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Radio-over-Free-Space-Optics (Ro-FSO) is a promising technology for future wireless networks. In this work, we have designed a hybrid

orthogonal frequency division multiplexing (OFDM) Ro-FSO system for transmission of two independent channels by mode division multi-

plexing. Two independent 40 GHz radio signals are optically modulated at 20Gbps by mode division multiplexing of two laser modes LG00

and LG10 and transmitted over a free-space link of 20 km to 100 km. The performance of proposed Ro-FSO system is also evaluated under

the effect of strong atmospheric turbulences.
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1 INTRODUCTION

The escalating bandwidth demand for future pervasive wire-

less networks has led to the rise of Radio-over-Free-Space-

Optics (Ro-FSO) which has advantageous features of both

radio-over-fiber (RoF) and free-space-optics (FSO). The lim-

ited availability of radio frequency (RF) spectrum has chal-

lenged the International Telecommunication Union (ITU) in

the distribution of the available spectrum among mobile op-

erators [1]. The main benefits of RoF technology includes the

ability to distribute RF signals at large bandwidth using an

optical carrier at low attenuation losses, immunity to radio

frequency interference and low power consumption [2]. RoF

technology has been the driver for sharing expensive equip-

ment responsible for processes such as coding & decoding,

multiplexing & de-multiplexing, frequency up-down conver-

sion from the centralized station to all base stations. This re-

sults in reduction in cost and system complexity. On the other

hand, FSO utilizes the atmosphere for transmission of signals

instead of fiber optics. The transmitting lens projects the light

signal in the atmosphere towards the receiving lens. FSO has

become very attractive as an alternative for radio base sta-

tions and optical fiber given its ability to cope with high band-

width without expensive cabling, license-free operation and

imperceptibility to interference due to line-of-sight transmis-

sion [3, 4].

A Ro-FSO system harnesses the assets of both RoF and FSO

technologies by incorporating the high bandwidth of opti-

cal networks and the mobility of wireless networks. Much

attention has been given to increasing the speed of Ro-FSO

systems. In an experiment [5], a wavelength division mul-

tiplexing scheme (WDM) is deployed to transmit the multi-

ple RF signals over free space. In an experiment [6], dense

wavelength division multiplexing (DWDM) scheme is em-

ployed to carry the RF signals over a free space link hav-

ing a span of 1 km. In another experiment [7], the perfor-

mance of OFDM is investigated in a Ro-FSO system for short

range applications. Apart from wavelength multiplexing, for

further increase in the capacity of Ro-FSO systems, mode di-

vision multiplexing (MDM) may be used as another mul-

tiplexing dimension. MDM allows transmission of a num-

ber of channels on different modes generated by various

mechanisms such as by means of a spatial light modula-

tor (SLM) [8, 9], optical signal processing [10]−[12], pho-

tonic crystal fiber [13] and single mode fiber [14]. MDM of

various orthogonal modes has been demonstrated for FSO.

In [15], the performance of MDM of three orbital angular

momentum (OAM) modes of l = 1, 3, 5 from two reflec-

tive SLMs encoding spiral phase patterns through free-space

was evaluated under emulated atmospheric turbulence by

characterizing the effects of turbulence on crosstalk and sys-

tem penalty. In [16], MDM of four 42.8 Gb/s OAM modes

(l = +4, -8, +8, +16) was demonstrated by spiral phase masks

encoded on SLMs, each polarization multiplexed on two po-

larizations using polarizing beam splitters for carrying 16-

level quadrature amplitude modulation (QAM) signals, thus

realizing a capacity of 42.8×4×4×2 Gbit/s. In another three-

dimensional multiplexing experiment [17], quadrature phase

shift keying (QPSK) signals were transmitted on 12 OAM

beams generated using a phase mask on the first SLM to

generate OAM beams with l = ±4, ±10, ±16 and another

phase plate on the second SLM to generate OAM beams with

l = ±1, ±7, ±13 and ±19, each transmitted on 2 polariza-

tions and 42 spaced wavelengths, achieving 1008 data chan-

nels at an aggregate rate of 100.8 Tb/s. In [18], the Laguerre-

Gaussian correlated Schell-model (LGCSM) vortex beam was
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FIG. 1 Proposed 2 ×20 Gbps Hybrid Ro-FSO Transmission System.

generated through conversion of a LGCSM beam with the

help of a spiral phase plate encoded on a SLM and the beam

profile in the far-field was shaped by varying its initial spa-

tial coherence. In [19], orbital angular multiplexing was used

for transportation of 2 Tb/s data on 25 wavelengths. In [20], a

silicon-on-insulator (SOI) wafer was fabricated for free-space

MDM coherent optical transmission using five OAM modes

(l = 0, ±1, ±2) for binary and quadrature phase shift key-

ing. In [21], it is demonstrated that several partially overlap-

ping fundamental Gaussian beams that are mutually inco-

herent are effective for reducing scintillations in FSO links.

Numerical analyses have also been investigated on various

types of mode profiles for FSO. In [22], expressions for av-

erage intensity and effective size of Laguerre-Gaussian and

Bessel-Gaussian Schell-model beams are derived under atmo-

spheric turbulence with detailed analyses on the effects of the

atmospheric turbulence and source coherence on the inten-

sity profile and beam profile. In [23], analytical expressions

for the cross-spectral density and second-order moments of

Wigner distribution function of a Laguerre-Gaussian Schell-

model (LGSM) beam in turbulent atmosphere are derived to

investigate statistical properties such as the degree of coher-

ence and the propagation factor. The analysis shows that a

LGSM beam with larger mode order n is less affected by tur-

bulence. In [24], the expression of spectral density of cosine-

Gaussian-correlated Schell-model (CGSM) beams diffracted

by an aperture is derived to investigate the changes in the

spectral density distribution of CGSM beams through prop-

agation.

Although extensive experimental and numerical analyses

have been undertaken for MDM of various modes in FSO,

thus far, not much attention has been given to MDM in

Ro-FSO systems. In this paper, we present for the first time

radio QAM-OFDM 2 ×20 Gbps 40 GHz Ro-FSO system by

with Laguerre-Gaussian MDM scheme for long haul commu-

nication. The originality of this study is in the combination of

radio QAM-OFDM and optical MDM in FSO, in addition to

the mode multiplexer-demultiplexer design. The objective of

this study is to evaluate the performance of the combination

of radio QAM-OFDM and optical MDM through FSO using

a new mode multiplexer-demultiplexer design. In terms of

scientific merits, our results demonstrate that the combination

of radio OFDM and optical MDM is capable of extending the

FSO distance to 90 km under clear weather conditions. The

performance of such Ro-FSO system is also reported under

the effect of scintillations. The rest of the paper is organized as

follows: Section 2 describes the system description; Section 3

describes the result and discussion followed by the Section 4

in which the conclusion is presented.

2 SYSTEM DESIGN

A schematic diagram of proposed hybrid high speed Ro-FSO

transmission system is shown in Figure 1. In the proposed

system, two Laguerre-Gaussian (LG) modes LG00 and LG10

were multiplexed through free-space. The transverse spatial

profile of the LG mode in the source plane z = 0 is described

by [25]:

ψm,n (r, 0, θ) =

(

r

ω0

)m

Lm
n

(

r2

ω2
0

)

exp (jmθ) (1)

where Lm
n is the associated Laguerre polynomial, n and m

represent the azimuthal and radial mode numbers,

r = (x2 + y2)1/2 is the radius of curvature, θ = tan−1(y/x)

and w0 is the beam waist width of the fundamental Gaussian

mode. Linearly polarized transverse electric field of the two

LG modes to be transmitted were experimentally generated

using a transmissive binary amplitude SLM, three lenses and

a pinhole, based on [26]. The construction of the mode trans-

mitter is shown in Figure 2. A binary grating for the LG modes

was encoded on a spatial light modulator. A collimated beam

from the laser was expanded and directed through the spatial

light modulator. The binary hologram from the spatial light

modulator was Fourier transformed by the first lens of focal

length 300 mm. A 0.2 mm pinhole was then used to retrieve

the first diffraction order which was then scaled by the second

lens of focal length 100 mm and third lens of focal length

3 mm. The modal fields were then concentrically combined.

The amplitude and phase of the generated modal electric

field were measured and inserted into the OptiSystemTM

software. The electric field intensities of the generated LG00

and LG10 modes are given in Figure 3(a) and Figure 3(b)

respectively. The electric field intensity of the combination

of both modes are shown in Figure 3(c). The modulation

and wave propagation were modelled in MATLAB and
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FIG. 2 LG mode wavefront multiplexer.

FIG. 3 Intensity fields of generated LG modes (a) LG00 (b) LG10 (c) LG00 + LG10.

Parameters Value

Transmitter Aperture Diameter 3 µm

Receiver Aperture Diameter 10 cm

Beam Divergence 2 µrad

Spatial CW Laser Power 0 dBm

Spatial CW Laser Linewidth 10 MHz

TABLE 1 System Parameters

Optisystem. Simulation parameters are given in Table 1. Two

independent 40 GHz radio signals were modulated using a

4-level quadrature amplitude modulation (QAM) followed

by modulation by 512 OFDM subcarriers. The purpose of

the OFDM modulation is to reduce the multipath fading

effect incurred during the transmission through FSO link.

The OFDM approach divides the data over a huge number of

sub-carriers, which are separated from each other at narrow

frequencies.

The OFDM signal was then modulated at 7.5 GHz by using

quadrature modulator (QM). This OFDM-QM modulated sig-

nal was then fed to a lithium niobate modulator which mod-

ulated the two experimental LG modes at 40 GHz. The mod-

ulator is assumed to preserve the modal stability of the two

channels. The output from the two channels were transmitted

over the FSO link.

The link equation for free space optics is modelled by [23]:

Precieved = Ptransmitted
d2

R

(dT + θR)
10−αR/10 (2)

where dR defines receiver aperture diameter, dT is the

transmitter aperture diameter, θ is the beam divergence,

R is the range and α is the atmospheric attenuation. A

Gamma-Gamma distribution is assumed under intensity

scintillation [24] to model atmospheric fading. The probabil-

ity of a given intensity is:

P(I) =
2(αβ(α+β)2

Γ(α)Γ(β)
I

α+β
2 −1Kα−β

[

2(αβI)1/2
]

(3)

where

α = exp

[

0.49σ2
R

(1+1.11σ12/5
R )

5/6

]

− 1, β = exp

[

0.51σ2
R

(1+0.69σ12/5
R )

5/6

]

− 1,

α and β are the variances of small and large scale eddies

respectively [27], Γ is is the gamma function and Kα−β is

the modified Bessel function of the second kind. The Rytov

variance [27] for atmospheric scintillations is assumed:

σ2
R = 1.23C2

nk7/6z11/6 (4)

where Cn is the refractive index structure, k is the optical

wavenumber and z is the range. Atmospheric turbulence is

described by Kolmogorov theory [27]−[29] where the refrac-

tive index is expressed as

n(~r, t) = n0 + n1(~r, t) (5)

whereby n0 is the average index and n1 is the fluctuation in-

duced by spatial variations of temperature and pressure in the

atmosphere. The spatial coherence of the refractive index is

governed by [27]−[29]:

ρn1
(~r1, ~r2) = E [n(~r1, t)ṅ(~r2, t)] (6)
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FIG. 4 Spatial photodetector consisting of inner circular aperture for LG00 mode and

outer ring aperture for LG10 mode.

(a) (b)

FIG. 5 Transmission of LG00 and LG10 Channels (a) SNR (b) Total Power.

The wavenumber spectrum Φn(~k) is the spatial Fourier trans-

form of ρn1
(~r1, ~r2) described by [27]−[29]:

Φn(~k) = 0.033C2
nk−11/3 (7)

where Cn is the refractive index structure given by [27]:

C2
n = K0z−1/3exp

(

−
z

z0

)

(8)

where K0 describes the turbulence strength and z0 is the effec-

tive height of the turbulent atmosphere. C2
n varies with the tur-

bulence strength. C2
n = 1 × 10−16 m−2/3 for weak turbulence

and C2
n = 1 × 10−12 m−2/3 for strong turbulence. The com-

bined signal was then transported over the FSO link and post-

amplified using a semiconductor optical amplifier (SOA) with

an injection current of 0.5 A. The SOA is modelled to amplify

both modes equally. Fraunhoffer diffraction is considered for

calculating the wavefield across the (x, y) receiving plane [30]:

U(x, y) =
exp(jkz)exp

(

jk
2z

(

x2 + y2
)

)

jλz
× · · ·

∫ ∫

∞

−∞

U(ǫ, η)exp

[

−j
2π

λz
(xǫ + yη)

]

dǫdη

(9)

where U(ǫ, η) is the wavefield generated across the transmit-

ting a plane from the spatial light modulator, pinhole and

three lenses. z is the free-space distance.

The demultiplexing at the reeiver was simulated in Op-

tiSysytem. The modes were demultiplexed using a spatial

(c)

(d)

(e)

(f)

FIG. 6 RF spectrum (a) LG00 at 60 km (b) LG00 at 100 km (c) LG10 at 60 km (d) LG10 at

100 km.

photodetector wherein an inner circular aperture of 5 cm was

used to extract the LG00 mode and an outer ring aperture of

10 cm was used to extract the LG10 mode. The spatial pho-

todetector is shown in Figure 4. The received power between

the two apertures were adjusted such that the intensities on

both the circular and outer apertures were equal. A 40 GHz

was applied after the photodetector using a mixer in order

to recover the SCM signal. Finally the output signal after the

mixer was fed to the OFDM demodulator followed by the

QM demodulator in order to recover the original data.

3 RESULTS & DISCUSSION

The results from the simulation of the signal propagation

through free-space are reported in this section. The two

OFDM-Ro-FSO channels are transported over the free space

link under clear weather conditions.

It is shown in Figure 5(a) that the value of SNR at the receiver

for LG00 channel is 39.56 dB, 36.64 dB and 23.35 dB for an

FSO link of 20 km, 60 km and 100 km respectively whereas

for LG10, the SNR is 35.21 dB, 28.57 dB and 14.70 dB for an

FSO link of 20 km, 60 km and 100 km respectively. From

Figure 3(b), the total power received at the receiver is

53.12 dBm, -62.96 dBm and -76.65 dBm for an FSO link

of 20 km, 60 km and 100 km respectively whereas for

LG10 mode, the total power is -61.67 dBm, -71.42 dBm and

-85.62 dBm for an FSO link of 20 km, 60 km and 100 km.

This shows that under clear weather conditions the proposed

Ro-FSO system will prolong to 90 km with the acceptable

SNR and received power.
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(g)

(h)

(i)

(j)

FIG. 7 Constellations Diagram (a) LG00 at 40 km (b) LG00 at 100 km (c) LG10 at 40 km

(d) LG10 at 100 km.

(k)

(l)

(m)

(n)

FIG. 8 Under strong turbulences (a) SNR for LG00 (b) Total Received Power for LG00 (c)

SNR for LG10 (d) Total Received Power for LG10.

The RF spectrum received in Figure 6 indicates that the RF

power degrades as the transmission link increases. Also, more

power is received in the LG00 mode compared to the LG10

mode regardless of the distance. This is due to the transforma-

tion of the LG10 mode beam profile into a more Gaussian-like

distribution whereas the beam profile of LG00 changes less

with distance.

Figure 7 reveals the constellation diagrams of the proposed

Ro-FSO transmission system under clear weather conditions

which indicates that for both the channels the constellation is

more precise at 40 km but as the link distance is increased up

to a span of 100 km, the noise spectrum increases which makes

the constellation distorted. Also, the constellation for the LG00

mode is clearer than the constellation for the LG10 mode re-

gardless of the distance. This is the result of more power col-

lected by LG00 as compared to LG10 due to higher shape dis-

tortion in LG10 with distance.

The effect of scintillations for the system is also calculated in

Figure 8. Degradations of 13.24 dB in SNR and -12.56 dBm in

total received power are reported for a FSO length of 100 km

for a LG00 channel under high turbulences in the form of scin-

tillations as compared to the LG10 channel for which degrada-

tions of 10.22 dB in SNR and -10.12 dBm in received power are

reported at the same FSO length. This indicates that the pro-

posed Ro-FSO system will prolong to 60 km under the effect of

strong turbulences with acceptable SNR and received power.

4 CONCLUSION

Two optical LG modes, LG00 and LG10 were multiplexed for

transmitting 40 GHz radio QAM-OFDM signals through free-

space at a data rate of 20 Gbps for long haul communication.

At the receiver, LG00 outperforms LG10 for signal retrieval in

terms of the received power and signal constellation regard-

less of the distance. The achievable distance is 90km under

clear weather condition. When scintillation is considered, the

achievable distance is 65 km.
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