
2-Visibility Drawings of Planar Graphs*

Ulrich FSgmeier I Goos Kan t 2 Michael K a u f m a n n I

1 Universit~it Tiibingen, Wil_helm-Schickard-Institut, Sand 13, 72076 Tiibingen, Germany
Dept. of Comp. Sci., Utrecht University, Padualaan I4, 35S4 CH Utrecht, Netherlands.

Abstract . In a 2-visibility drawing the vertices of a given graph are rep-
resented by rectangular boxes and the adjacency relations are expressed by
horizontal and vertical lines drawn between the boxes. In this paper we want
to emphasize this model as a practical alternative to other representations of
graphs, and to demonstrate the quality of the produced drawings. We give sev-
eral approaches, heuristics as well as provably good algorithms, to represent
planar graphs within this model. To this, we present a polynomial time algo-
rithm to compute a bend-minimum orthogonal drawing under the restriction
that the number of bends at each edge is at most 1.

1 I n t r o d u c t i o n

Many algorithms for drawing graphs have been developed in the last years. Compar-
ing them is a difficult task, because the quality of a drawing is not clearly defined,
and depends highly on the application. So several models for the representation have
been worked out to express the different properties of a graph [3].

One of the simplest and therefore most attractive ways of representation is to draw
the edges as polygonal chains consisting of horizontal and vertical line segments. It
is commonly used in the area of VLSI-design but also in data base schemes and
organisational diagrams. Such drawings can be classified in various classes, where
the most extreme ones are: a) orthogonaI drawings and b) visibility representations.
In orthogonal drawings all vertices are restricted to have a small uniform size and
the edges consist of (several) horizontal and vertical segments. If there are vertices
with a degree of more than four, several methods have been worked out how to solve
this problem [14, 1, tl]; we adopt the model from [5 t _ The latter algorithm computes
a drawing with the minimum number of bends preserving a given embedding. In
Figure 1 we examplify the model using a graph which arises in astrophysics and
was already used in the PhD. thesis of Mutzel [10]. We use this graph as a running
example to distinguish the different models and approaches in this paper.

A visibility representation is a drawing where all edges are restricted to be single
orthogonal line segments. No bends arise, but it is only possible to draw graphs in
this way when we allow the vertices to have different sizes; it is even not possible to
bound the size of the vertices. The advantages of visibility representations are: They
yield very readable pictures for human spectators and the vertices have a suitable
expansion in horizontal direction to write some text inside. The theory is quite de-
veloped [12, 15] for the case when the edges are restricted to be uni-directional, say

* This research was (partially) supported by DFG-Grant Ka812/4-1, "Graphenzeichnen
und Animation" and by ESPRIT Long Term Research Project 20244 (project ALCOM
IT: Algorithms and Complexity in Information Technology).

156

F

m

E
E

Fig. 1. An orthogonal drawing of the astro-graph

vertical. We call this model the 1.visibility model. Several distinctions are made: The
strong visibility model requires that the boxes can see each other if and only if the
corresponding vertices are adjacent. In the weak visibility model they may see each
other even if they are not neighbours. We will only consider the weak model.

Every planar graph can be represented in the weak model. There are efficient
algorithms e.g. [7] with good bounds on the required area. 2-visibility representa-
tions are a straightforward generalization of the 1-visibility model. Here vertical and
horizontal edges are allowed. Figure 2 shows a 2-visibility drawing for the graph of
Figure 1.

Though the resulting drawings look very promising from a practical point of
view, this model has not been considered very often [6, 9, 17, 18] and the known
results are very preliminary. Notice that also 2-visibility representations of nonplanar
graphs might be possible, though with crossing edges. In this paper we only consider
planar graphs and planar representations. The purpose is to introduce this model as
a practical alternative to the models used before and to demonstrate the quality of
the produced drawings.

We present several heuristics and efficient algorithms to get such representations.
The basic idea here is to first draw the graph orthogonally and then stretch the ver-
tices such that they become rectangles and cover all the existing bends. Obviously we
have to stretch the vertices in such a way that the final rectangles do not intersect. To
make such stretehings possible we produce orthogonal drawings with special proper-
ties. Section 2 of this paper is devoted to methods for such orthogonal drawings. In
Section 3 we use transform these drawings into visibility representations. Note that
Tamassia & Tollis propose just the opposite way in [16]: Starting with a 1-visibility
drawing they shrink the vertices and insert the corresponding edges with a number
of bends to get nice orthogonal drawings.
We will present the following methods and results concerning the 2-visibility model.

157

[

o I

e l) ~

c l t

Fig. 2. A 2-visibility drawing of the astro-graph

1. In Section 2.1 we present a linear time algorithm that computes an orthogonal
drawing of a planar graph with at most one bend per edge. By applying local
transformations this drawing is transformed to a 1-visibility representation or a
compact 2-visibility representation (Section 3.1).

2. Two polynomial time algorithms that produce 2-visibility drawings are given in
Section 3.2, where the number of horizontal and vertical edges is balanced in
some sence. The first algorithm is a modification of the min-cost flow approach
of [13], while the latter uses the result developed in Section 2.2. There we show
how to compute a minimum-bend orthogonal drawing under the restriction that
each edge has at most one bend. In the resulting drawing in Section 3.2, each
vertex has a uniform 'small' height.

3. In Section 4 we give an efficient algorithm based on the canonical ordering and
prove upper bounds on the used area. We present a class of graphs where the
2-visibility drawing is always nearly as large as described before.

4. Finally, Section 5 contains concluding remarks and directions for further research
in this practical field of graph drawings.

2 O r t h o g o n a l d r a w i n g s f o r h i g h d e g r e e p l a n a r g r a p h s

In this section we present algorithms for drawing special orthogonal representations
of planar graphs without any restriction on the maximum degree. We will use these
results in Section 3 to achieve practical 2-visibility representations.

We take the orthogonal drawing model from [5] (notice that this model is different
from the usual orthogonal drawing definition for 4-planar graphs). Because of space
limitation, we refer to Figure 1 where the properties of the model can clearly be seen,
instead of giving formal definitions. Most noticeably, there is at most one straight
edge on each side of every vertex. The idea for achieving 2-visibility representations
is that the vertices are stretched to rectangles such that the bends on the edges
disappear. Note that in general this method does not work on orthogonal drawings
when edges with more than one bend exist, cf. Figure 4. The stretching is possible

158

if every edge is restricted to have at most one bend. The algorithms in our first and
third approach use such orthogonal drawings as an intermediate step. The methods
are probably interesting on their own.

2.1 O r t h o g o n a l d rawing w i t h at m o s t one b e n d p e r edge

T h e o r e m 1 For every planar graph G = (V, E) with a planar embedding there is an
orthogonal drawing for G preserving the planar embedding with at most one bend on
every edge and this drawing can be computed in linear time.

Proof. At first we triangulate G, i.e., we add dummy edges to G such that every face
of G is a triangle. Next we compute a canonical ordering for the triangulated graph
G / [4]. That means that the vertices are numbered 1 , . . . , n such that

- the external face consists of the vertices 1, 2 and n and
- for every i >_ 3 there is a vertex vi on the external face of G~ that has at least two

neighbours in Gi-1 and at least one neighbour in G\G~ and Gi is biconnected.
The neighbours of vi in Gi-1 form a consecutive sequence on the outerface of the
embedding of Gi-1. Gi is the subgraph of G ~ consisting of the vertices v l , . . . , vi.

De Fraysseix, Pach g~ Pollack [4] show how to compute a canonical ordering of
a triangulated planar graph in linear time. Our algorithm places vertices vl and v2
at coordinates (0,1) and (1,0) and adds the rest of the vertices in the order of the
canonical ordering. The vertices are placed on grid points of an integer grid such
that there is only one vertex on every line and on every column. By definition of the
canonical ordering, the neighbours of vl in Gi-1 form an interval of the external face
of G~-I; let v~ be the leftmost and vr the rightmost vertex in this interval. Insert a
new grid line directly below the line of v~ and a new column directly to the left of
vr, place vi on the intersection point of the new line and the new column and draw
edges with one bend per edge such that edge (vz, vi) is incident to vi at its left side
and all other incident edges in G~ are incident to vi at its bottom side (see Figure 3).
To ensure that this is always possible without creating crossings between edges or
between an edge and a vertex we show the following invariant: The contour of the
external face of Gi between vl and v2 (without the edge (v~, v2)) is a staircase from
the left to the right. It is easy to see that the new edges do not cross any old objects
if the invariant holds (Figure 3) and that adding a new vertex does not destroy the
invariant. This proves the theorem.

2.2 B e n d - m i n i m u m drawings w i th a t m o s t one b e n d p e r edge

We want to apply the stretching idea to bend-minimmn orthogonal drawings hoping
that fewer vertices might be stretched and/or vertices are stretched by a smaller
amount when we minimized the number of bends before. In this subsection we show
how to produce bend-minimum orthogonal drawings under the restriction that each
edge has only one bend. In Subsection 3.2 we discuss the properties of the draw-
ing when we stretch the vertices. We also motivate this approach using the bend-
minimum orthogonal drawing from Figure 1 and demonstrate in Figure 4 why it is
important to restrict the number of bends per edge to be at most 1.

159

vl

T' I ,V r

L_
Fig. 3. A new vertex is added to Gi-~

:,+-:.!.! .. ~::: :.:::r: " ' : . :) J C2+ I C~ ~ ~ ~ ~ I ' ~ ...]!-+i~i~i~ ~ I I

Fig. 4. From an orthogonal drawing Go a visibility representation.

T h e o r e m 2 For every planar graph G = (V, E) with a planar embedding, we can
efficiently compute a bend-minimum drawing under the restrictions that the planar
embedding is preserved, the area for each face is non-empty and the number of bends
on each edge is at most 1.

Proof. To restrict the drawing such that each edge has only at most one bend is
easy in the case of the original model of Tamassia [13] where 0~ are forbidden
and the graph is 4-planar. In this case we only need to restrict the capacities of the
face-to-face-arcs in the network to be 1. Then at most one bend may happen per
edge since only one unit of flow may use this edge.

In the general case of higher-degree vertices we have to change the network con-
siderahiy. We will motivate and describe only the changes that have to be made with
respect to the approach in [5]. Note that we will again require that the faces will be
represented by a polygon with a non-empty area.

160

The key fact again is that for each 0~ there is a unique bend. We extend
the number of forbidden configurations, such that e.g. two bends on the same edge
corresponding to different 0~ will not arise. Fortunately, the construction of
the network becomes simpler than in [5]. We shortly review the original construction
from [13]. The solution of such a flow problem leads to a orthogonal representation.

Tamassia defined the network Nn as follows: N t t = (U, A, s, t, b, e) where
b : A --+ IR + is a nonnegative capacity function, c : A -4 IR is a cost function,
U (the nodes of the network) = {s} U {t} 12 Uv U UF, where s and t are the source and
the sink of the network, Uv contains a node for every vertex of G and UF contains
a node for every face of G, A (the arcs of the network) contains

a) arcs from s to nodes v in Uv with cost 0 and capacity 4 - deg(v);
b) arcs from s to nodes f in UF, where f represents an internal face of G with

deg(f) <_ 3; these arcs have cost 0 and capacity 4 - deg(f); deg(f) for a face f
always denotes the number of edges in the list H(f) ;

c) arcs from nodes f in UF representing the external face or representing internal
faces f with deg(f) _> 5 to t; these arcs have cost 0 and capacity deg(f) - 4 if f
is an internal face and capacity deg(f) + 4 for the external face;

d) arcs of cost 0 and capacity ~ from nodes v in Uv to nodes f in UF, if v is incident
to an edge of H(f) ;

e) arcs of cost 1 and capacity c~ from a node f in UF to a node g in UF, whenever
the faces f and g of G have at least one common edge.

Every flow unit on an are between two faces stands for a bend on an edge between
these faces. The flow on the arcs in d) defines the angles in the drawing: If z~,! is
the flow from the node v E Uv to the node f E UF then the angle at vertex v in face
f is (xv,f + 1) �9 90 ~ Every feasible flow of value Eub(s, u) : E~b(w, t) with cost B
leads to an orthogonal representation with exactly B bends. Thus the cost minimum
solution of the flow problem corresponds to the bend minimum drawing.

Allowing 0~ is easy. We extend the rules as follows:
According to the formula above such an angle corresponds to a flow of value -1

from some v E Uv to some f E UF. We interprete this as a flow of value +1 in the
opposite direction, from f to v. Thus, in the network there are some additional arcs:

f) arcs of cost 0 and capacity deg(v) - 4 from nodes v in Uv to t, if deg(v) > 5; and
g) arcs of cost 0 and capacity 1 from a node f in UF to a node v in Uv, whenever

there is an arc of type d) from v to f .

In [5], we solved the problem that certain configurations in the network should not
happen by some quite complicated modifications. Now, we also have to modify the
network such that there are no:two units of flow crossing one single edge. Therefore
we replace the rules e) and f) bY the construction shown in Figure 5.

Note that all capacities are:!1 and all costs not indicated are 0. By the trick to
punish the use of an arc first by. costs 2e + 1 and then to pay c costs twice back we
make sure that each edge is crossed only once. A cost of 1 remains, corresponding to
a single bend as before. The additional use of the nodes Hj and HIr ensures that the
forbidden configurations alread~r discussed in [5] will not occur. The introduction of
nodes Hf~ is necessary since the'flow into the face-node f across e can only go directly
into the vertex-nodes adjacent to e or into the face-node f via the arc (H/ , , f) .

Choosing the cost parameter c sufficiently large and solving the min-cost-flow
problem as usually leads to a bend-minimum orthogonal drawing of the graph.

161

f h HI

f

u v w

g h

Fig. 5. Restricting the flow across each single edge

3 T h r e e a p p r o a c h e s t o 2 - v i s i b i l i t y d r a w i n g s

3.1 A first heuristic using local improvements

As a first result in this section we give an algorithm that computes a l-visibility
representation of a given planar graph preserving a given planar embedding. The
idea is to start with a 1-bend orthogonal drawing as described in Section 2.1 and to
delete bends by expanding vertices. In particular, the algorithm chooses a direction
(w.l.o.g. horizontal), stretches the vertices horizontally such that any two neighboured
edges being incident to the same vertex at its bottom side have distance at least 1
from each other; The vertex of the visibility drawing gets the y-coordinate of the
vertex of the orthogonal drawing and will be extended in horizontal direction such
that it covers all horizontally incident bends. The remaining edges are the vertical
segments of the edges in the orthogonal drawing. It is clear that this method does
not create any crossings.

This leads to a 1-visibility drawing with an area being slightly larger than the
corresponding orthogonal drawing because of the first stretching of the vertices.

Our first approach to get a 'real' 2-visibility drawing (every 1-visibility drawing
is a special case of a 2-visibility drawing) is to change locally the orthogonat drawing
obtained by the algorithm described in Section 2.1 such that we save unnecessary
bends. The resulting straight edges remain unchanged by the stretching algorithm
and may run horizontally or vertically. The vertical segment of every edge that our
algorithm from 2.1 creates is incident to some vertex at its bottom side; so there are
two kinds of edges: Edges of type (i) are incident to the other vertex at its left side
and edges of type (ii) are incident to the other vertex at its right side. So there are
four ways to save a bend which are shown in Figure 6; operations (a) and (b) concern
edges of type (i) and the other operations concern edges of type (ii).

A bend-saving operation can only be applied if the graph (locally) fulfills some
conditions; so there are some rules to decide which operation can be realized.

162

(,) j
/

(r J

Fig. 6. How to save bends

Operation (a) can be applied if

1. e is the lowest edge being incident to vertex v at v's left side and
2. e is the rightmost edge being incident to vertex u at u's lower side and
3. there is no edge being incident to vertex u at u's right side.

Operations (b),(c) and (d) can be applied in symmetric cases. It can be seen easily
that there appear no crossings if the bend-saving part of the algorithm obeys these
rules. It is not hard to implement these local improvement steps such that it works
in linear time overall. Applying our first algorithm to the astro-graph we get the
drawing of Figure 7.

3.2 Two a p p r o a c h e s for b a l a n c e d 2-vis ib i l i ty d rawings

In this subsection we give two more involved algorithms that lead to more balanced 2-
visibility drawings. The algorithm of Section 3.1 produces vertices of uniform heights,
but it clearly prefers one dimension against the other: The remainings of all the
originally bending edges are drawn vertically, only edges being a result of the bend-
saving step might run horizontally. Now we want to balance the two dimensions
somehow. For that purpose we minimize the number of 0~ between edges (a
0~ arises whenever two neighboured edges are incident to a vertex at its same
side). In other words: we try to use each side of the rectangle (representing the vertex)
to connect edges at. Although this does not guarantee a bound for the ratio between
the number of vertical edges and the number of horizontal edges, an equilibrium can
be observed in pm/ctical examples.

' N o n - u n i f o r m ' ver t ices . We use a variant of the algorithms presented in Section
[5] and [13], based on network flow techniques. We shortly reviewed it already in

163

c o

4
I f

CH

i
+

Fig. 7. Applying the local improvement algorithm to the astro-graph.

2.2. In these approaches a network is constructed having vertices and faces of the
embedded planar graph as nodes. A feasible flow in this network corresponds to a
drawing of the graph: A flow unit between adjacent faces characterizes a bend on
an edge between these faces. A flow from a vertex v into a face f defines the angle
between two edges of f having v as common vertex. In 2-visibility drawings we do not
have any bends but angles of 0 6 are allowed arbitrarily. So we delete all arcs between
two faces in the network. We add arcs from each face to each vertex being contained
in the face with capacity 1 and positive cost defining the 0 ~ angles; as a consequence
a min-cost flow in this network corresponds to a no-bend drawing having a minimum
number of 0 ~ angles. Hence this yields a 2-visibility representation. Applying this
algorithm to the astro graph yields the drawing of Figure 2 displayed before.

K e e p i n g t h e size of t h e ve r t i ces ' sma l l ' . In this subsection we combine the net-
work approach of [13] and [5], refined in Section 2.2 with the stretching idea already
used in Section 3.1. We showed how to produce a bend-minimum orthogonal drawing
where each edge has only one bend. Now we can easily stretch the vertices such that
they cover all bends, even using only one direction (see Figure 4). Moreover, we can
choose the stretching direction under some criteria like 'the used area ' or 'balance of
horizontal and vertical edges' or 'sizes of the rectangles of the vertices'. Suppose we
only stretch the vertices in horizontal direction. Then, since in our orthogonal draw-
ing the vertices have a squarish shape we get a drawing where all vertices have the
same 'small' height only depending on the degree of the graph. This avoids high and
skinny rectangles which are possible in the second approach and enables a reasonable
vertex labeling.

However, notice that the width of the rectangles can increase arbitrarily; if the
user insists also on a small width which only depends on the size of the labeling, we
propose the following technique: shrink the width of the vertices, such that only a few

164

adjacent vertices are not visible anymore. Inserting the edges now with some bends is
an easy task and mostly leaves the size of several vertices unchanged. Obviously, this
contradicts the model of 2-visibility, nevertheless it might be a practical approach for
taking the size of the labeling into account.

4 U p p e r a n d l o w e r b o u n d s o n t h e a r e a

In the following, we present an alternative linear time algorithm and analyse its
behaviour with respect to the used area. For counting the area, we determine the
corner coordinates of the rectangles to be integers and the rectangles to have at least
a size of 1 • 1. The edges are placed at half-integer coordinates. So, the area in
Figure 9 (b) is 6 • 7.

Let G = (V, E) be the embedded planar graph.
If G is not triangulated, add dummy edges to it to make it so.
Compute the canonical ordering of G, denoted by v~, . . . , v~.
Place the vertices vl and v2 as boxes of size 2 x 1 and 1 x 1 in an L-shape.
for i := 3 to n do

Let v a l , . . . , v~ k be the neighbours of vi in Gi - t from left to right.
Let at be the maximum index, with 1 < t < k.
Place v~ above and/or to the right of its neighbours in the drawing of Gi-1

s.t. the edge (v~l, v~) will be horizontal and (va~, v~) will be vertical.
Stretch all rectangles to the right or to the top such that

they can see v~ if they are adjacent to v~ and such that the
stair-case invariant is maintained.

t
, v i

. w B r |

Vee ~
stalrc.~e

. I

v% staircase I

(a) The general configuration (b) The four-comaected ease

Fig. 8. Two cases: Before and after insertion of vertex vi.

From the stretching approach, described in Section 2.1, we have to come to an
exact computation of every rectangle in the representation. For this computation a

165

simple adaption of the 'Shif t ' -method of Chrobak & Payne yields the desired result
[2]. In Figure 9 an example is given.

8

1 2

(a) A canonical numbered triangulated planar graph

...... !:!!!!!!':! , i
(b) The r 2-v/s~bility repi'e sen ~.lion

Fig. 9. Example of the algorithm.

Observe that the layout will be stretched when inserting vertex vl by the number
of incoming edges to vi - 1 . The - 1 comes from the fact that we do not need to stretch
the highest indexed vertex v~,. Summing this up over all vertices (~ i indegree(v i) -
1 < 3n - 6 - n) gives a bound of 2n on the sum of the height and the width of the
layout. We state this result in the following

T h e o r e m 3 For every p lanar graph G = (V, E) with IV[= n, there is a 2-visibility
drawing for G that uses an area x • y where x + y <_ 2 . n.

The bound of x-Fy < 2.n is tight, since it is not difficult to construct a triangulated
planar graph, for which this algorithm indeed requires this area. Notice also that the
required area heavily depends on the chosen canonical ordering. Again, it is not
difficult to construct a planar graph, requiring an area of size n x n for one ordering,
and an area of size n x 3 for another canonical ordering. Using some more refinements
of the canonical ordering, it is not hard to improve the theorem above by the fact
z _< n and y _< n, but it is certainly not trivial to improve the 2 �9 n bound.

However, for 4-connected planar graphs we can easily improve this area bound.
For this purpose, we use an observation made in .[8]. When we insert vertex vi with
the incoming edges from v,~l,. . . , v,~ k there is only one local minimum in the sequence
of these vertices. Let v~, be the vertex with minimal index in the sequence. Note
tha t in the current representation yak lies at the point where a vertical segment of
the staircase hits a horizontal one.

Here it is sufficient to stretch only this single vertex v~, by one unit such that
it can see vi, and to update the staircase-structure (see Figure 8). This means that
inserting vertex vi stretches the layout by only one unit. Moreover, similar as in the
3-connected case, we have the choice whether we stretch in horizontal or vertical
direction. Hence we can balance width and height of the layout such that our result
is the following:

166

T h e o r e m 4 For every $-connected planar graph G = (V, E) with IV[= n, there is
a 2-visibility drawing for G that uses an area x x y where x = y < n/2.

The following lower bounds shows that the upper bounds achieved by the linear
time algorithms above are getting close to the lower bounds.

T h e o r e m 5 There is a planar graph G = (V, E) with IV] = n, such that all 2-
visibility drawings for G have an area x • y where x + y > 5/3 . n, x >_ 2 / 3 . n and
y >_

Proof. Let G be the graph of n/3 nested triangles, which are internally triangulated.
Note that each triangle needs at least 2 horizontal and 2 vertical lines for the real-
ization. Since the triangles are nested, the width and the height of the layout is at
least 2n/3.

We can get an even better bound on the area if we determine the triangulation
in the way as shown in the next figure. Extensive case analysis shows that for the
realization of the triangulation an extra horizontal or vertical line is necessary, such
that height + width is increased by 5 units when we add a new triangle.

3

Hi. l

1 2

r
3 I

• I •

1 2

Hi§

Fig. 10. The lower bound example drawn in height + width _ 5/3. n

Applying the same approach for a set of nested rectangles, we get the following:

T h e o r e m 6 There is a ~-connected planar graph G = (V~ E) with IV[-- n, such that
all 2-visibility drawings for G have an area x x y where z > n /2 and y >>_ n/2.

5 Conc lus ion

In this paper we presented several practical approaches for producing 2-visibility
drawings of planar graphs. The purpose of this paper is to emphasize this model and
to demonstrate the quality of the resulting drawings. Moreover, we also presented
theoretical upper bounds with respect to the required area. Our opinion is that that

167

for practical purposes 'weak' visibility drawings have no disadvantages compared to
'strong' visibility drawings, and will lead to improved practical drawings.

On the other hand, there is certainly a lack of theory. Up to now there are hardly
any properties and theorems derived for 2-visibility as it happened for 1-visibility.
The reason is that the 2-visibility concept is much stronger as it is used here. We
only used it for planar drawings, but even some thickness-two graphs (sparse non-
planar graphs) can be drawn in this model, of course yielding crossings of horizontal
and vertical edges. Unfortunately, unclear is the exact characterization of the class
of graphs, admitting a 2-visibility representation with crossing edges. Hence, more
theoretical work is required on the area bounds, as well as a precise characterization
of the balance between horizontal and vertical edges. Also theory with respect to the
maximum and total edge length is a field for further research.

On the practical side, it is interesting to test the behaviour of the presented
algorithms for several different subclasses of planar graphs. Especially the influence
of the edge balance on the size of the rectangles for the vertices and the area yields
very interesting questions.

R e f e r e n c e s

1. Biedl T. and G. Kant, A better heurisitic for orthogonal graph drawings, Proc. 2nd
Ann. European Symposium on Algorithms (ESA '9~), LNCS 855, Springer-Verlag, pp.
24-35, 1994.

2. Chrobak, M., and T.H. Payne, A Linear Time Algorithm for Drawing Planar Graphs
on the Grid, Tech. Rep. UCR-CS-90-Z, Dept. of Math. and Comp. Science, University
of California at Riverside, 1990.

3. Di Battista G., P. Eades, R. Tamassia and I.G. Tollis, Algorithms for automatic graph
drawing: an annotated bibliography, Computational Geometry: Theory and Practice 4,
pp. 235-282, 1994.

4. Fraysseix, H. de, J. Pach and R. Pollack, How to draw a planar graph on a grid,
Combinatorica 10, pp. 41-51, 1990.

5. FSBmeier, U., and M. Kaufmann, Drawing high degree graphs with low bend numbers,
Proc. 4th Symposium on Graph Drawing (GD'95), LNCS 1027, Springer-Verlag, pp.
254-266, 1995.

6. Hutchinson, J.P., T. Shermer and A. Vince, On representation of some thickness-two
graphs, Proc. 4th Symposium on Graph Drawing (GD'95), LNCS 1027, Springer-Verlag,
pp. 324-332, 1996.

7. Kant, G., A more compact visibility representation, Proc. 19th Intern. Workshop on
Graph-Theoretic Concepts in Comp. Science (WG'93), LNCS 790, Springer-Verlag, pp.
411-424, 1994.

8. Kant, G., and X. He, Two algorithms for finding rectangular duals of planar graphs,
Proc. 19th Intern. Workshop on Graph-Theoretic Concepts in Comp. Science (WG'93),
LNCS 790, Springer-Verlag, pp. 396-410, 1994.

9. Kirkpatrick, D.G., and S.K. Wismath, Weighted visibility graphs of bars and related
flow problems, Proc. 1st Workshop Algorithms Data Structures (WADS'89), LNCS 382,
Springer-Verlag, pp. 325-334, 1989.

10. Mutzel, P., The Maximum Planar Subgraph Problem, Doctoral Dissertation, K/~tn 1994.
11. Papakostas A. and I. Tollis, Improved algorithms and bounds for orthogonal drawings,

Proe. DIMACS Workshop on Graph Drawing (GD'94), LNCS 894, Springer-Verlag, pp.
40-51, 1994.

12. Rosenstiehl, P., and R.E. Tarjan, Rectilinear planar layouts and bipolar orientations of
planar graphs, Discrete Comput. Geom. 1, pp. 343-353, 1986.

168

13. Tamassia, R., On embedding a graph in the grid with the minimum number of bends,
SIAM Journal of Computing 16~ pp. 421-444, 1987.

14. Tamassia, R., G. Di Battista and C. Batini, Automatic graph drawing and readability
of diagrams, IEEE Trans. on Systems, Man and Cybernetics 18, pp. 61-79, 1988.

15. Tamassia R. and I. Tollis, A unified approach to visibility representations of planar
graphs, Discrete and Computational Geometry 1, pp. 321-341, 1986.

16. Tamassia, R., and I.G. Tollis, Efficient embedding of planar graphs in linear time, in:
Proc. IEEE Int. Syrup. on Circuits and Sgstems, Philadelphia, pp. 495-498, 1987.

17. Thomassen, C., Rectilinear drawings of graphs, J. Graph Theory 12, pp. 335-341, 1988.
18. Wismath~ S.K., Characterizing bar line-of-sight graphs, Proc. Ist Annual A CM Syrup.

on Computational Geometry 7 pp. 147-152, 1985.

i

E3--E] L__

Fig. 11. Applying the first algorithm of Section 3.2 to the A-graph of the competition in
GD'95 (two edges are omitted due to planarity)

