontal direction. Then, since in our orthogonal draw- 
ing the vertices have a squarish shape we get a drawing where all vertices have the 
same 'small'  height only depending on the degree of the graph. This avoids high and 
skinny rectangles which are possible in the second approach and enables a reasonable 
vertex labeling. 

However, notice that the width of the rectangles can increase arbitrarily; if the 
user insists also on a small width which only depends on the size of the labeling, we 
propose the following technique: shrink the width of the vertices, such that  only a few 
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adjacent vertices are not visible anymore. Inserting the edges now with some bends is 
an easy task and mostly leaves the size of several vertices unchanged. Obviously, this 
contradicts the model of 2-visibility, nevertheless it might be a practical approach for 
taking the size of the labeling into account. 

4 U p p e r  a n d  l o w e r  b o u n d s  o n  t h e  a r e a  

In the following, we present an alternative linear time algorithm and analyse its 
behaviour with respect to the used area. For counting the area, we determine the 
corner coordinates of the rectangles to be integers and the rectangles to have at least 
a size of 1 • 1. The edges are placed at half-integer coordinates. So, the area in 
Figure 9 (b) is 6 • 7. 

Let G = (V, E) be the embedded planar graph. 
If G is not triangulated, add dummy edges to it to make it so. 
Compute the canonical ordering of G, denoted by v~, . . . ,  v~. 
Place the vertices vl and v2 as boxes of size 2 x 1 and 1 x 1 in an L-shape. 
for  i := 3 to  n do 

Let v a l , . . . ,  v~ k be the neighbours of vi in Gi - t  from left to right. 
Let at be the maximum index, with 1 < t < k. 
Place v~ above and/or to the right of its neighbours in the drawing of Gi-1 

s.t. the edge (v~l, v~) will be horizontal and (va~, v~) will be vertical. 
Stretch all rectangles to the right or to the top such that 

they can see v~ if they are adjacent to v~ and such that the 
stair-case invariant is maintained. 

t 
, v i  

. w B r  | 

Vee ~ 
stalrc.~e 

. . . . . . .  I 

v% staircase I 

(a) The general configuration (b) The four-comaected ease 

Fig. 8. Two cases: Before and after insertion of vertex vi. 

From the stretching approach, described in Section 2.1, we have to come to an 
exact computation of every rectangle in the representation. For this computation a 
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simple adaption of the 'Shif t ' -method of Chrobak & Payne yields the desired result 
[2]. In Figure 9 an example is given. 

8 

1 2 

(a) A canonical numbered triangulated planar graph 

...... ...... !:!!!!!!':! , i 
(b) The r 2-v/s~bility repi'e sen ~.lion 

Fig. 9. Example of the algorithm. 

Observe that  the layout will be stretched when inserting vertex vl by the number 
of incoming edges to vi - 1 .  The - 1  comes from the fact that  we do not need to stretch 
the highest indexed vertex v~,. Summing this up over all vertices ( ~ i  indegree(v i )  - 
1 < 3n - 6 - n) gives a bound of 2n on the sum of the height and the width of the 
layout. We state this result in the following 

T h e o r e m  3 For every p lanar  graph G = (V, E)  with IV[ = n, there is a 2-visibility 
drawing for  G that uses an area x • y where x + y <_ 2 .  n. 

The bound of x-Fy < 2.n is tight, since it is not difficult to construct a triangulated 
planar graph, for which this algorithm indeed requires this area. Notice also that  the 
required area heavily depends on the chosen canonical ordering. Again, it is not 
difficult to construct a planar graph, requiring an area of size n x n for one ordering, 
and an area of size n x 3 for another canonical ordering. Using some more refinements 
of the canonical ordering, it is not hard to improve the theorem above by the fact 
z _< n and y _< n, but it is certainly not trivial to improve the 2 �9 n bound. 

However, for 4-connected planar graphs we can easily improve this area bound. 
For this purpose, we use an observation made in .[8]. When we insert vertex vi with 
the incoming edges from v,~l,. . .  , v,~ k there is only one local minimum in the sequence 
of these vertices. Let v~, be the vertex with minimal index in the sequence. Note 
tha t  in the current representation yak lies at the point where a vertical segment of 
the staircase hits a horizontal one. 

Here it is sufficient to stretch only this single vertex v~, by one unit such that  
it can see vi, and to update  the staircase-structure (see Figure 8). This means that  
inserting vertex vi stretches the layout by only one unit. Moreover, similar as in the 
3-connected case, we have the choice whether we stretch in horizontal or vertical 
direction. Hence we can balance width and height of the layout such that  our result 
is the following: 
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T h e o r e m  4 For every $-connected planar graph G = (V, E) with IV[ = n, there is 
a 2-visibility drawing for  G that uses an area x x y where x = y < n/2.  

The following lower bounds shows that the upper bounds achieved by the linear 
time algorithms above are getting close to the lower bounds. 

T h e o r e m  5 There is a planar graph G = (V, E) with IV] = n, such that all 2- 
visibility drawings for  G have an area x • y where x + y > 5/3 .  n, x >_ 2 / 3 .  n and 
y >_ 

Proof. Let G be the graph of n/3  nested triangles, which are internally triangulated. 
Note that each triangle needs at least 2 horizontal and 2 vertical lines for the real- 
ization. Since the triangles are nested, the width and the height of the layout is at 
least 2n/3. 

We can get an even better bound on the area if we determine the triangulation 
in the way as shown in the next figure. Extensive case analysis shows that for the 
realization of the triangulation an extra horizontal or vertical line is necessary, such 
that height + width is increased by 5 units when we add a new triangle. 

3 

Hi. l  

1 2 

r 
3 I 

• I • 

1 2 

Hi§ 

Fig. 10. The lower bound example drawn in height + width _ 5/3. n 

Applying the same approach for a set of nested rectangles, we get the following: 

T h e o r e m  6 There is a ~-connected planar graph G = (V~ E) with IV[ -- n, such that 
all 2-visibility drawings for G have an area x x y where z > n /2  and y >>_ n/2.  

5 Conc lus ion  

In this paper we presented several practical approaches for producing 2-visibility 
drawings of planar graphs. The purpose of this paper is to emphasize this model and 
to demonstrate the quality of the resulting drawings. Moreover, we also presented 
theoretical upper bounds with respect to the required area. Our opinion is that that 
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for practical purposes 'weak' visibility drawings have no disadvantages compared to 
'strong' visibility drawings, and will lead to improved practical drawings. 

On the other hand, there is certainly a lack of theory. Up to now there are hardly 
any properties and theorems derived for 2-visibility as it happened for 1-visibility. 
The reason is that  the 2-visibility concept is much stronger as it is used here. We 
only used it for planar drawings, but even some thickness-two graphs (sparse non- 
planar graphs) can be drawn in this model, of course yielding crossings of horizontal 
and vertical edges. Unfortunately, unclear is the exact characterization of the class 
of graphs, admitting a 2-visibility representation with crossing edges. Hence, more 
theoretical work is required on the area bounds, as well as a precise characterization 
of the balance between horizontal and vertical edges. Also theory with respect to the 
maximum and total edge length is a field for further research. 

On the practical side, it is interesting to test the behaviour of the presented 
algorithms for several different subclasses of planar graphs. Especially the influence 
of the edge balance on the size of the rectangles for the vertices and the area yields 
very interesting questions. 
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Fig. 11. Applying the first algorithm of Section 3.2 to the A-graph of the competition in 
GD'95 (two edges are omitted due to planarity) 


