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1 Introduction

Recent years have witnessed a resurgence of activity in studying holographic correlation

functions using the AdS/CFT correspondence. An abundance of interesting new results has

been obtained by leveraging modern techniques, thanks to an inflow of ideas and technolo-

gies from the conformal bootstrap and the scattering amplitude program. The progress is

especially evident in the paradigmatic example of 4d N = 4 Super Yang-Mills theory, which

is dual to IIB string theory on AdS5 × S5. At the level of two-derivative supergravity, all
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the four-point functions of one-half BPS operators have been obtained at subleading order

in 1/N by solving an algebraic bootstrap problem in Mellin space [1, 2].1 The complete

set of tree-level four-point correlators contains a wealth of physical information. However,

extracting the data is still highly nontrivial since the double-trace operators in the oper-

ator product expansion have degenerate contributions. One therefore needs to solve the

associated mixing problem by exploiting the knowledge of all four-point functions. In [6–8]

machinery for performing a systematic analysis was developed, and the complete anoma-

lous dimension spectrum of double-trace operators has been obtained [9]. The tree-level

data in turn allows one to further obtain one-loop results, by using “AdS unitarity meth-

ods” [6–8, 10–12]. More precisely, this is achieved by feeding the anomalous dimensions and

OPE coefficients into the crossing equation, and focusing on the double-discontinuity [13].

The one-loop four-point functions are rather cumbersome in position space. However, the

corresponding Mellin amplitudes look remarkably simple [14], suggesting that the Mellin

representation remains a natural language beyond tree level. Furthermore, four-point func-

tions receive higher-derivative corrections from AdS string theory, which are suppressed by

inverse powers of the ’t Hooft coupling. These stringy effects have recently been studied

in [15, 16] at both tree level and at one loop,2 showing an interesting interplay between

Mellin amplitudes and flat space scattering amplitudes. These results shed new light on

quantum gravity from the CFT perspective, and constitute new precision tests of the

AdS/CFT correspondence. While the AdS5×S5 background has attracted most attention,

many interesting results have been obtained for other string theory/M-theory backgrounds

as well. See [18–29] for some recent developments.

In this paper we will initiate a systematic study of five-point functions from tree-level

IIB supergravity on AdS5 × S5, as a first step towards extending the above program to

arbitrary n-point functions. There are several motivations for considering higher-point

correlators. First of all, a very practical reason to study holographic correlators is to

extract CFT data at strong coupling. Considering higher-point correlation functions of

one-half BPS operators allows us to access new unprotected data not contained in their

four-point functions. This becomes especially clear when we look at OPE limits. For

example, by taking the OPE limit for one pair of operators in the five-point function,

we can obtain four-point functions with one unprotected double-trace operator. These

four-point functions encode infinitely many new unprotected three-point functions, which

can be extracted after taking another OPE limit. Secondly, previous studies of four-point

functions suggested an intricate relation between holographic correlators and scattering

amplitudes in flat space. Many aspects of holographic correlators appear to be analogous

to the ones in flat space. We would like to further explore these connections and sharpen

the analogies, by studying five-point functions. In particular, we will demonstrate how

factorization, an important tool for flat space amplitudes, can be used to understand the

structure of correlation functions from AdS supergravity. Finally, the study of correlators

at strong coupling is motivated by the possibility of discovering unexpected structures.

1See [3–5] for several highly nontrivial checks of this result by explicit supergravity calculations.
2See also [17] for earlier discussion at the tree level.
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Recently, it was observed that tree-level one-half BPS four-point functions from AdS5×S5

exhibit a hidden ten dimensional conformal symmetry [30].3 In terms of this symmetry,

four-point functions of different conformal dimensions can all be related to each other. It

is interesting to see if such a symmetry also exists in higher-point correlation functions.

This may shed some light on its mysterious origin.

Results of five-point functions at strong coupling are scarce. To classify them, it is

useful to grade the correlators by ascending extremality E, which is defined by 2E =∑4
i=1 ki − k5. Here ki are the scaling dimensions of the operators and we have assumed k5

is the largest. R-symmetry selection rules require E to take integer values. For E = 0 and

E = 1, the five-point functions are called extremal and next-to-extremal. In these cases, it

is known that the five-point functions are protected by non-renormalization theorems [31–

35] and therefore can be obtained from the free theory. If we further increase E by one,

the five-point functions are no longer protected and start to become nontrivial. It was

argued in [36] that such five-point functions should have factorized structures and can be

expressed in terms of lower-point correlators. These near-extremal correlators (E = 0, 1, 2)

however are very special, and the derivation of these results (from the bulk side) rely heavily

on the fact that extremal couplings vanish.4 When the extremality is further increased,

i.e., E ≥ 3, one encounters the generic case and no such simplification exists. One would

imagine that examples of generic five-point functions may have been computed using the

traditional algorithm of Witten diagram expansion. However the traditional algorithm is

too complicated to be a practical recipe. Implementing this method requires inputting

all the precise vertices, which can be in principle obtained from expanding the effective

supergravity Lagrangian to the quintic order. Such an expansion is devilishly complicated

and has never been attempted in the literature.

In this paper, we will develop new techniques for computing five-point correlators with

arbitrary extremality. Since a brute force approach is not viable, our strategy is to avoid

the details of the effective Lagrangian as much as possible. We accomplish this by using

superconformal symmetry and self-consistency conditions, in the same spirit of [1, 2]. Let

us sketch the methods and state our main results. For simplicity and concreteness, we will

focus on the five-point function of the 20′ operator, which is the bottom component of the

stress tensor multiplet.5 Although the methods will be phrased in this particular context,

it will be clear that they can be applied to general five-point correlators after some obvious

modifications. The starting point of our method is an ansatz which splits into a singular

part and a regular part. The singular part includes all possible exchange Witten diagrams,

and the regular part contains all possible contact Witten diagrams. The coefficient of

each diagram could be computed if the vertices were known, but we will leave them as

undetermined coefficients. To solve this ansatz, we use superconformal symmetry and self-

3See also [28] for an analogous story in AdS3 × S3 where a hidden six dimensional conformal symmetry

emerges in the tree-level supergravity four-point correlators.
4The vanishing of extremal couplings is a self-consistency condition. This is because extremal contact

Witten diagrams are divergent but the effective action should be finite.
5The five-point function 〈O20′O20′O20′O20′O20′〉 has extremality E = 3, and therefore belongs to the

generic case.
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consistency conditions. The singular part can be uniquely fixed by using factorization in

AdS space. Roughly stated, the factorization condition means that the “residue” of the

five-point function at an internal bulk-to-bulk propagator is a “product” of three-point

functions and four-point functions. This can be stated more precisely in Mellin space [37].

To fix the regular part, we use the chiral algebra twist [38], which predicts that the twisted

five-point function is the same as in the free theory. This fixes all but one coefficient in the

ansatz, which multiplies a structure insensitive to the chiral algebra constraint. The last

coefficient can be determined by further using an independent topological twist [39] which

involves the entire SO(6) R-symmetry group. This gives the complete answer to the 20′

five-point function from AdS supergravity, and is one of the main results of this paper. We

will also discuss a variation of this method which starts with an ansatz in Mellin space.

The alternative method avoids certain position space calculations and is more suitable

for generalizing to higher-weight five-point functions. The final result is expressed as a

Mellin amplitude in (5.6), and takes a very compact form. As a technical development,

we have also set up systematic methods to compute five-point conformal blocks in series

expansions. This allows us to perform a conformal block decomposition for the 20′ five-

point function and extract new data. For simplicity, we looked at the Euclidean OPE and

restricted our attention to the singular and leading regular terms. By taking a single OPE

limit, we obtain a new four-point function with three 20′ one-half BPS operators and one

unprotected double-trace operator. The result can be compactly written as a combination

of D-functions, which is presented in (6.23). By taking a double OPE limit, we extract

various three-point functions. The protected three-point functions we found are in perfect

agreement with their free theory values, which constitute nontrivial consistency checks of

our result. We also extract a new unprotected three-point function (6.20) involving one

20′ one-half BPS operator and two operators from semi-short multiplets. The unprotected

three- and four-point functions give new predictions of N = 4 SYM at strong coupling.

We hope these results can one day be compared with the integrability program.

The rest of the paper is organized as follows. In section 2 we discuss the superconformal

kinematics of the five-point function. In section 3 we review the Mellin representation and

the factorization of Mellin amplitudes. After these preparations, we introduce our position

space method in section 4 and compute the five-point function of the 20′ operator. In

section 5 we point out an alternative approach using Mellin space, which simplifies some

calculations in position space. The result for the five-point function is analyzed in section 6,

where we perform consistency checks and extract new CFT data. Various technical details

are relegated to the appendices.

2 Superconformal kinematics

The 20′ operator OIJ
20′ = tr(Φ{IΦJ}) has protected conformal dimension ∆ = 2 and trans-

forms in the rank-2 symmetric traceless representation of SO(6)R. It is the superconformal

primary of the 1/2-BPS multiplet which also contains the R-symmetry current J [IJ ]
µ and

the stress tensor Tµν . Our primary object of study is the five-point correlation function of

– 4 –
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20′ operators

〈OI1J1
20′ (x1)OI2J2

20′ (x2)OI3J3
20′ (x3)OI4J4

20′ (x4)OI5J5
20′ (x5)〉 . (2.1)

It is convenient to absorb the R-symmetry indices by contracting with null R-symmetry

vectors tI

O20′(x, t) ≡ OIJ
20′tItJ , tItI = 0 . (2.2)

The contraction automatically projects the operator into the symmetric traceless represen-

tation and turns the five-point correlator into a scalar function which depends not only on

the spacetime coordinates but also the R-symmetry coordinates

G5(xi, ti) = 〈O20′(x1, t1)O20′(x2, t2)O20′(x3, t3)O20′(x4, t4)O20′(x5, t5)〉 . (2.3)

It is easy to see that the null vectors can only appear in G5(xi, ti) as polynomials of

tij ≡ ti·tj . Moreover, G5(xi, ti) is subject to the homogeneity condition that under ti → λiti

G5(xi, ti) → λ21λ
2
2λ

2
3λ

2
4λ

2
5G5(xi, ti) (2.4)

where the λi are independent. A basis of R-symmetry structures for G5 is then given by

all the monomials of tij satisfying the homogeneity condition. There are 22 such terms,

which can be dividided according to the lengths of their cycles, as explained in figure 1

A(ijklm) = tijtjktkltlmtmi ,

A(ijk)(lm) = tijtjktkit
2
lm . (2.5)

The basis vectors are in one-to-one correspondence with the inequivalent Wick contractions

of the ΦI fields in the free theory limit. We can parameterize the five-point function such

that each R-symmetry structure is multiplied with a function of the spacetime coordinates.

However, the full correlator is invariant under permutations of the five external operators.

As we can easily check, crossing symmetry permutes separately the R-symmetry structures

{A(ijklm)} and {A(ijk)(lm)}. Therefore the various functions multiplying the different R-

symmetry monomials in the same group are interrelated under crossing, and in the end

there are only two independent functions of spacetime coordinates in the five-point func-

tion. We can further exploit the conformal covariance to extract a kinematic factor from

the correlator

G5 =
x213

x412x
4
35x

2
14x

2
34

G5(Vi; ti) . (2.6)

The kinematic factor takes care of the covariance under conformal transformations, and

the five-point correlator becomes a function of the five conformal cross ratios6

V1 =
x212x

2
34

x213x
2
24

, V2 =
x214x

2
23

x213x
2
24

, V3 =
x214x

2
35

x213x
2
45

, V4 =
x215x

2
34

x213x
2
45

, V5 =
x212x

2
35

x213x
2
25

. (2.8)

6Similarly, the correlator depends also on five R-symmetry cross ratios, which can be chosen as

σ1 =
t25t34
t24t35

, σ2 =
t31t45
t35t14

, σ3 =
t24t15
t14t25

, σ4 =
t12t35
t25t13

, σ5 =
t14t23
t13t24

. (2.7)
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i

j

k

l

m

A(ijklm)

i

j

k

A(ijk)(lm)

l

m

Figure 1. Each line between points i and j corresponds to a factor of tij . We can then see

that there are two types of structures, A(ijklm) and A(ijk)(lm), with one and two closed cycles

respectively. Note that each cycle is invariant under cyclic permutations and reflection, so the

number of independent structures is given by the number of ways to distribute the points into the

cycles, modulo those symmetries.

So far we have exploited only the bosonic part of the superconformal group PSU(2, 2|4).
The fermionic charges impose further constraints on the correlator. One such constraint

comes from the special properties of 1/2-BPS correlation functions under twisting a sub-

algebra su(1, 1|2) ⊂ psu(2, 2|4), known as the chiral algebra twist [38]. In order to perform

the twist, we restrict all five operators to a two-dimensional plane inside R
4. This allows

us to parameterize the positions of these operators in terms of the holomorphic and anti-

holomorphic coordinates zi, z̄i. The t
5 and t6 components of the six-dimensional null vector

tI are set to zero, reducing the null vector into a four-dimensional one denoted as tµ. The

vector tµ can be further written as the product of a pair of spinors

tµ = σµαα̇ v
αv̄α̇ . (2.9)

Rescaling v and v̄ amounts to multiplying t with a number, which does not change the null

vector since it is defined modulo rescaling. Both vα and v̄α̇ therefore have only one degree

of freedom, and can be written as

vi =

(
1

yi

)
, v̄i =

(
1

ȳi

)
. (2.10)

When the R-symmetry orientations of the operators are correlated with the positions on

the plane

ȳi = z̄i , (2.11)

the construction of [38] dictates that the twisted five-point function becomes a holomorphic

function of the zi only

G5(zi, z̄i; yi, ȳi = z̄i) = g(zi; yi) . (2.12)

Moreover, the twisted correlator is independent of the marginal coupling, and therefore

equal to its free field value

g(zi; yi) = gfree(zi; yi) . (2.13)

– 6 –
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The holomorphic requirement of the twisted correlator imposes nontrivial constraints on

the structure of the correlation function G5. A similar twist applies to the holomorphic

variables.

Another important constraint comes from performing an independent topological twist

which probes the full SO(6) R-symmetry group [39]. Unlike in the chiral algebra twist,

operators are inserted at generic points xi ∈ R
4, with position-dependent polarizations

t = (2ix1, 2ix2, 2ix3, 2ix4, i(1− (xµ)2), 1 + (xµ)2) . (2.14)

Such twisted n-point correlation functions preserve two common supercharges.7 Moreover,

the twisted translations and the exactly marginal deformation are exact with respect to

the preserved the supercharges. The SO(6) twisted correlators are therefore topological

and protected. All in all, the topological twist imposes the constraint that

G5(xi, tij = x2ij) =
20
√
2

N
+

48
√
2

N3
(2.15)

where the two-point function of O20′ is unit normalized, and the twisted five-point function

is computed in the free theory.

A small comment is in order. For correlation functions of two, three and four 1/2-BPS

operators, it is possible to show that the constraints derived from the chiral algebra twist

have exhausted the full constraining power of superconformal symmetry. In particular, the

requirement of the twisted four-point function being a holomorphic function is equivalent to

the superconformal Ward identity [40, 41]. On the other hand, the chiral algebra twist leads

only to a subset of the full superconformal constraints for correlation functions with five

points or more. The SO(6) twist of [39] imposes extra constraints which are not captured by

the chiral algebra twist. It is an interesting question for the future to explore the full con-

sequence of superconformal symmetry on five-point and higher-point correlation functions.

3 Mellin representation and factorization

The goal of this section is to give a brief review on the Mellin representation formal-

ism [42–44] and the factorization properties of Mellin amplitudes [37, 45]. Mellin ampli-

tudes for scalar operators are defined as an integral transform of the correlation function

〈O1 . . .On〉 =
∫
[dγ]M(γij)

∏

1≤i<j≤n

Γ(γij)(x
2
ij)

−γij , (3.1)

where the integration variables satisfy the constraint
∑

i γij = 0, with γii = −∆i, ensuring

the correct scaling of the external operators.

Correlation functions for operators with spin are more easily expressed using the em-

bedding space formalism for CFTs, see, e.g., [46] for a detailed account. In this formalism,

each point in R
d is mapped to a null ray through the origin in R

d+1,1, and the action of

the conformal group is linearized as the Lorentz rotations in the embedding space R
d+1,1.

7When there are n < 5 points there is more supersymmetry preserved.

– 7 –
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A primary operator with dimension ∆ and spin J in R
d is mapped to a field in R

d+1,1

depending on both null rays P and Z and satisfying

O(λP, αZ) = λ−∆αJO(P,Z), Z · P = 0 , (3.2)

and

O(P,Z + βP ) = O(P,Z). (3.3)

These properties guarantee that the operator is symmetric, traceless and transverse. Now

we can define the Mellin amplitude for one operator with spin J and n scalar operators as

〈O(P,Z)O1(P1) . . .On(Pn)〉

=

n∑

a1,...,aJ=1

(
J∏

k=1

Z · Pak

)∫
[dγ]M{a}

n∏

i,j=1
i<j

Γ(γij)

(−2Pi · Pj)γij

n∏

i=1

Γ(γi + {a}i)
(−2Pi · P )γi+{a}i

(3.4)

where {a} stands for the set of indices a1 . . . aJ , and {a}i counts the number of times that

the index i appears in the set a1, . . . aJ

{a}i ≡ δia1 + · · ·+ δiaJ . (3.5)

Moreover, we impose

γi = −
n∑

j=1

γij , γii = −∆i ,
n∑

i,j=1

γij = J −∆ , (3.6)

such that the correlator has the correct scalings.

The transverse property (3.3) is not automatically satisfied by the Mellin amplitude

M{a}, instead it implies that

n∑

a1=1

(γa1 + δa2a1 + δa3a1 + · · ·+ δaJa1 )M
a1a2...aJ = 0 . (3.7)

In the case where the spinning operator is conserved, i.e., ∆ = d − 2 + J , the Mellin

amplitude has to satisfy one further constraint

2J

n∑

a,b=1

γab[M
ac2...cJ ]ab = (J − 1)

n∑

a,b=1

γab[M
abc3...cJ ]ab , (3.8)

with

[M(γij)]
ab ≡M(γij + δai δ

b
j + δaj δ

b
i ). (3.9)

The operator product expansion is one of the most important properties of a conformal

field theory as it allows to write a product of k local operators at different positions in terms

of an infinite sum of local operators

O1(x1) . . .Ok(xk) =
∑

p

C(1...k,p)
µ1...µJ

(x1, . . . , xk, y, ∂y)Oµ1...µJ
p (y) (3.10)

– 8 –
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where the position y is arbitrary as long as it stays within a sphere that encircles all k local

operators. This expansion can be used inside a correlation function, effectively rewriting

an n-point correlation function as a sum of products of (k + 1)- and (n − k + 1)-point

functions.

This property implies that the Mellin amplitude is an analytic function of the Mellin

variables γij with at most simple poles

M ≈ QJ
m

γLR − (∆− J + 2m)
, m = 0, 1, 2, . . . , γLR =

k∑

a=1

n∑

i=k+1

γai , (3.11)

where the residue QJ
m depends on the product of lower-point Mellin amplitudes. Each

pole is associated with the contribution of an exchanged primary operator (m = 0), or a

descendant (m > 0) with twist τ = (∆ − J) +m. For instance, for an exchanged scalar

operator it is given by

Q0
0 = −2Γ(∆)ML(γab)MR(γij) (3.12)

where we only spelled out the m = 0 since it will be enough for this work. The Mellin

amplitudes ML and MR are defined as

〈O1(P1) . . .Ok(Pk)O(P0)〉 =
∫

[dλ]ML(λab)
∏

1≤a<b≤k

Γ(λab)

P λab

ab

∏

1≤a≤k

Γ(λa)

P λa

a0

(3.13)

〈O1(Pk+1) . . .Ok(Pn)O(P0)〉 =
∫

[dρ]ML(ρij)
∏

k+1≤i<j≤n

Γ(ρij)

P
ρij
ij

∏

k+1≤i≤n

Γ(ρi)

P ρi
i0

(3.14)

where

λa = −
k∑

b=1

λab, λaa = −∆a

k∑

a,b=1

λab = −∆ (3.15)

and analogously for ρ. We also use the notation where a, b label the first k operators while

i, j label the remaining n− k operators.

The residue QJ
m associated with the exchange of an operator with spin depends on

mixed Mellin variables where both types of indices appear. For the exchange of a vector

operator the residue is given by

Q1
0 =

k∑

a=1

n∑

i=k+1

γaiM
a
LM

i
R , (3.16)

while for the exchange of a spin 2 operator it is given by

Q2
0 = −(∆ + 1)Γ(∆− 1)

2

k∑

a,b=1

n∑

i,j=k+1

γai(γbj + δab δ
i
j)M

ab
L M ij

R . (3.17)

The residues for any m and up to spin 2 as well as any spin and m = 0 have been obtained

in [37] but they are not needed for this work.

– 9 –
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supergravity fields dimension ∆ spin ℓ SU(4)R representation

scalar: sI 2 0 [0, 2, 0]

graviphoton: V a
µ 3 1 [1, 0, 1]

graviton: ϕµν 4 2 [0, 0, 0]

Table 1. The relevant supergravity fields and their quantum numbers.

4 20′ five-point function from supergravity

4.1 Outline of strategy

Using the holographic dictionary, correlators of the boundary theory can be computed from

IIB supergravity on AdS5×S5 by performing a sum over all the possible Witten diagrams.

This is the traditional algorithm of computing holographic correlators. The connected

component of the five-point correlator receives leading contribution from the tree-level

Witten diagrams at the order O(1/N3) (figures 2, 3, 4).8 When the external operators are

the 20′ operators, the only relevant bulk fields are a scalar field sI , the graviphoton V a
µ

and the graviton ϕµν , thanks to the AdS selection rules (see section 2 of [2] for a detailed

account), while all massive KK modes decouple. Equivalently, the tree-level correlator

of 20′ operators can be computed from the 5d N = 8 gauged supergravity, which is a

consistent truncation of the KK-reduced IIB supergravity theory. These fields have the

quantum numbers displayed in table 1, and are respectively dual to the 20′ scalar O20′ ,

the R-symmetry current Jµ and the stress tensor Tµν of the boundary theory. The tree-

level Witten diagrams are classified according to the number of internal lines and consist

of double-exchange diagrams (figure 2), single-exchange diagrams (figure 3) and contact

diagrams (figure 4).

The major difficulty of following this recipe is in obtaining the precise interaction ver-

tices. To compute the five-point functions one needs to expand the supergravity effective

action to the quintic order. This is extremely tedious and nonetheless unnecessary as we

will see. Instead our plan is to use an “on-shell” approach which works directly with the

five-point correlator. By working with the correlator, we can shortcut through the inter-

mediate complexities that one encounters starting from the off-shell effective Lagrangian.

Moreover, correlators are constrained by superconformal symmetry, and satisfy nontrivial

self-consistency conditions. Among them is factorization, which relates higher-point cor-

relation functions to the lower-point ones. By exploiting symmetries and self-consistency

conditions we bootstrap the supergravity correlator and eschew the details of the effective

Lagrangian altogether.

Our concrete line of attack comes in three steps. We outline the procedure below.

8There is also a disconnected part of order O(1/N), which consists of products of two-point functions

with three-point functions. The disconnected component is trivial to compute, since it coincides with the

free field value thanks to the non-renormalization theorems of 1/2-BPS two and three-point functions.
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(a) (b) (c)

(d)

Figure 2. The four types of double-exchange Witten diagrams allowed by R-symmetry selection

rules. The straight, curly and double curly lines correspondingly represent the scalar, graviphoton

and graviton field.

(a) (b) (c)

Figure 3. The three types of single-exchange Witten diagrams allowed by R-symmetry selection

rules. Here we have suppressed the derivative information in the quartic vertices.

Step 1: computing the singular part of the correlator using factorization. We

divide the five-point function into two parts according to their behaviors in the OPE limits

G5 = Gsing
5 +Greg

5 . (4.1)

The singular part Gsing
5 consists of all the double and single-exchange diagrams, and the

regular part Greg
5 contains only the contact Witten diagrams.
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Figure 4. A contact Witten diagram. The information of derivatives in the quintic vertex is also

suppressed in the diagram.

The various contributing Witten diagrams can be evaluated by generalizing the method

of [47], however the coefficient of each diagram is not fixed. To fix these coefficients, the key

ingredient of our method is the factorization of the supergravity five-point correlator. For

example, we can collect all the exchange Witten diagrams with a scalar exchange in the 12

channel. The Mellin amplitude of this collection of diagrams has a simple pole at γ12 = 1.

Factorization then dictates that the residue of the Mellin amplitude at γ12 = 1 equals to the

product of the Mellin amplitudes of the three-point function 〈O20′(x1)O20′(x2)O20′(x6)〉
and the four-point function 〈O20′(x6)O20′(x3)O20′(x4)O20′(x5)〉. Similarly, the factoriza-

tion of all the graviphoton exchange diagrams in the 12 channel relates the Mellin amplitude

residue to the three- and four-point Mellin amplitudes of 〈O20′(x1)O20′(x2)Jµ(x6)〉 and

〈Jµ(x6)O20′(x3)O20′(x4)O20′(x5)〉; the factorization of all the graviton exchange diagrams

in the 12 channel expresses the Mellin amplitude residue in terms of the Mellin ampli-

tudes of 〈O20′(x1)O20′(x2)Tµν(x6)〉 and 〈Tµν(x6)O20′(x3)O20′(x4)O20′(x5)〉. The spinning
three-point functions are non-renormalized and take the free theory values. Their Mellin

amplitudes therefore can be easily obtained. On the other hand, the spinning four-point

correlators are coupling-dependent but are related to the scalar four-point function via

superconformal Ward identities [48]. It requires some work to extract their Mellin ampli-

tudes and we will discuss its details in appendix C. It turns out that factorization uniquely

fixes the singular part of the correlator Gsing
5 which contains all the double-exchange and

single-exchange diagrams.

Step 2: computing the regular part of the correlator by taking the chiral alge-

bra twist. Factorization is agnostic about the regular part of the correlator Greg
5 since

the regular part does not contribute to factorization. To fix it, we first write down the

most general ansatz for Greg
5 which contains contact Witten diagrams with all R-symmetry

structures and up to two derivatives. The upper bound on the number of derivatives comes

from the fact that 5d N = 8 gauged supergravity is a two-derivative theory. We then take

the chiral algebra twist of the total correlator Gsing
5 +Greg

5 . The requirement that the ansatz

should reduce to the same holomorphic function as obtained from the free theory imposes

nontrivial constraints on the unknown coefficients in Greg
5 . After the dust settles, we find

that Greg
5 is fixed up to a single undetermined coefficient, which multiplies the following
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zero-derivative contact term

λc
π2N3

(∑
A(ijklm) −

∑
A(ijk)(lm)

)
D22222 . (4.2)

The R-symmetry factor vanishes identically under the chiral algebra twist, and therefore

the coefficient λc remains unfixed at this stage.

Step 3: fixing the remaining coefficient by taking the SO(6) twist. To fix the

remaining coefficient, we exploit the SO(6) twist which sets

tij = x2ij , (4.3)

with generic insertion points xi ∈ R
4. The analysis of [39] dictates that the twisted five-

point function is topological and protected. Note that the combination (4.2), which vanishes

under the chiral algebra twist, does not vanish under the SO(6) twist. This implies λc can

be fixed by comparing with the free theory.

Our final results for Gsing
5 and Greg

5 are given respectively by (4.36) and (4.49).9 In the

following subsections we spell out the details of the above procedure.

4.2 Singular part of the correlator

It is not difficult to see that the diagrams in figures 2 and 3, under permutations of the

external labels, exhaust all the possibilities of exchange diagrams allowed by R-symmetry

selection rules. Double-exchange diagrams involving one graviton and one graviphoton or

two gravitons, for example, are not allowed.10 The allowed exchange diagrams constitute

the singular part of the correlator. In this subsection, we fix the coefficients of these

exchange diagrams by using the factorization properties of the five-point function.

4.2.1 Factorization on an internal graviton line

We start from the factorization of the correlator on an internal graviton line. Without

loss of generality, we choose the exchanged graviton field to be in the 12 channel. This

isolates the diagrams of type 2d and 3c (see figure 5). Because there is a unique solution

to the R-symmetry Casimir equation for exchanging the singlet representation in the 12

channel, all the exchange Witten diagrams have the same R-symmetry polynomial. We can

therefore forget about the R-symmetry polynomial in intermediate steps and only multiply

it back in the end.

Let us denote the double-exchange diagram 2d as Wϕ[12],s[34] . The other two double-

exchange diagrams can be obtained by permuting the external labels 3, 4, 5, and are denoted

as Wϕ[12],s[35] and Wϕ[12],s[45] . In Wϕ[12],s[34] , the graviton field is minimally coupled to the

scalar field, i.e., the cubic vertex has the form
∫

AdS5

ϕµνT
µν (4.4)

9A Mathematica notebook with the full position space five-point function is also included in the online

version of the paper.
10[0, 2, 0]⊗ [0, 0, 0] = [0, 2, 0].

– 13 –



J
H
E
P
1
0
(
2
0
1
9
)
2
4
7

Figure 5. Factorization on an internal graviton line. Here “perms” denotes the other inequivalent

diagrams obtained by permuting the external legs 3, 4 and 5. Upon factorizing the five-point

function on the internal graviton line, we obtain a three-point function 〈O20′O20′Tµν〉 and a four-

point function 〈TµνO20′O20′O20′〉.

where Tµν is the energy-stress tensor

Tµν = ▽
µsI▽νsI − 1

2
gµν(▽ρsI▽ρs

I +m2
ss

IsI) , (4.5)

with m2
s = ∆s(∆s − 4) = −4. By using the AdS Feynman rules, the diagram Wϕ[12],s[34]

takes the following form

Wϕ[12],s[34] =

∫
dz5

z50

dy5

y50

dw5

w5
0

T (12)
µν (x1, x2; z)G

µν;ρσ
graviton(z, y)T

(5)
ρσ (x5; y, w)

×G∆=2
B∂ (w;x3)G

∆=2
B∂ (w;x4)

(4.6)

where T
(12)
µν (x1, x2; z), T

(5)
ρσ (x5; y, w) are obtained from Tµν by replacing the scalar field with

the scalar bulk-to-bulk and bulk-to-boundary propagators as prescribed by the diagram

T (12)
µν (x1, x2; z) = ▽

(µG∆=2
B∂ (z;x1)▽

ν)G∆=2
B∂ (z;x2)−

1

2
gµν▽ρG∆=2

B∂ (z;x1)▽ρG
∆=2
B∂ (z;x2)

− 1

2
gµνm2G∆=2

B∂ (z;x1)G
∆=2
B∂ (z;x2) , (4.7)

T (5)
µν (x5; y, w) = ▽

(µG∆=2
B∂ (y;x5)▽

ν)G∆=2
BB (y, w)− 1

2
gµν▽ρG∆=2

B∂ (y;x5)▽ρG
∆=2
BB (y;w)

− 1

2
gµνm2G∆=2

B∂ (y;x5)G
∆=2
BB (y;w) . (4.8)

The evaluation of this diagram has an important subtlety: the source

I(5)
ρσ (y;x3, x4, x5) =

∫
dw5

w5
0

T (5)
ρσ (x5; y, w)G

∆=2
B∂ (w;x3)G

∆=2
B∂ (w;x4) (4.9)

coupled to one end of the graviton bulk-to-bulk propagator is not gauge invariant. In fact,

by using the equation of motion identity of the bulk-to-bulk propagator

(−�+m2
s)G

∆=2
BB (y, w) = δ(5)(y, w) , (4.10)

we find that the source I(5)
ρσ has a nonzero divergence

▽
ρ
y I(5)

ρσ (y;x3, x4, x5) = −1

2
▽y,σG

∆=2
B∂ (y;x5)G

∆=2
B∂ (y;x3)G

∆=2
B∂ (y;x4) . (4.11)

– 14 –



J
H
E
P
1
0
(
2
0
1
9
)
2
4
7

This seems to create problems because gauge fields can only couple to conserved sources,

and also renders the method of [47] inapplicable. However we should notice that gauge

invariance is not necessarily achieved by an individual diagram, but only the sum of

diagrams.11

To fix this problem, we must also include the single-exchange diagrams 3c. The sum

of all double-exchange diagrams introduces a source with divergence

▽
ρ
y I(3)

ρσ + ▽
ρ
y I(4)

ρσ + ▽
ρ
y I(5)

ρσ = −1

2
▽y,σ

(
G∆=2

B∂ (y;x5)G
∆=2
B∂ (y;x3)G

∆=2
B∂ (y;x4)

)
. (4.12)

The minimal choice to cancel this divergence is to introduce a single-exchange diagram

which is derived from a quartic coupling of the form

∫

AdS5

ϕµνg
µνsIsIsKcIJK . (4.13)

Here cIJK is an R-symmetry invariant tensor that makes the vertex a singlet. Denoting

the single-exchange diagram as Wϕ[12] , we have

Wϕ[12] =

∫
dz5

z50

dy5

y50
T (12)
µν (x1,x2;z)G

µν;ρσ
graviton(z,y)gρσ(y)G

∆=2
B∂ (y;x3)G

∆=2
B∂ (y;x4)G

∆=2
B∂ (y;x5) .

(4.14)

It is easy to verify that the sum of diagrams

W
graviton12
tot = λϕR

(0,0),(1,1)
12|34

(
Wϕ[12],s[34] +Wϕ[12],s[35] +Wϕ[12],s[45] +

1

2
Wϕ[12]

)
, (4.15)

is gauge invariant. The R
(0,0),(1,1)
12|34 is the overall R-symmetry factor defined in appendix B

and λϕ is an overall coefficient.

The double-exchange diagrams and the single-exchange diagram can be evaluated using

the method of [47], pretending the coupling to the graviton is conserved in each diagram.

This prescription can be justified since the total coupling in (4.15) is conserved and the

extra contributions from each non-vanishing divergence cancel in the end. Details of the

evaluation are discussed in appendix A and the corresponding results of the exchange

diagrams are given by (A.18) and (A.19).

Having obtained the gauge invariant combination (4.15), it is straightforward to go to

Mellin space and check that Mellin factorization on the internal graviton line is satisfied.

We find the residue of the Mellin amplitude at γ12 = 1 is correctly related to the Mellin

amplitudes of 〈O20′(x1)O(x2)20′Tµν(x6)〉 and 〈Tµν(x6)O20′(x3)O20′(x4)O20′(x5)〉. A more

careful analysis of the normalizations could also fix λϕ, but we will leave it undetermined

for the moment and fix it when we consider the factorization on an internal scalar line. We

therefore have fixed all the exchange diagrams involving a graviton internal line up to an

overall normalization.

11More precisely, these are the diagrams with a graviton exchange in the 12 channel. We can require

gauge invariance of this collection of diagrams because the factorization on the internal graviton line gives

a physical three-point function and a physical four-point function, which are gauge invariant.
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4.2.2 Factorization on an internal graviphoton line

Let us now proceed to the factorization on an internal graviphoton line. We first focus on

the double-exchange diagrams, which turn out to consist of only two types.

One type of double-exchange diagrams is 2c which involves two internal graviphotons.

The graviphoton couples to the scalars via the minimal coupling
∫

AdS5

V a,µJa,µ (4.16)

where a = [I, J ] and

Ja,µ = −sI
↔
▽µsJ . (4.17)

The graviphoton-graviphoton-scalar coupling is given by
∫

AdS5

sIF a
µνF

b,µνdI,ab (4.18)

where F a
µν is the field strength of the graviphoton field and dI,ab is a tensor that makes the

vertex a singlet. Denoting 2c as W V[12],V[34] , we have

W V[12],V[34] =

∫
dz5

z50

dy5

y50

dw5

w5
0

J (12)
µ (x1, x2; z)▽

σ
yG

µ;ρ
vector(z, y)gσλ(y)gρκ(y)

× ▽
[λ
y G

κ];ν
vector(y, w)J

(34)
ν (x3, x4;w)G

∆=2
B∂ (y;x5)

(4.19)

where

J (12)
µ (x1, x2; z) = ▽z,µG

∆=2
B∂ (z;x1)G

∆=2
B∂ (z;x2)−G∆=2

B∂ (z;x1)▽z,µG
∆=2
B∂ (z;x2) ,

J (34)
µ (x3, x4;w) = ▽w,µG

∆=2
B∂ (w;x3)G

∆=2
B∂ (w;x4)−G∆=2

B∂ (w;x3)▽w,µG
∆=2
B∂ (w;x4) .

(4.20)

It is not difficult to check that this diagram is already gauge invariant by itself. The diagram

is evaluated in appendix A, and the explicit expression is given by (A.16). Moreover,

this diagram comes with an R-symmetry factor R
(1,0),(1,0)
12|34 , defined in appendix B. The

symmetric combination

W
graviphoton12
tot,1 = λV,1

(
R

(1,0),(1,0)
12|34 W V[12],V[34] +R

(1,0),(1,0)
12|35 W V[12],V[35] +R

(1,0),(1,0)
12|45 W V[12],V[45]

)

(4.21)

can be obtained from the first term via permuting the external labels.

The other type of double-exchange Witten diagram is 2b. We denote 2b as W V[12],s[34] .

The diagram reads

W V[12],s[34] =

∫
dz5

z50

dy5

y50
J (12)
µ (x1, x2; z)G

µ;ν
vector(z, y)I(34;5)

µ (y;x3, x4, x5) (4.22)

where the source is

I(34;5)
µ (y;x3, x4, x5) =

∫
dw5

w5
0

G∆=2
B∂ (y;x5)▽y,µ

(
G∆=2

BB (y;w)
)
G∆=2

B∂ (w;x3)G
∆=2
B∂ (w;x4)

− ▽y,µ

(
G∆=2

B∂ (y;x5)
)
G∆=2

BB (y;w)G∆=2
B∂ (w;x3)G

∆=2
B∂ (w;x4) .

(4.23)
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Figure 6. Factorization on an internal graviphoton line. Here “perms” denotes the other inequiv-

alent diagrams obtained by permuting the external legs 3, 4 and 5. Upon factorizing the five-point

function on the internal graviphotonline, we obtain a three-point function 〈O20′O20′Jµ〉 and a

four-point function 〈JµO20′O20′O20′〉.

It is easy to check that the source is not conserved

▽
µ
yI(34;5)

µ (y;x3, x4, x5) = −G∆=2
B∂ (y;x3)G

∆=2
B∂ (y;x4)G

∆=2
B∂ (y;x5) , (4.24)

therefore the diagram is not gauge invariant. However when we multiply the diagram with

the R-symmetry polynomial R
(1,0),(1,1)
12|34 and sum over all the permutations of 3, 4, 5, the

combination

W
graviphoton12
tot,2 = λV,2

(
R

(1,0),(1,1)
12|34 W V[12],s[34] +R

(1,0),(1,1)
12|35 W V[12],s[35] +R

(1,0),(1,1)
12|45 W V[12],s[45]

)

(4.25)

is gauge invariant, since

▽
µ
y

(
R

(1,0),(1,1)
12|34 I(34;5)

µ +R
(1,0),(1,1)
12|35 I(35;4)

µ +R
(1,0),(1,1)
12|45 I(45;3)

µ

)
= 0 . (4.26)

The diagram is easy to evaluate and the result is given by (A.17).

We can check if these two gauge invariant combinations of diagrams can already re-

produce the factorization. It turns out that

W
graviphoton12
tot =W

graviphoton12
tot,1 +W

graviphoton12
tot,2 , (4.27)

with
λV,1
λV,2

=
1

2
, (4.28)

gives the correct answer. The overall normalization could also be determined from factor-

ization but we will defer it until later. From the factorization analysis, we can conclude that

no graviphoton single-exchange diagrams of 3b appear. The factorization of the five-point

function on an internal graviphoton line is illustrated in figure 6.

4.2.3 Factorization on an internal scalar line

Finally let us look at the factorization on an internal scalar line. The relevant double-

exchange diagrams are W s[12],ϕ[34] , W s[12],V[34] , W s[12],s[34] and their permutations of 3, 4,

5. The diagrams W s[12],ϕ[34] and W s[12],V[34] have already been discussed in the previous

subsections, and are simply related to Wϕ[12],s[34] and W V[12],s[34] by exchanging 12 with 34.
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The double-exchange diagram W s[12],s[34] is constructed from the cubic vertex sIsJsKcIJK ,

and is given by the integral

W s[12],s[34] =

∫
dz5

z50

dy5

y50

dw5

w5
0

G∆=2
B∂ (z;x1)G

∆=2
B∂ (z;x2)G

∆=2
BB (z; y)

×G∆=2
B∂ (y;x5)G

∆=2
BB (y;w)G∆=2

B∂ (w;x3)G
∆=2
B∂ (w;x4) .

(4.29)

This diagram can be easily evaluated using the method of appendix A and the result reads

W s[12],s[34] =
D11112

16x212x
2
34

. (4.30)

The diagram W s[12],s[34] is associated with an R-symmetry factor R
(1,1),(1,1)
12|34 , which can be

found in appendix B.

There are also scalar single-exchange diagrams 3a, which can have zero or two deriva-

tives in the quartic coupling. There cannot be more than two derivatives because the 5d

N = 8 supergravity contains only two derivatives. The zero-derivative single-exchange

diagram is denoted by W
s[12]
0-der and evaluates to

W
s[12]
0-der =

D11222

4x212
. (4.31)

For the two-derivative type, we have a basis of diagrams where the pair of derivatives are on

{3, 4}, {3, 5} and {4, 5}. These diagrams are denoted respectively by W
s[12],(5)

2-der , W
s[12],(4)

2-der ,

W
s[12],(3)

2-der , and are related to each other by permuting the external labels 3, 4, 5. The

diagram W
s[12],(5)

2-der reads

W
s[12],(5)

2-der =
1

x212

(
D11222 − 2x234D11332

)
. (4.32)

The scalar single-exchange diagrams can have 6 independent R-symmetry structures (which

can be seen by solving the 12 channel R-symmetry Casimir equation alone). We can pick

a basis of solutions as (see appendix B for the definition of Ai, Di, Ei, H and I)
r1 = E1 , r2 = E2 , r3 = I ,

r4 =
A1 +A2

2
− H

6
, r5 =

D1 +D2

2
− H

6
, r6 =

A3 +A4

2
− H

6
. (4.33)

Let us now collect all the exchange diagrams containing a scalar internal line in the 12

channel (figure 7). We have the following ansatz

W scalar12
tot = λs

(
R

(1,1),(1,1)
12|34 W s[12],s[34] +R

(1,1),(1,1)
12|35 W s[12],s[35] +R

(1,1),(1,1)
12|45 W s[12],s[45]

)

+ λV,2

(
R

(1,1),(1,0)
12|34 W s[12],V[34] +R

(1,1),(1,0)
12|35 W s[12],V[35] +R

(1,1),(1,0)
12|45 W s[12],V[45]

)

+ λϕ

(
R

(1,1),(0,0)
12|34 W s[12],ϕ[34] +R

(1,1),(0,0)
12|35 W s[12],ϕ[35] +R

(1,1),(0,0)
12|45 W s[12],ϕ[45]

)

+

6∑

i=1

λ
2-der,(5)
i riW

s[12],(5)

2-der +

6∑

i=1

λ
2-der,(4)
i riW

s[12],(4)

2-der +

6∑

i=1

λ
2-der,(3)
i riW

s[12],(3)

2-der

+

6∑

i=1

λ0-deri riW
s[12]
0-der (4.34)
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Figure 7. Factorization on an internal scalar line. Here “perms” denotes the other inequivalent

diagrams obtained by permuting the external legs 3, 4 and 5. The scalar single-exchange diagram

represents both the zero-derivative diagram and the two-derivative diagram. Upon factorizing the

five-point function on the internal scalar, we obtain a three-point function 〈O20′O20′O20′〉 and a

four-point function 〈O20′O20′O20′O20′〉.

where λϕ and λV,2 showed up previously in (4.15) and (4.27). We also require permutation

symmetry among the external legs 3, 4 and 5. The Mellin amplitude of W scalar12
tot contains

a simple pole at γ12 = 1. Factorization of the five-point correlator requires that the

residue at the simple pole should give the product of the Mellin amplitudes of the three-

point function 〈O20′O20′O20′〉 and the four-point function 〈O20′O20′O20′O20′〉. Together

with permutation symmetry, this gives rise to a set of linear equations for the unknown

coefficients. Solving these constraints, we have12

λs =
64
√
2

π2N3
, λV,2 = −16

√
2

π2N3
, λϕ = − 2

√
2

π2N3
,

λ0-der1 = λ0-der2 = λ0-der3 =
8
√
2

π2N3
, λ0-der4 = λ0-der5 = λ0-der6 = −32

√
2

π2N3
,

λ
2-der,(3)
6 = λ

2-der,(4)
4 = λ

2-der,(5)
5 =

4
√
2

π2N3
,

(4.35)

and all the other coefficients are zero.

We have now computed the singular part of the five-point correlation function Gsing
5 .

The result is the following

Gsing
5 = sym

[
W

graviton12
tot

]
+

1

2
sym

[
W

graviphoton12
tot,1

]
+ sym

[
W

graviphoton12
tot,2

]

+
1

2
sym

[
W scalar12

tot,1

]
+ sym

[
W scalar12

tot,2

] (4.36)

12The linear equations do not fix all coefficients, meaning that there exists homogenous solutions to

factorization. These homogenous solutions always appear with a multiplicative factor which can be written

as the five-point zero-derivative contact diagram D22222. Their existence just reflects the ambiguity in

separating G5 into Gsing
5 and Greg

5 , and their contribution can be combined into the ansatz for the latter.

We have set these free parameters to zero without loss of generality.
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where

W scalar12
tot,1 =λs

(
R

(1,1),(1,1)
12|34 W s[12],s[34]+R

(1,1),(1,1)
12|35 W s[12],s[35]+R

(1,1),(1,1)
12|45 W s[12],s[45]

)
, (4.37)

W scalar12
tot,2 =λ

2-der,(5)
5 r5W

s[12],(5)

2-der +λ
2-der,(4)
4 r4W

s[12],(4)

2-der +λ
2-der,(3)
6 r6W

s[12],(3)

2-der

+

6∑

i=1

λ0-deri riW
s[12]
0-der .

(4.38)

The expressions for W
graviton12
tot , W

graviphoton12
tot,1 , W

graviphoton12
tot,2 were respectively given

in (4.15), (4.21) and (4.25). We can evaluate them in terms of D-functions, and explicit

expressions can be found in appendix A. The various coefficients are given by (4.35). The

operation sym means to symmetrize with respect to the external labels, i.e.,

sym[A] =A+A|13245 +A|14325 +A|15342 +A|23145
+A|24315 +A|25341 +A|34125 +A|35142 +A|45312

(4.39)

where A|a1a2a3a4a5 means to map the labels 1, 2, 3, 4, 5 to a1, a2, a3, a4, a5. The factors
1
2 appear because the double exchange diagrams W V[12],V[34] , W s[12],s[34] have an extra Z2

symmetry under exchanging 12 with 34. The symmetrization is such that all the diagrams

have strength 1.

4.3 Regular part of the correlator

We now solve the regular part of the ansatz. The regular part Greg
5 consists only of contact

Witten diagrams with zero and two derivatives

Greg
5 =

(
22∑

I=1

λ
{1,2},(2)
I AI x

2
12D33222 + perms

)
+

22∑

I=1

λ
(0)
I AID22222 . (4.40)

Here AI with I = 1, . . . , 22 are the 22 R-symmetry structures defined in (2.5), and

λ
{i,j},(2)
I , λ

(0)
I are undetermined coefficients. We require the ansatz Greg

5 to be invariant

under crossing.

To fix the coefficients, we first use the chiral algebra twist as was reviewed in section 2.

The five operators are now restricted on a plane, parameterized by the 2d coordinates zi,

z̄i. The R-symmetry polarizations are restricted to rotate under only an SO(4) subgroup

of SO(6)R, and the null vectors are parameterized as tµi = σµαα̇v
α
i v̄

α̇
i with vi = (1, yi), v̄i =

(1, ȳi). The chiral algebra twist amounts to setting ȳi = z̄i, and the non-renormalization

of chiral algebra requires that

(
Gsing

5 +Greg
5

) ∣∣
ȳi=z̄i

= Gfree
5

∣∣
ȳi=z̄i

(4.41)

where the Gfree
5 is the correlator computed in the free theory and is given by

Gfree
5 =

2
√
2

N

∑ A(ijklm)

x2ijx
2
jkx

2
klx

2
lmx

2
mi

+
4
√
2

N3

∑ A(ijk)(lm)

x2ijx
2
jkx

2
kix

4
lm

(4.42)
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Note that the r.h.s. is a simple rational function of the holomorphic coordinates. On the

other hand, the l.h.s. comes from a complicated sum of D-functions where each D-function

has transcendental degree 2 and is far from being a rational function. This means that

the unknown coefficients in the l.h.s. must be fine-tuned to reproduce a rational function,

therefore imposing strong constraints on the unknown coefficients.

The condition (4.41) is not yet in a form that is ready for use. Extracting the con-

straints on the coefficients from (4.41) still requires some nontrivial work. Our strategy

is to find a basis to decompose the l.h.s. . Using the differential recursion relations in

appendix D, all these D-functions can be related to the basic D-function D11112 (and its

permutations) by taking derivatives. The function D11112 can be evaluated in closed form

in terms of one-loop scalar box diagrams [49, 50]

D11112 =
4π2

x214x
2
35x

2
25

5∑

i=1

ηi5Î
(i)
4

N5
. (4.43)

Here ηi5, N5 are rational functions of the conformal cross ratios, and Î
(i)
4 are one-loop

box diagrams (also denoted as Φ in appendix D) where the ith point is omitted. When

the insertion points xi are generic, i.e., not lying on a two-dimensional plane, the five box

diagrams Î
(i)
4 , i = 1, . . . , 5 are independent. Taking derivatives with respect to x2ij , one can

obtain D-functions of higher weights. Since the box diagrams obey differential recursion

relations (D.13), one finds that all the D-functions can be uniquely decomposed into a

basis spanned by Î
(i)
4 , logarithms and 1, with rational coefficient functions. Apparently,

the ansatz Gsing
5 + Greg

5 also admits such a unique decomposition under this basis with

rational coefficient functions. However, to use the chiral algebra twist condition (4.41), we

need to further restrict the five insertions on a plane. This gives rise to subtleties which

require some extra care. The problem is that some elements of the basis develop relations.

For example, the five one-loop box diagrams are now linearly dependent13

5∑

i=1

ηi5Î
(i)
4

∣∣
xi∈R2 = 0 , (4.44)

which follows from the identity [51]

Li2

(
zw

(1−z)(1−w)

)
=Li2

(
z

1−w

)
+Li2

(
w

1−z

)
−Li2(z)−Li2(w)−log(1−z) log(1−w).

(4.45)

After properly taking care of the relations among the basis vectors, we find the following

basis of independent functions

Φ (z, z̄) , Φ (w, w̄) , Φ
( z
w
,
z̄

w̄

)
, Φ

(
1− z

1− w
,
1− z̄

1− w̄

)
, ln zz̄, lnww̄, (4.46)

ln(1− z)(1− z̄), ln(1− w)(1− w̄), ln(w − z)(w̄ − z̄), 1,

13However the denominator N5 also becomes zero at the same rate so D11112 remains finite (and nonzero)

when all the points are put on plane.
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where z and w are the complex coordinates of the two insertion points not fixed by con-

formal symmetry, with z̄, w̄ being their complex conjugates. They are related to the cross

ratios Vi defined in (2.8) via

V1 = zz̄ , V2 = (1− z)(1− z̄) ,

V3 = (1− w)(1− w̄) , V4 = ww̄ , V5 =
zz̄(1− w)(1− w̄)

(w − z)(w̄ − z̄)
.

(4.47)

Decomposing the supergravity ansatz into this basis gives coefficient functions which are

rational in the cross ratios. Equating the coefficients in (4.41) gives a set of linear equations

for the unknown coefficients.

The constraints turn out to be remarkably constraining. We find that all the two-

derivative vertices vanish

λ
{i,j},(2)
I = 0 . (4.48)

Moreover, all but one of the zero-derivative coefficients is fixed, yielding

Greg
5 =

1

π2N3

(
11

√
2

3

∑
A(ijk)(lm) + λc

(∑
A(ijklm) −

∑
A(ijk)(lm)

))
D22222 . (4.49)

Chiral algebra is incapable of fixing λc because the multiplied R-symmetry polynomial

vanishes automatically under twisting.

To determine the remaining coefficient, we use the SO(6) twist as we reviewed in

section 2. This uniquely fixes the coefficient to be

λc = 6
√
2 . (4.50)

Before we end this section, let us make a comment about the contact Witten diagrams

which contribute to Greg
5 . These five-point contact interactions in fact are not intrinsic

in the sense that they can be absorbed into Gsing
5 by redefining certain vertices of the

exchange Witten diagrams. We have already noticed such an ambiguity in footnote 12.

More precisely, we can rewrite Greg
5 in such a way that it can be absorbed in the scalar

single-exchange Witten diagrams W scalar12
tot,2 (and all other diagrams by permutations) while

keeping the quartic vertices in 3a symmetric and with no more than two derivatives. To

see this, let us define the scalar single-exchange Witten diagrams W̃
s[12],(i)

2-der for which the

two derivatives act on the external leg i = 3, 4, 5, and the internal leg I. By using the

equation of motion identities of the propagators and integration by parts, one can show

W̃
s[12],(i)

2-der =W
s[12],(i)

2-der +
1

2
D22222 (4.51)

These identities can be used to make the two ways of distributing the derivatives, i.e.,

(3, 4), (4, 5), (3, 5) and (3, I), (4, I), (5, I), appear symmetrically in the solution at the cost

of generating some new D22222. The total collection of D22222 with different R-symmetry

structures can then be reinterpreted as scalar single-exchange Witten diagrams with deriva-

tives on the same leg. Let us note that when the derivatives are on the same external leg,

the diagram is simply

− 4W
s[12]
0-der , (4.52)
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by the equation of motion. When both derivatives act on the internal leg, there is an extra

delta function in the equation of motion and therefore equals to

− 4W
s[12]
0-der −D22222 . (4.53)

The latter term allows us to absorb all the D22222 into Gsing
5 .

5 An alternative approach using Mellin space

An alternative approach to the previous section is to start from an ansatz in Mellin space

and then solve it by imposing constraints. The construction of the ansatz is facilitated in

Mellin space, thanks to the simple analytic structure of Mellin amplitudes. As reviewed in

section 3, the poles of the Mellin amplitude are determined by the twists of the exchanged

operators. In the tree level supergravity limit, only single-trace one-half BPS operators

and multi-trace operators constructed from them are present. The polar information of

the latter is already captured by the Gamma function factors, and the former is manifested

as the simple poles in the Mellin amplitude. In the case of 20′ five-point functions, the

exchanged single-trace operators are the 20′ operator, the R-symmetry current and the

stress tensor. They give rise to leading simple poles at γij = 1. On the other hand, by

using a similar 1/N argument as in section 3.2 of [2], we can conclude that there are no

satellite poles associated with the exchange of the single-trace operators. It is instructive

to look at the factorization of the Mellin amplitude. For example, in the 12 channel, the

Mellin amplitude is expected to have the following structure

M =
2∑

a,b=1

5∑

i,j=3

γai(γbj + δab δ
i
j)Mab

3,T M
ij
4,T

γ12 − 1
+

2∑

a

5∑

i

γaiMa
3,JMi

4,J

γ12 − 1

+
M3,O20′

M4,O20′

γ12 − 1
+Mreg,12 (5.1)

whereMab
3,T , M

ij
4,T are respectively the three and four-point Mellin amplitudes of O20′ with

one stress tensor, andMa
3,J ,Ma

4,J are the Mellin amplitudes with one R-symmetry current.

The term Mreg,12 is regular with respect to γ12. However it must contain singularities in

other independent γij such that the five-point Mellin amplitude M is crossing symmetric.

Note that there can be at most two simultaneous poles in the Mellin amplitude, which

correspond to the double-exchange Witten diagrams. The simultaneous poles involving

γ12 can be explicitly seen from the above formula where the other pole is supplied by the

four-point Mellin amplitudes.

This motivates us to write down the following ansatz for the five-point Mellin amplitude

Mansatz(γij) =
∑

(ij) 6=(i′j′)

P ij,i′j′

2 (γml)

(γij − 1)(γi′j′ − 1)
+
∑

(ij)

P ij
1 (γml)

γij − 1
+ P0(γml) , (5.2)

which has the structure of a sum of simultaneous poles, single poles and a regular piece.

The residues P ij,i′j′

2 , P ij
1 and P0 are polynomials in the Mandelstam variables γml. They are
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also polynomials in tij , but we will suppress the R-symmetry dependence for the moment

and focus on the γml dependence. We will assume that P ij,i′j′

2 are degree 2 polynomials

of γml, while both P ij
1 and P0 are of degree 1. The degrees of these polynomials can be

justified as follows. For the residues P ij,i′j′

2 , the degree simply follows from the counting

of the total number of derivatives in the cubic vertices. Just as in flat space, the residue

has degree L if the vertices contain in total 2L derivatives. For the double-exchange

diagrams involving one stress tensor, it follows from R-symmetry selection rule that the

other exchange field can only be the scalar field. Such diagrams have only four derivatives in

all vertices. In the vector-vector double-exchange diagrams, the total number of derivatives

is also four. For the vector-scalar and scalar-scalar double-exchange diagrams, the total

numbers of derivatives are two and zero.14 This leads us to conclude that P ij,i′j′

2 are degree

2 polynomials of γml. It is tempting to apply the same argument on the single pole residues

P ij
1 . However the counting holds only for the vector and scalar single-exchange diagrams

where at most two derivatives are present. For the graviton single-exchange diagrams,

the residue appears to have degree 2 since there could be in total four derivatives. The

leading degree 2 terms would correspond to a constant piece in the term Mij
4,T of the

factorization formula (5.1).15 However, a closer look at Mij
4,T reveals that the contribution

of the constant term to (5.1) vanishes after the summation. Therefore, the single pole

residues P ij
1 are degree 1 polynomials. Finally, P0 receives contribution from the five-point

contact vertices. Since the gauged supergravity contains at most two derivatives, it follows

that the degree of P0 is at most 1.

Let us now be more explicit about the R-symmetry dependence. We write the

residues as

P ij,i′j′

2 (γ)=
∑

(ml),(m′l′) 6=(ij),(i′j′)

∑

I2,I′2=20′,15,1

c
I2,I′2
ij,i′j′|ml,m′l′R

I2,I′2
ij|i′j′γmlγm′l′

+
∑

(ml) 6=(ij),(i′j′)

∑

I2,I′2=20′,15,1

c
I2,I′2
ij,i′j′|mlR

I2,I′2
ij|i′j′γml+

∑

I2,I′2=20′,15,1

c
I2,I′2
ij,i′j′R

I2,I′2
ij|i′j′ , (5.3)

P ij
1 (γ)=

∑

(ml) 6=(ij)

∑

I1=20′,15,1

∑

a

dI1ij|ml,aR
I1
ij,aγml+

∑

I1=20′,15,1

∑

a

dI1ij,aR
I1
ij,a , (5.4)

P0(γ)=
∑

(ml)

∑

I0

eI0mlA
I0γml+

∑

I0

eI0AI0 (5.5)

where various coefficients c, d, e parameterize the degrees of freedom in the ansatz. The R-

symmetry polynomials R
I2,I′2
ij|i′j′ are the solutions to the double R-symmetry Casimir equation

where the representation I2, I
′
2 are exchanged in the channels (i, j) and (i′, j′) respectively.

The polynomials RI1
ij,a are solutions to the single R-symmetry Casimir equation in the (i, j)

channel where the exchanged representation is I1. The index a labels the different solutions

14Note the derivatives in the scalar cubic coupling have been removed by nonlinear redefinition of the

scalar fields [52].
15The Mellin amplitude Mij

4,T contains simple poles with constant residues which are due to the exchange

of scalar fields. There is also an additional constant piece which is due to the quartic interactions. As is

shown in appendix C, this constant term is completely determined by the singular terms via transversality.
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to the single Casimir equation, of which a basis can be obtained from R
I1,I′1
ij|i′j′ where (i′, j′)

is any other compatible channel and I ′1 is over all possible R-symmetry representations.

Note that the sums over the representations I2, I
′
2 in the simultaneous pole residues are

restricted to 20′, 15 and 1, in correspondence to the R-symmetry representations of the

exchanged single-trace fields. Similarly, the sums over I1 in the single pole residues are also

restricted to 20′, 15 and 1, which correspond to the single-exchange Witten diagrams. On

the other hand, in the regular part we sum over all 22 R-symmetry structures AI0 defined

in (2.5), since all of them can appear.

The Mellin amplitude ansatz Mansatz is further constrained by three other consistency

conditions. First, the ansatz Mansatz should be crossing symmetric. In implementing

this constraint, it is important to take into account the linear constraints satisfied by

γij which leaves only five independent variables. Second, the correlator needs to satisfy

the chiral algebra condition (4.41). Unfortunately this condition is not straightforward

to implement in Mellin space. This is essentially because the independent Mandelstam

variables γij are dual to the independent conformal cross ratios for generic configurations.

To perform the chiral algebra twist, one needs to restrict the five insertion points on a

two-dimensional plane. This reduces the number of independent cross ratios to four, while

the Mellin representation is oblivious to it. Therefore our strategy is to rewrite the Mellin

amplitude ansatz as a sum of D-functions and then implement the chiral algebra twist

in position space. However we should note that the rewriting is not unique. Different

expressions in terms of D-functions with the same Mellin amplitude may differ in position

space by a rational function or a logarithmic term.16 On the other hand, the part with

transcendental degree 2 does not suffer from such ambiguities. Therefore, we only use the

chiral algebra constraints from the coefficient functions of the box diagrams.17 Finally, the

correlator satisfies the condition (2.15) imposed by the SO(6) twist. We also implement

this condition in position space and focus on the pieces with transcendental degree 2.

Solving the above constraints fixes the ansatz up to an overall normalization. The

leftover degree of freedom is expected because the twisted five-point functions in (4.41)

and (2.15) are rational, and do not contribute to the box diagram coefficients. The condi-

tions from the chiral algebra twist and the SO(6) twist are therefore homogenous and do not

allow us to determine the overall coefficient. We can fix the remaining coefficient by, for ex-

ample, looking at the factorization of the five-point Mellin amplitude on a scalar exchange.

The final result for the Mellin amplitude takes the following form

M = Msim +Msing +Mreg , (5.6)

where Msim are the simultaneous poles

Msim =
2
√
2

(γ12 − 1)(γ34 − 1)

(
A(125)(34)γ45γ35 +A(345)(12)γ15γ25 − 2A(12543)γ15γ35

− 2A(12345)γ25γ35 − 2A(12534)γ15γ45 − 2A(12435)γ25γ45

)
+ perm ,

(5.7)

16These ambiguities correspond to different choices of the integration contours.
17One might wonder if the chiral algebra conditions are now much weaker. In the position space method,

we observed that the conditions from the coefficients of the logarithms do not lead to new constraints in

addition to the ones from the box diagram coefficients.
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Msing are the single poles

Msing=
1

8
√
2(γ12−1)

(
(A(345)(12)−2A(12534)−2A(12435))γ45

+(A(345)(12)−2A(12543)−2A(12345))γ35+(A(345)(12)−2A(12354)−2A(12453))γ34

)
+perm

(5.8)

and Mreg is the regular piece

Mreg =
3(8A(14325) − 5A(345)(12))

10
√
2

+ perm . (5.9)

The R-symmetry structures A(ijklm), A(ijk)(lm) were defined in (2.5). Note that Mreg does

not contain terms linear in the Mandelstam variables. Moreover, one can show Mreg can

be absorbed into Msing. This corresponds to our observation in position space that there

are no intrinsic contact interactions.

6 OPE analysis

In this section we analyze the short-distance behavior of the supergravity five-point function

and use the Euclidean OPE to extract new CFT data of strongly coupled N = 4 SYM.

To simplify the analysis, we restrict our attention to only the singular and the leading

non-singular behavior of the correlator. A complete analysis of the supergravity five-point

function is left to the future.

In section 6.1 we discuss the kinematics of the Euclidean OPE. We discuss the decom-

position of five-point functions in conformal blocks, and also explain how to take a single

OPE to obtain four-point functions. This part can be read independently, and applies to

generic CFTs with and without supersymmetry. In section 6.2 we introduce all the oper-

ators up to dimension four that contribute to the OPE of two 20′ operators. The reader

interested solely in the results of the OPE analysis might skip directly to section 6.3, where

we present the new data obtained.

6.1 Euclidean OPE limit

The information of the CFT is encoded in five-point functions according to the principle of

operator product expansion. By leveraging this expansion in different ways, we can extract

various information from the five-point functions.

To extract the CFT data, it is most straightforward to use OPE in two different

channels. The five-point function essentially becomes a sum of products of three-point

functions, analogous to the case of four-point functions. More precisely, we send the points

x1, x3 and x4 to 0, 1 and ∞ respectively, by using the global conformal symmetry. The

Euclidean double coincidence limit (in the 12, 35 channel) is then obtained by taking both

x12 and x35 to approach zero, in which case (2.6) becomes

lim
x4→∞

x44G5 =
1

x412x
4
35

G5(Vi; ti) . (6.1)

– 26 –



J
H
E
P
1
0
(
2
0
1
9
)
2
4
7

In Euclidean kinematics we have two small parameters, s1 and s2, and three angle variables

ξ1, ξ2 and ξ3 defined by

s1 = |x12| , ξ1 =
x12 · x13
|x12|

= cos θ1 , ξ3 =
x12 · x35 − 2x12 · x13 x13 · x35

|x12||x35|
,

s2 = |x35| , ξ2 =
x13 · x35
|x35|

= cos θ2 . (6.2)

In these variables, the cross ratios defined in (2.8) become18

V1 = s21 , V2 = 1 + s21 − 2s1ξ1 , V3 = s22 , V4 = 1 + s22 + 2s2ξ2 ,

V5 = s21s
2
2(1 + s21 + s22 − 2s1ξ1 + 2s2ξ2 − 2s1s2(ξ3 + 2ξ1ξ2))

−1 . (6.4)

Operator product expansion dictates that the five-point function can be expanded in terms

of conformal blocks

G5(Vi, ti) =
∑

(∆k,J),(∆k′ ,J
′)

∑

p

CO20′O20′Ok
CO20′O20′Ok′

Cp
O20′OkOk′

Gp
k,k′(si, ξi) . (6.5)

The five-point conformal block Gp
k,k′(si, ξi) encodes all the contribution of the exchanged

primaries Ok, Ok′ , as well as their conformal descendants. The label p is associated with

the different structures of a three-point function with two spinning operators. We will

refrain from giving here the explicit expressions for the conformal blocks. They will be

given in appendix E, where we discuss how to compute them as series expansions in both

s1 and s2.

Similarly, we can apply a single OPE and obtain information about the full four-point

functions. To achieve this let us consider the OPE of two external scalar operators

O1(x1)O2(x2) =
∑

k

C12k

(x212)
∆1+∆2−∆k+J

2

[
F (12k)(x12, ∂x1 , Dz)Ok,J(x1, z)

]
, (6.6)

where the function F (12k)(x, ∂y, Dz) and the derivative Dz are defined in appendix E. The

exact coefficients in this expansion can be fixed by imposing the consistency of the OPE

with the conformal structure of the three-point function. Applying F (ijk) on the spinning

four-point function gives its contribution to the single OPE of the five-point function

F 12k(x12, ∂x1 , Dz)

(x212)
∆1+∆2−∆k+J

2

〈Ok,J(x1, z)O3(x3)O4(x4)O5(x5)〉 . (6.7)

To proceed, we show how we can distinguish operators with different spins. Four-point

functions with an external leg of spin J have J+1 conformal structures, where the coefficient

18Note that if all the five points are restricted to the plane then only four of the five cross ratios are

independent, as ξ3 = − cos(θ1 + θ2), and V5 simplifies to

V5 =
s21s

2
2

(1− s1eiθ1 + s2eiθ2)(1− s1e−iθ1 + s2e−iθ2)
. (6.3)
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of each structure is a function of the cross ratios

lim
x4→∞

x2∆4
4 〈Ok,J(x1, z)O3(x3)O4(x4)O5(x5)〉 =

J∑

p=0

α
(p)
l (w, w̄)

(
z · x13
x213

)p(z · x15
x215

)J−p

.

(6.8)

For simplicity we set x213 = 1 and rewrote the cross ratios defined in (2.8) with complex

variables

V3 = (1− w)(1− w̄) , V4 = ww̄ . (6.9)

The derivatives from the OPE expansion (6.7) act not only on the conformal structures,

but also on its coefficients α
(p)
l (w, w̄). This effect is important for the subleading terms

in the expansion of s1. The leading spin one and spin two contributions to the five-point

function are therefore given by

G∆k,1 = s1∆k

(
ξ

ww̄
α
(0)
1 + ξ1α

(1)
1

)
, (6.10)

G∆k,2 = s1∆k

(
4ξ2 − ww̄

4w2w̄2
α
(0)
2 +

8ξξ1 − w − w̄

8ww̄
α
(1)
2 +

4ξ21 − 1

4
α
(2)
2

)
, (6.11)

where we introduce the new angle variable

ξ =
x12 · x15
|x12|

. (6.12)

The dependence on ξ allows us to disentangle the different spinning four-point tensor

structures in the single OPE of the scalar five-point function, just like ξ3 parametrizes the

contribution of different three-point tensor structures in the double OPE limit. Finally,

when glueing the three- and four-point spinning correlators of 4d N = 4 SYM into five-

point function contributions, we also need to perform the contractions of the R-symmetry

structures. The details of this procedure can be found in appendix B.

6.2 Low-lying operators

From the representation theory of the 4d N = 4 superconformal algebra, we know that the

tensor product of two stress tensor multiplets takes the following schematic form [41, 53]

B
1
2
, 1
2

[0,2,0],(0,0) × B
1
2
, 1
2

[0,2,0],(0,0) → 1+ B
1
2
, 1
2

[0,2,0],(0,0) + B
1
2
, 1
2

[0,4,0],(0,0) + B
1
4
, 1
4

[2,0,2],(0,0) +
∞∑

J=0

C1,1
[0,0,0],(j,j)

+

∞∑

J=0

C
1
2
, 1
2

[0,2,0],(j,j) +

∞∑

J=0

C
1
4
, 1
4

[1,0,1],(j,j) +

∞∑

J=0

A∆
[0,0,0],(j,j) . (6.13)

Here we use the notation X
s
4
, s̄
4

[d1,d2,d3](j,j̄)
to denote the supermultiplets, where [d1, d2, d3] is the

R-symmetry Dykin label of the super primary and (j, j̄) are the Lorentz spins. We will also

use J = 2j when j = j̄, as the spin of the superconformal primary. The multiplets B and C
are short (semi-short) multiplets satisfying (b, b̄) and (c, c̄) type shortening conditions, while

A are generic long multiplets which do not satisfy any shortening condition. We refer the

reader to [54] for details of the classification of superconformal multiplets. The multiplets
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C1,1
[0,0,0],(j,j) contain higher-spin currents and therefore should not appear in an interacting

CFT. Moreover, the restriction to the singular and leading regular part of the Euclidean

OPE leaves us with only a handful of contributing operators. Below we list the operators

which appear in the OPE at the supergravity limit, and enumerate their properties.

The operators responsible for the singular contributions are:

• The operator O20′ from the 1/2-BPS multiplet B
1
2
, 1
2

[0,2,0],(0,0). It has ∆ = 2, J = 0 and

R = [0, 2, 0]

OIJ
20′(x) = Tr

(
Φ{IΦJ}

)
(x) . (6.14)

• The R-symmetry current operator Jµ from the 1/2-BPS multiplet B
1
2
, 1
2

[0,2,0],(0,0). It has

∆ = 3, J = 1 and R = [1, 0, 1].

Notice the identity operator contribution is singular as well, but it does not appear in

the connected component of the five-point function. For the leading regular contribution,

we have

• The stress tensor operator Tµν from the 1/2-BPS multiplet B
1
2
, 1
2

[0,2,0],(0,0). It has ∆ = 4,

J = 2 and R = [0, 0, 0].

• The bottom component of the 1/2-BPS multiplet B
1
2
, 1
2

[0,4,0],(0,0). It has ∆ = 4, J = 0

and R = [0, 4, 0], and its OPE coefficients with operators of short multiplets are also

protected. In the free theory, the 1/2-BPS operator can either be realized as a single-

trace operator, or as a double-trace operator of the 20′ operators projected to the

[0, 4, 0] representation. Requiring that the operators should have orthonormal two-

point functions enforces the single-trace operator to appear in a linear combination

with the double-trace operator, and the latter is suppressed by an O(1/N) coefficient.

In the bulk supergravity description, this state is dual to a scalar field which sits at

the next level of the KK tower and, by construction, it has a vanishing coupling with

two 20′ scalar fields. Therefore the dimension-4 1/2-BPS operator which appears in

the OPE of the five-point function corresponds to the double-trace operator

(ODT
105)

IJKL =: O{IJ
20′ OKL}

20′ : . (6.15)

• The bottom component of the 1/4-BPS multiplet B
1
4
, 1
4

[2,0,2],(0,0). This operator has

∆ = 4, J = 0 and R = [2, 0, 2]. It is realized as a double-trace operator plus a

single-trace operator with a coefficient of order O(1/N) [55, 56]. For simplicity we

write down the operator with a specific choice of the polarization

Q = Tr(Z2)Tr(X2)− Tr(ZX)Tr(ZX) +
1

N
Tr([ZX][ZX]) , (6.16)

where Z and X are two complex scalar fields defined as Z = Φ1+ iΦ2, X = Φ3+ iΦ4.

Note that Wick contraction of the two scalar fields vanishes, so that the operator Q
is completely traceless. The OPE coefficients of 1/4-BPS and 1/2-BPS operators are

also protected [57].
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• The bottom component of the multiplet C
1
2
, 1
2

[0,2,0],(0,0). It has ∆ = 4, J = 0, R = [0, 2, 0],

and is also realized as a double-trace operator (see, e.g., [58])

CIJ =: OIK
20′OJK

20′ : −1

6
δIJ : OKL

20′ OKL
20′ : . (6.17)

• The bottom component of the long multiplet A∆
[0,0,0],(0,0). This operator has ∆ ≈ 4,

J = 0 and R = [0, 0, 0]. It is realized as a double-trace operator.

Note that the bottom component of C
1
4
, 1
4

[1,0,1],(0,0) is also a scalar operator with ∆ = 4, but it

has R = [1, 0, 1]. The total parity of R-symmetry and spacetime spins of this operator is

therefore odd, which forbids it to appear in the OPE.

6.3 Extracting CFT data

We can already make some qualitative predictions about the result after taking the Eu-

clidean OPE. For example, the only unprotected operator appearing in the OPE is the

super primary of the long multiplet, which is an R-symmetry singlet. Therefore none of

the other representations should contribute to the logarithmic singularities which are asso-

ciated with anomalous dimensions. Even without decomposing into conformal blocks, an

R-symmetry projection of the correlator expanded to order O(s41s
4
2) confirms this to be a

feature of our supergravity five-point function.

Let us now consider the double OPE limit in more detail. In the following we always

write the OPE coefficients for normalized operators, and we strip off the R-symmetry

structures which are defined explicitly in appendix B. This notation follows naturally from

the decomposition of the five-point function into the R-symmetry polynomials defined

in (B.20).19 To begin, let us first project the five-point function into the channel in the 20′

representation and with ∆ = 2. This simply corresponds to the intermediate operator being

the operator O20′ . We obtain several OPE coefficients with two chiral primaries, which

were known previously from the analysis of the 20′ supergravity four-point function [59]

CO20′O20′A =
1√
10

(
1 +

19

15N2

)
, CO20′O20′Q =

2
√
2√
3

(
1− 3

2N2

)
,

CO20′O20′O
DT
105

=
√
2

(
1 +

1

N2

)
, CO20′O20′C =

√
6√
5

(
1 +

1

6N2

)
. (6.18)

Note that our results have different normalizations as we use the tensor structures defined

in appendix B. Except for CO20′O20′A, the three-point functions above are protected, and

so they coincide with their free field theory values.20

19By contrast if we want to directly compute the normalized OPE coefficients in the free theory, we need

to evaluate both two- and three-point functions where the former set the normalizations.
20Three-point functions of half-BPS operators are known to be independent of the coupling, thanks to

the non-renormalization theorems [52, 60–67], while three-point functions mixing half- and quarter-BPS

operators were shown to be protected in [57]. Meanwhile, the non-renormalization of CO
20′O20′C was

observed in [59], and proved in [68] using superspace techniques.
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Focusing now on intermediate operators of dimension 4 in both channels, we are able

to extract three-point functions which could not be obtained from the four-point function

of single-trace operators. In particular, we find the following OPE coefficients

CO20′CO
DT
105

=
4
√
2√

15N

(
1 +

5

6N2

)
, CO20′O

DT
105O

DT
105

=
4
√
2

N

CO20′CQ = −2
√
10

3N

(
1− 5

3N2

)
, CO20′QQ =

8
√
2

N
, (6.19)

which match exactly with their free theory values. The three-point functions CO20′O
DT
105O

DT
105

,

CO20′QQ and CO20′CO
DT
105

are known to be protected. We reproduced these three-point func-

tions from supergravity calculations, which gives nontrivial checks of our results. More-

over, the precise match of CO20′CQ with the free theory value also strongly indicates that

the three-point function is protected, supporting the claim from [68] using superspace

arguments.

We also extract the OPE coefficient of one O20′ with two C operators at strong coupling,

which reads

CO20′CC =
9
√
2

5N

(
1 +

10

81N2

)
. (6.20)

We find that this OPE coefficient does not match the free field theory computation, in-

dicating that this type of three-point function is unprotected.21 Further support for our

claim can be obtained from perturbation theory. In [69] the authors obtained the five-

point function at one loop, and a decomposition in conformal blocks reveals that the OPE

coefficient receives a one-loop correction22

Cpert
O20′CC

=
9
√
2

5N

(
1 +

20(1− 15λ)

27N2

)
. (6.21)

Finally, we consider the singlet and 20′ R-symmetry channels, from which we derive a new

OPE coefficient involving the unprotected operator A and a semi-short operator C

CO20′AC =
2
√
2√

3N

(
1− 521

90N2

)
. (6.22)

While the machinery developed in appendix E makes it convenient to directly extract

the CFT data, there is still much to gain by performing just one single OPE. It allows us

to obtain the complete four-point functions from the five-point function. To start with, we

reproduce the known four-point functions of single-trace operators. We found that the pro-

jection of the singular part of the correlator on the [0, 2, 0] channel is exacly reproduced by

21At first sight our result seems to contradict the protected nature of the chiral algebra. However,

unlike the B-type multiplets where the Schur operators are the super primary, Schur operators in the C-

type are superconformal descendants. We strongly suspect that the three-point functions for one B-type

multiplet and two C-type multiplets have more than one superstructure in superspace. The protected

chiral algebra three-point function and 〈O20′CC〉 are in different superstructures which are unrelated by the

action of supercharges. The non-renormalization theorem applies only to the former case. We thank Carlo

Meneghelli for discussions on this point.
22The weak coupling analysis is more subtle, as there could be more operators appearing in the OPE.

Fortunately, at one loop there is no new scalar operator with dimension 4 and in the [0, 2, 0] representation,

as we can see in the conformal block decomposition of the one-loop four-point function of O20′ .

– 31 –



J
H
E
P
1
0
(
2
0
1
9
)
2
4
7

the scalar four-point function 〈O20′O20′O20′O20′〉. The projection of the singular part into

the [0, 1, 0] channel is matched by the four-point function (C.27) of three chiral primaries

and one R-symmetry current. Moreover, the [0, 0, 0] spin two component of the regular

part is matched by the four-point function (C.29) of three O20′ and one Tµν . Once we have

removed the contribution of the stress-tensor, we can use the single OPE to extract the

correlator of the unprotected double-trace operator with three chiral primaries, which is a

new result for strongly coupled planar N = 4 SYM

〈AO20′O20′O20′〉= 2 t23t24t34√
5x212x

4
13x

2
14x

2
24

(
u+v+uv

uvN
+

1

N3

(
44D̄2224+36(1+u+v)D̄2222

+
u+v+uv

uv

(139
15

−8D̄2112−8v D̄2121

)
− 28

3
D̄1111

))
(6.23)

Much new information is encoded in this correlator, with the OPE coefficient of (6.22)

being just an example of the type of data that can be extracted. Also note that there are

many possible rewritings of the correlator (6.23) in terms of D-functions, and we have only

presented the simplest expression. It is also possible to write an expression which requires

only D-functions of total conformal dimension 10.

7 Discussion and outlook

In this paper, we developed new systematic methods to compute five-point functions from

AdS5 × S5 IIB supergravity. We also obtained five-point conformal blocks in series expan-

sions, which allowed us to perform conformal block decompositions for five-point correla-

tors. As a concrete example, we computed the five-point function of the 20′ operator. We

performed a number of consistency checks on the 20′ five-point function and extracted new

CFT data at strong coupling.

There are many directions which one can pursue in the future.

• First of all, an immediate interesting extension is to apply our methods to more

general five-point functions. As the complexity of the correlators grows with the

extremality, the best starting point is correlators with the same extremality as the

20′ five-point function. These correlators should have very similar structures, which

is particularly manifest in Mellin space. Work in this direction is in progress and we

hope to report the results in the near future.

• Second, we would like to better understand the general structure of the five-point cor-

relation functions dictated by superconformal symmetry. For four-point functions,

superconformal constraints boil down to the partial non-renormalization theorem

of [40]. This theorem reduces the correlators to a free part and a “quantum correc-

tion” part, which has a much simpler form than the full correlator. For five-point

functions the pressing issue is to find and solve the full set of constraints from super-

conformal symmetry, and the solution will constitute the five-point analogue of the

“partial non-renormalization theorem”. Such a solution will give us a more compact

way to write the five-point function.

– 32 –



J
H
E
P
1
0
(
2
0
1
9
)
2
4
7

• Relatedly, it has recently been observed that the correction part in four-point func-

tions exhibits a hidden ten dimensional conformal symmetry [30]. Using this hid-

den symmetry, one can lift the lowest-weight four-point function into a generating

function. Establishing the five-point “partial non-renormalization theorem” will be

extremely useful for identifying the action of the hidden symmetry at the level of five-

point functions. It should then also be possible to write down a generating function

which gives five-point functions of arbitrary conformal dimensions.

• From our analysis, it is clear that there are close analogies between holographic cor-

relators and flat space scattering amplitudes. For example, factorization in Mellin

space played a crucial role in our position space approach of computing the five-point

function. We also showed that the 20′ five-point function has no intrinsic five-point

contact interaction. This seems to suggest certain “constructibility” of the holo-

graphic correlators. It would be extremely interesting to develop such constructive

approaches further and extend them to higher points, perhaps in the form of Mellin

recursion relations similar to the famous BCFW relation [70].

• One aspect which we have not considered in detail is the flat space limit. We

would like to examine this limit more carefully in the future. The flat space limit

will also be important when we consider higher-derivative (stringy) corrections to

the five-point functions, as has been emphasized in the four-point function case by,

e.g., [14–17, 23, 25].

• Finally, the technology developed in this paper can be readily applied to eleven di-

mensional supergravity on AdS7×S4. The chiral algebra in six dimensions [71] places

strong constrains on the five-point functions. However, it is not clear if a twist similar

to the SO(6) twist of [39] exists for the (2, 0) theories. It may be necessary to resort

to the flat space limit, which gives extra constraints on contact interactions. It would

be interesting to compute five-point correlators for this background, and extract new

information about the (2, 0) theory in six dimensions.
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A Integrating out an internal line

In this appendix we extend the method of [47] to higher-point Witten diagrams with more

than one internal line, and evaluate the various diagrams that appear in section 4. The key

point is that integrating out an internal line replaces the integrated cubic vertex by a sum

of contact vertices. When the quantum numbers are fine-tuned to satisfy certain conditions

(such as in N = 4 SYM and the 6d (2, 0) theory), the sum in the contact vertices truncates

to finitely many terms. Repeated use of the vertex identities then allows us to write an

exchange Witten diagram in terms of a finite sum of contact diagrams.

A.1 Vertex identities

In [47] the consequence of integrating out a bulk-to-bulk propagator for a four-point ex-

change Witten diagram was worked out. The upshot is that the exchange Witten diagram

can be expressed in terms of a sum of four-point contact diagrams. For our purpose, we

want to extract from their result the vertex identities that relate an integrated cubic vertex

to a sum of contact vertices.

A.1.1 Scalar exchange

Let us start with the scalar internal line. The integrated cubic interaction is

Iscalar ≡
∫
dd+1z

zd+1
0

G∆1
B∂(z, x1)G

∆2
B∂(z, x2)G

∆
BB(z, y) . (A.1)

Using the result in [47], we can express this integral as

Iscalar =

kmax∑

k=kmin

ak(x
2
12)

k−∆2Gk+∆1−∆2
B∂ (y, x1) G

k
B∂(y, x2) (A.2)

where

kmin = (∆−∆1 +∆2)/2 , kmax = ∆2 − 1 ,

ak−1 =
(k − ∆

2 + ∆1−∆2
2 )(k − d

2 + ∆
2 + ∆1−∆2

2 )

(k − 1)(k − 1−∆1 +∆2)
ak ,

a∆2−1 =
1

4(∆1 − 1)(∆2 − 1)
,

(A.3)

with ∆1 +∆2 −∆ being a positive even integer.

A.1.2 Graviphoton exchange

We now consider the integral involving the exchange of a vector field of general dimension

∆. When ∆ = d − 1, the vector field is a massless gauge field and couples to a conserved

current. Denoting ∆1 = ∆2 = ∆ext, we will consider the coupling of the vector field to a

conserved current

Iµvector ≡
∫
dd+1z

zd+1
0

(
G∆ext

B∂ (z, x1)
↔
▽νG

∆ext
B∂ (z, x2)

)
G∆,1,µν

BB (z, y) , (A.4)
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where G∆,1,µν
BB (z, y) is the vector bulk-to-bulk propagator. This integral can be evaluated

as a sum of contact vertices

Iµvector = −
kmax∑

k=kmin

ak
2k

(x212)
−∆ext+kgµν(y)

(
Gk

B∂(y, x1)
↔
▽νG

k
B∂(y, x2)

)
(A.5)

where

kmin =
d− 2

4
+

1

4

√
(d− 2)2 + 4(∆− 1)(∆− d+ 1) ,

kmax = ∆ext − 1 ,

ak−1 =
2k(2k + 2− d)− (∆− 1)(∆− d+ 1)

4(k − 1)k
ak ,

a∆ext−1 =
1

2(∆ext − 1)
.

(A.6)

The truncation requires that kmax−kmin is a non-negative integer. Notice that in evaluating

the cubic integral, vanishing divergence of the source is not required. Therefore this result

holds even when the source coupled to Iµvector is not conserved.

A.1.3 Graviton exchange

Finally we consider the cubic integral involving a graviton field. Let ∆1 = ∆2 = ∆ext, the

cubic integral is

Iµνgraviton=

∫
dd+1z

zd+1
0

G∆=d−2,ℓ=2, µν;ρσ
BB (z,y)×

(
▽ρG

∆ext
B∂ (z,x1)▽σG

∆ext
B∂ (z,x2)

− 1

2
gρσ(z)(▽κG∆ext

B∂ (z,x1)▽κG
∆ext
B∂ (z,x2)+m

2G∆ext
B∂ (z,x1)G

∆ext
B∂ (z,x2))

)
.

(A.7)

Using the result of [47], we find that this integral reduces to the following sum of contact

vertices

Iµνgraviton =

kmax∑

k=kmin

ak(x
2
12)

−∆ext+k

(
gµν(y)

d− 1
Gk

B∂(y, x1)G
k
B∂(y, x2)

+
1

k(k + 1)

(
DµDνGk

B∂(y, x1) + kgµν(y)Gk
B∂(y, x1)

)
Gk

B∂(y, x2)

) (A.8)

where

kmin =
d

2
− 1 ,

kmax = ∆ext − 1 ,

ak−1 =
k + 1− d

2

k − 1
ak ,

a∆ext−1 = − ∆ext

2(∆ext − 1)
.

(A.9)
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For the above expression to be valid, Iµνgraviton must be coupled to a conserved current.

This is because in the derivation of [47] total derivative terms in Iµνgraviton are assumed to

drop out, which is consistent only when coupled to divergence-less sources. On the other

hand, when Iµνgraviton is coupled to a non-conserved source, there is a nonzero contribution

from the total derivative terms in Iµνgraviton. The contribution of these terms cannot be

determined using the techniques of [47].

A.2 Five-point exchange Witten diagrams

Using the vertex identities, we can evaluate the exchange diagrams that we encountered in

section 4. We record here their explicit expressions.

A.2.1 W
s[12],s[34]

The double-exchange Witten diagram W s[12],s[34] is defined by (4.29). It evaluates to

W s[12],s[34] =
D11112

16x212x
2
34

. (A.10)

A.2.2 W
s[12]
0-der

The scalar single-exchange diagram with a zero-derivative quartic vertex is defined by

W
s[12]
0-der=

∫
dz5

z50

dy5

y50
G∆=2

B∂ (z;x1)G
∆=2
B∂ (z;x2)G

∆=2
BB (z;y)G∆=2

B∂ (y;x3)G
∆=2
B∂ (y;x4)G

∆=2
B∂ (y;x5) .

(A.11)

It has the value

W
s[12]
0-der =

D11222

4x212
. (A.12)

A.2.3 W
s[12],(5)

2-der

The scalar single-exchange diagram with a two-derivative quartic vertex in which the two

derivatives are on the external legs 3 and 4 is defined by

W
s[12],(5)

2-der =

∫
dz5

z50

dy5

y50
G∆=2

B∂ (z;x1)G
∆=2
B∂ (z;x2)G

∆=2
BB (z; y)G∆=2

B∂ (y;x5)

× ▽y,µG
∆=2
B∂ (y;x3)▽

µ
yG

∆=2
B∂ (y;x4) .

(A.13)

Using the identity

▽
µG∆1

B∂▽µG
∆2
B∂ = ∆1∆2

(
G∆1

B∂G
∆2
B∂ − 2x212G

∆1+1
B∂ G∆2+1

B∂

)
, (A.14)

we find

W
s[12],(5)

2-der =
1

x212

(
D11222 − 2x234D11332

)
. (A.15)
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A.2.4 W
V[12],V[34]

The double-exchange diagram W V[12],V[34] is defined by (4.19). Using the vertex identities,

we have

W V[12],V[34] =
1

2x212x
2
34

(
− x224D12122 + x223D12212 + x214D21122 − x213D21212

+ 2(x213x
2
24 − x214x

2
23)D22222

)
.

(A.16)

A.2.5 W
V[12],s[34]

The double-exchange diagram W V[12],s[34] is defined in (4.22) and it evaluates to

W V[12],s[34] =
1

8x212x
2
34

(
− 2x225D12113 + x224D12122 + x223D12212 + 2x215D21113

− x214D21122 − x213D21212

)
.

(A.17)

A.2.6 W
ϕ[12],s[34]

The definition of the double-exchange diagram Wϕ[12],s[34] is given by (4.6). As we com-

mented before, the vertex identity in section A.1.3 does not hold because the source (4.9)

is not conserved. A naive application of the identities leads to a wrong answer since the

dropped total derivative terms have nonzero contributions. On the other hand, the total

coupling to the graviton field is conserved when we sum up all the diagrams, and the extra

contributions due to the ignored total derivative terms will vanish in the sum. Therefore it

does not matter that we use the vertex identities of section A.1.3 to evaluate the diagrams

so long as all the diagrams are added up correctly at the end of the day. With this caveat,

we find that

Wϕ[12],s[34] •
=

1

3x212x
2
34

(
2D11112 − 3(x214D21122 + x213D21212)

+ 6x215(D21113 − x214D31123 − x213D31213)

) (A.18)

where we used
•
= to remind us that this expression only makes sense in the sum of all

diagrams.

A.2.7 W
ϕ[12]

The single-exchange diagram Wϕ[12] is defined by (4.14). The coupling to the graviton is

also non-conserved, but we will evaluate it with the same caveat for Wϕ[12],s[34] . Using the

vertex identities we have

Wϕ[12]
•
= − 2

3x212
D11222 . (A.19)
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B R-symmetry polynomials

An R-symmetry basis can be obtained by solving the two-particle Casimir equations in two

compatible channels. In terms of the null vectors, the SO(6)R generators take the form

L
(i)
IJ = ti,I

∂

∂tJi
− ti,J

∂

∂tIi
. (B.1)

The two-particle Casimir operator, say for 1 and 2, is constructed from L
(1)
IJ and L

(2)
IJ

C(1,2) =
1

2

(
L
(1)
IJ + L

(2)
IJ

)(
L(1),IJ + L(2),IJ

)
. (B.2)

When acting on the five-point correlator, which is a polynomial of tij = ti · tj , the two-

particle Casimir C(1,2) can be written as

C(1,2) = −
∑

i,j=3,4,5

(Dt1iDt1j )− (dR − 2)
∑

i=3,4,5

Dt1i

−
∑

i,j=3,4,5

(Dt2iDt2j )− (dR − 2)
∑

i=3,4,5

Dt2i

+ 2
∑

i,j=3,4,5

(
t12tij − t1it2j

) ∂

∂t1j

∂

∂t2i

(B.3)

where dR = 6 for SO(6) and Dx ≡ x ∂
∂x . Other two-particle Casimir operators C(i,j) are

similarly defined and can be obtained from C(1,2) by permuting the labels.

We now consider the solution to the following Casimir equations

C(a,b) ◦R(p,q),(p′,q′)
ab|cd = −2(p(p+ dR − 3) + q(q + 1))R

(p,q),(p′,q′)
ab|cd , (B.4)

C(c,d) ◦R(p,q),(p′,q′)
ab|cd = −2(p′(p′ + dR − 3) + q′(q′ + 1))R

(p,q),(p′,q′)
ab|cd (B.5)

where a, b, c, d are different points. When the quantum numbers {p, p′, q, q′} are such

that the solution is nontrivial, there exists a process where the [0, 2, 0] representations at

points a and b merge into the representation [p− q, 2q, p− q], while the tensor product of

points c and d produces the representation [p′−q′, 2q′, p′−q′]. This process is illustrated by

figure 8. The solution R
(p,q),(p′,q′)
ab|cd is the R-symmetry structure associated with the process.

R-symmetry selection rules at the vertices with a, b and c, d require 0 ≤ q ≤ p ≤ 2

and 0 ≤ q′ ≤ p′ ≤ 2, and the solutions are further restricted by the selection rule at the

vertex with the remaining external point e. There are in total 22 solutions to the equations,

which are in correspondence with the 22 R-symmetry structures and form a complete basis.

Notice that when the two intermediate representations are [1, 2, 1] there are two solutions

to the Casimir equations. This is because [1, 2, 1] appears twice in the tensor product of

[1, 2, 1] with [0, 2, 0].

The OPE coefficients are meaningfully defined only when we set the conventions for

the three-point SU(4) tensor structures. In the context of a double OPE analysis it is

useful to fix the normalization of the polynomials R
(p,q),(p′,q′)
ab|cd such that they correspond to

the product of three such structures. In order to do so, let us first introduce the tensors
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Figure 8. An R-symmetry channel of the 20′ five-point function where the representation [p −
q, 2q, p− q] is exchanged in 12 and the representation [p′ − q′, 2q′, p′ − q′] is exchanged in 34.

associated with each of the representations [p − q, 2q, p − q]. For p = 2 we encode the

representations by traceless orthonormal tensors of rank 4, denoted by

(C2
q )

J
ijkl , (B.6)

where i, j, k, l are SO(6) vector indices, and J parametrizes the degrees of freedom of the

representation. C2
2 is completely symmetric, C2

1 is symmetric in both i ↔ j and k ↔ l

but antisymmetric in the exchange (ij) ↔ (kl), while C2
0 is antisymmetric in both i ↔ k

and j ↔ l, symmetric in the exchange (ik) ↔ (jl) and also obeys ǫijklmn(C2
0 )

J
klmn = 0.

Similarly, for p = 1 we encode representations by traceless orthonormal tensors of rank 2,

which we write as

(C1
q )

J
ij , (B.7)

where C1
1 is symmetric and C1

0 is antisymmetric.

We can now set our definitions for the tensor structures arising in all relevant three-

point functions. When two of the representations are the 20′, all possible tensor contrac-

tions can be related to the following three-point structures

T I1I2J
(2,q) = (C1

1 )
I1
ij (C

1
1 )

I2
kl(C

2
q )

J
ijkl , (B.8)

T I1I2J
(1,q) = (C1

1 )
I1
ik(C

1
1 )

I2
jk(C

1
q )

J
ij , (B.9)

T I1I2
(0,0) = (C1

1 )
I1
ij (C

1
1 )

I2
ij = δI1I2 . (B.10)

If only one of the representations is the 20′, then the independent three-point structures

can be chosen as

T JIK
(2,q),(2,q′),1 = (C2

q )
J
iklm(C1

1 )
I
ij(C

2
q′)

K
jklm , (B.11)

T JIK
(2,1),(2,1),2 = (C2

1 )
J
iklm(C1

1 )
I
ij(C

2
1 )

K
jlkm , (B.12)

T JIK
(1,0),(2,1) = (C1

0 )
J
ij(C

1
1 )

I
kl(C

2
1 )

K
ikjl , (B.13)

T JIK
(1,0),(1,0) = (C1

0 )
J
ik(C

1
1 )

I
ij(C

1
0 )

K
jk . (B.14)
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Note that when both (p, q) and (p′, q′) are equal to (2, 1) there are two possible tensor

structures, which reflects the fact that there are two independent singlets in the tensor

product [1, 2, 1]× [1, 2, 1]× [0, 2, 0].

It is natural to write the basis of four-point structures in the (ab) channel as the

product of three-point structures introduced above

T
IaIb|IcId
(p,q) = T IaIbJ

(p,q) T IcIdJ
(p,q) , (B.15)

which can be written as polynomials in tij by performing the following contraction

R
(pq)
ab|cd = T

IaIb|IcId
(p,q) (C1

1 )
Ia
i1j1

ti1a t
j1
a . . . (C1

1 )
Id
i4j4

ti4d t
j4
d . (B.16)

For example, the basis suitable for the OPE in the 12 channel of the four-point function

would be

R
(0,0)
12|34 = t212t

2
34 ,

R
(1,0)
12|34 =

1

2
t12t34(t13t24 − t14t23) ,

R
(1,1)
12|34 =

1

2
t12t34(t13t24 + t14t23)−

1

6
t212t

2
34 ,

R
(2,0)
12|34 =

1

4
(t213t

2
24 + t214t

2
23)−

1

2
t13t14t23t24 −

1

8
(t12t14t23t34 + t12t13t24t34) +

1

40
t212t

2
34 ,

R
(2,1)
12|34 =

1

2
(t213t

2
24 − t214t

2
23) +

1

4
(t12t14t23t34 − t12t13t24t34) ,

R
(2,2)
12|34 =

1

6
(t213t

2
24 + t214t

2
23) +

2

3
t13t14t23t24 −

2

15
(t12t14t23t34 + t12t13t24t34) +

1

60
t212t

2
34 .

(B.17)

Analogously, the natural basis of five-point tensor structures in the double OPE analysis in

(ab) and (cd) channels is then given by the following product of three three-point structures

T
IaIb|IcId|Ie
(p,q),(p′,q′),i = T IaIbJ

(p,q) T JIeK
(p,q),(p′,q′),i T

IcIdK
(p′,q′) . (B.18)

With these definitions, the normalization of the polynomials R
(p,q),(p′,q′)
ab|cd is fixed by requiring

that

R
(pq),(p′,q′)
ab|cd,i = T

IaIb|IcId|Ie
(p,q),(p′,q′),i(C

1
1 )

Ia
i1j1

ti1a t
j1
a . . . (C1

1 )
Ie
i5j5

ti5e t
j5
e . (B.19)

Performing the contractions on the right-hand side we obtain the following basis suitable
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for a double OPE in the 12 and 34 channels

R
(0,0),(1,1)
12|34 = H ,

R
(1,0),(1,0)
12|34 = −A1 −A2 −A3 +A4

4
,

R
(1,0),(1,1)
12|34 =

A1 −A2 +A3 −A4

4
,

R
(1,1),(1,1)
12|34 =

A1 +A2 +A3 +A4

4
− H

6
− I

6
,

R
(1,0),(2,1)
12|34 =

A1 −A2 −A3 +A4

16
− D1 −D2

2
,

R
(1,1),(2,0)
12|34 = −A1 +A2 +A3 +A4

16
− D1 +D2

4
+

E1 + E2
4

+
H
8

+
I
40
,

R
(1,1),(2,1)
12|34 =

A1 +A2 −A3 −A4

8
− E1 − E2

2
,

R
(1,1),(2,2)
12|34 = −A1 +A2 +A3 +A4

15
+

D1 +D2

3
+

E1 + E2
6

− H
15

+
I
60
,

R
(2,0),(2,0)
12|34 = −3

A1 +A2 +A3 +A4

128
− B1 + B2 + B3 + B4

16
+

C1 + C2 + C3 + C4
16

− D1 +D2

32
+

E1 + E2
32

− F1 + F2

32
+

G1 + G2

32
+

H
64

+
I
64
,

R
(2,0),(2,1)
12|34 = −A1 +A2 −A3 −A4

32
− B1 + B2 − B3 − B4

8
− C1 + C2 − C3 − C4

8
+

E1 − E2
16

,

R
(2,1),(2,1)
12|34,1 = 3

A1 −A2 −A3 +A4

64
+

C1 − C2 − C3 + C4
4

+
D1 −D2

8
+

F1 −F2

8
,

R
(2,1),(2,1)
12|34,2 = 5

A1 −A2 −A3 +A4

128
− B1 − B2 − B3 + B4

4
− D1 −D2

16
− F1 −F2

16
,

R
(2,1),(2,2)
12|34 = −A1 +A2 −A3 −A4

30
+

B1 + B2 − B3 − B4

6
+

C1 + C2 − C3 − C4
12

+
G1 − G2

30
,

R
(2,2),(2,2)
12|34 = −A1 +A2 +A3 +A4

50
+

B1 + B2 + B3 + B4

6
+

C1 + C2 + C3 + C4
12

− D1 +D2

15
− E1 + E2

30
− F1 + F2

15
− G1 + G2

30
+

H
75

+
I
75
, (B.20)

where we introduced the following short-hand notation for the monomials

A1 = t12t23t34t45t51 , A2 = t21t13t34t45t52 , A3 = t12t24t43t35t51 , A4 = t21t14t43t35t52 ,

B1 = t13t32t24t45t51 , B2 = t23t31t14t45t52 , B3 = t14t42t23t35t51 , B4 = t24t41t13t35t52 ,

C1 = t13t35t51t
2
24 , C2 = t23t35t52t

2
14 , C3 = t14t45t51t

2
23 , C4 = t24t45t52t

2
13 ,

D1 = t12t23t35t54t41 , D2 = t12t24t45t53t31 , E1 = t12t23t31t
2
45 , E2 = t12t24t41t

2
35 ,

F1 = t34t41t15t52t23 , F2 = t34t42t25t51t13 , G1 = t34t41t13t
2
25 , G2 = t34t42t23t

2
15 ,

H = t34t45t53t
2
12 , I = t12t25t51t

2
34 . (B.21)

When performing the single OPE, it is useful to know how the structures of the four-

point function contract with the three-point structure, so that we can recognize their

contribution to the five-point function. We will now see that we can do this easily with the
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knowledge of four-point R-symmetry polynomials from (B.17). If the intermediate operator

is in the 15 or the 20′, then the tensor contraction is of the form

T IaIb|IcIdIe = (C1
1 )

Ia
mn(C

1
1 )

Ib
np(C

1
q )

J
mp × (C1

q )
J
ij(C

1
1 )

Ic
jk(C

1
1 )

Id
kl (C

1
1 )

Ie
li . (B.22)

It is useful to rewrite this tensor in terms of the variables ti, which we do as follows

R
(1,q)
ab|cde = CIa

i1j1
ti1a t

j1
a . . . CIe

i5j5
ti5e t

j5
e T IaIb|IcIdIe

= tabtcdtde t
m
a t

p
b(C

1
1 )

IJ
mp(C

1
q )

J
ijt

j
ct

i
e . (B.23)

It is possible to recognize part of the definition for the four-point polynomials in this

expression, from which we obtain

R
(1,q)
ab|cde =

tcdtde
tce

R
(1,q)
ab|ce . (B.24)

C Spinning correlators

In order to use factorization we must obtain the Mellin representation for correlators of

the chiral operator O20′ with a single insertion of the R-current Jµ or the stress-tensor

Tµν , whose AdS duals are the graviphoton Vµ and graviton ϕµν , respectively. Three-

point functions of these fields are protected, and their Mellin transform is a constant, but

factorization requires also the knowledge of the Mellin representation for the following

four-point functions

〈JµO20′O20′O20′〉 , (C.1)

〈TµνO20′O20′O20′〉 . (C.2)

It is useful to think of these spinning operators as different components of the superfield

T (xµ, θ
a
α, θ̄

α̇
ȧ ) , (C.3)

which depends only on four chiral and four antichiral Grassmann variables, due to a short-

ening condition. Therefore, the four-point function

G4 = 〈T (1) . . . T (4)〉 (C.4)

depends on 16 chiral and 16 antichiral variables, which exactly matches the number of

supercharges in N = 4 SYM. In [48] the superconformal symmetry was used to relate all

elements of (C.4) to the lowest component, i.e., the four-point function of chiral primaries.

The chiral primary four-point function can be split into a free part and an “anomalous”

part which depends on the coupling

〈O20′(x1, t1) . . .O20′(x4, t4)〉 = G4

∣∣
θi=θ̄i=0

= Gfree(xi, ti) +R(xi, ti)
Φ(u, v)

x213x
2
24

, (C.5)

where u and v are the four-point conformal cross ratios

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

, (C.6)
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and the prefactor of the anomalous correlator is defined as

R(xi, ti) = d212d
2
34x

2
12x

2
34 + d214d

2
23x

2
14x

2
23 + d213d

2
24x

2
13x

2
24

+ d12d13d24d34(x
2
12x

2
34 + x213x

2
24 − x214x

2
23)

+ d12d14d23d34(x
2
12x

2
34 + x214x

2
23 − x213x

2
24)

+ d13d14d24d23(x
2
13x

2
24 + x214x

2
23 − x212x

2
34) , (C.7)

with the propagator dij = tij/x
2
ij . By superconformal symmetry, the four-point functions

〈JµO20′O20′O20′〉 and 〈TµνO20′O20′O20′〉 have similar structures, namely, they can also

be expressed as the sum of a free piece and an anomalous piece.

Using the results of [48], the anomalous component of the correlators (C.1) and (C.2)

can be written in terms of the function Φ(u, v) in the following way

〈Jαα̇,aȧO20′ . . .〉= (∂x1)
β
α̇

4

(
(y223y

2
34Y124−uy223y224Y134−vy224y234Y123)aȧ

[X124,X134](αβ)

x223x
2
24x

2
34

Φ(u,v)

)
,

〈Tαα̇,ββ̇O20′ . . .〉=
(∂x1)

γ
α̇(∂x1)

δ
β̇

4

(
[X124,X134](αβ [X124,X134]γδ)

x212x
2
14

x224

y223y
2
24y

2
34

x223x
2
24x

2
34

Φ(u,v)

)
,

(C.8)

where the tensor structures are defined as

(Xijk)αβ̇ =
(xij)αα̇(xjk)

α̇β(xki)ββ̇
x2ijx

2
ki

, (Yijk)aḃ = (yij)aȧ(yjk)
ȧb(yki)bḃ . (C.9)

By contracting (Xijk)αβ̇ with 1
2(σ

µ)β̇α we recognize it as the building block of correlators

with a spinning operator

Xµ
ijk =

xµik
x2ik

−
xµij
x2ij

. (C.10)

Note however that a four-point function depends only on two such structures, due to the

identity

Xµ
123 −Xµ

124 +Xµ
134 = 0 . (C.11)

Similarly, we can rewrite equations (C.8) with vector indices by contracting with Pauli

matrices and performing the traces. In position space the expressions are quite lenghty, so

here we present the results only schematically

〈JµO20′O20′O20′〉 = 1

x413x
4
24

(
α(2)(u, v)Xµ

124 + α(3)(u, v)Xµ
134

)
, (C.12)

〈TµνO20′O20′O20′〉 = 1

x413x
4
24

(
β(2,2)(u, v)Xµ

124X
ν
124 + β(3,3)(u, v)Xµ

134X
ν
134

+β(2,3)(u, v)X
(µ
123X

ν)
134

)
+
x223x

2
34

x813x
6
24

γ(u, v)δµν , (C.13)

where the functions α(i)(u, v), β(i,j)(u, v) and γ(u, v) are linear combinations of Φ(u, v) and

its derivatives, with coefficients given by Laurent polynomials of the cross ratios. It is not
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manifest in (C.8) that the result can be expressed in terms of Xµ
124 and Xµ

134 alone, so the

fact that (C.12) and (C.13) have this form provides a good consistency check of the result.

Furthermore, γ(u, v) is such that the expression for the stress-tensor is traceless, and we

observe also that, as expected, both correlators satisfy the equations for conserved currents

∂

∂xµ1
〈JµO20′O20′O20′〉 = 0 ,

∂

∂xµ1
〈TµνO20′O20′O20′〉 = 0 . (C.14)

The expressions for the spinning four-point functions simplify greatly when we use the

spinning Mellin formalism [37]. Here we can ignore the free piece because they are rational

functions which do not contribute to the Mellin amplitude [2]. The Mellin amplitudes

therefore come exclusively from the anomalous piece computed above. By inverting (3.4),

we can extract the Mellin amplitudes by performing the following Mellin transforms

Mab(s, t) =
1∏4

i=2 Γ(γi + δai + δbi )
∏4

i<j Γ(γij)

∫ ∞

0
du

∫ ∞

0
dv u1−

s
2 v1−

t
2β(a,b)(u, v) ,

Ma(s, t) =
1∏4

i=2 Γ(γi + δai )
∏4

i<j Γ(γij)

∫ ∞

0
du

∫ ∞

0
dv u1−

s
2 v1−

t
2α(a)(u, v) , (C.15)

where γi are fixed in (3.6) and we define the remaining Mellin variables as

γ23 = 2− t

2
, γ24 =

s+ t

2
− 2 , γ34 = 2− s

2
. (C.16)

Since the functions α(i)(u, v) and β(i,j)(u, v) are linear combinations of Φ(u, v) and its

derivatives, it is useful to consider the relation
∫ ∞

0
dudv u1−

s
2 v1−

t
2umvn

∂p

∂up
∂q

∂vq
Φ(u, v) =

=
(s
2
−m− 1

)
p

( t
2
− n− 1

)
q

∫ ∞

0
dudv u−

s−2m+2p−2
2 v−

t−2n+2q−2
2 Φ(u, v) , (C.17)

and ∫ ∞

0
dudv u−

s
2 v−

t
2Φ(u, v) =

32Γ(2− s
2)

2Γ(2− t
2)

2Γ( s+t
2 )2

(s− 2)(t− 2)(2− s− t)
. (C.18)

Putting equations (C.15), (C.17) and (C.18) together, we obtain the following Mellin rep-

resentation for the R-current correlator (C.1)

M2=−2(t−4)2y224y
2
34Y123

(s−2)(s+t−6)
+
2(t+s−4)2y223y

2
34Y124

(s−2)(t−2)
− 2(s−4)(2t+s−8)y223y

2
24Y134

(t−2)(s+t−6)
,

M3=
2(t−4)2y224y

2
34Y123

(s−2)(s+t−6)
+
2(s−t)(s+t−4)y223y

2
34Y124

(s−2)(t−2)
− 2(s−4)2y223y

2
24Y134

(t−2)(s+t−6)
, (C.19)

while for (C.2) we get

M22 =
4(s− 4)(t− 4)(s+ t− 4)

3(s− 2)(t− 2)(s+ t− 6)
y223y

2
24y

2
34 ,

M23 =
4(t− 4)((s− 4)(s+ t− 4) + 6(t− 2))

3(s− 2)(t− 2)(s+ t− 6)
y223y

2
24y

2
34 ,

M33 =
4(s− 4)(t− 4)(s+ t− 4)

3(s− 2)(t− 2)(s+ t− 6)
y223y

2
24y

2
34 . (C.20)
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We also obtained the other Mellin components, M4 andMa4, and verified that they satisfy

transversality

∑

a

γaM
a = 0 ,

∑

a

(γa + δba)M
ab = 0 . (C.21)

As a side comment, we observe that the transversality condition (C.21) imposes non-

trivial constraints on the Mellin amplitudes. For example, the Mellin amplitudes with one

external stress tensor can be cast in the following form

Mab(s, t) =
cab,1
s− 2

+
cab,2
t− 2

+
cab,3

s+ t− 6
+ cab,4. (C.22)

Imposing transversality fixes all the coefficients cab,i in terms of just one, say c22,1.

It is now instructive to go back to position space once again. This is a subtle procedure,

but when performed correctly we are able to recover both the anomalous and free pieces of

the correlator. From the definition of the spinning Mellin amplitude (3.4), the integration

variables must sit in the domain

{(s0, t0)| R(s) < 4,R(t) < 4,R(s) +R(t) > 4} . (C.23)

In order to translate our Mellin amplitudes (C.19) and (C.20) into D-functions, we use the

definition

D∆1...∆n =
π2Γ(Σ− 2)∏

i Γ(∆i)

∫
[dγ̃]

∏

i<j

Γ(γ̃ij)x
−2γ̃ij
ij , (C.24)

with ∑

j 6=i

γ̃ij = ∆i , (C.25)

whose contour integral is defined for Mellin variables in the domain

{(s0, t0)| γ̃ij(R(s),R(t)) > 0} . (C.26)

In order to have a faithful position space representation, all integration domains for the

D-functions must overalap with the fundamental domain (C.23). Having this in mind we

obtain the following R-current correlator

〈Jµ
aȧO20′O20′O20′〉= 2y224y

2
34(Y123)aȧ

ux413x
4
24

(
−
(
D̄2134+uD̄2224

)
Xµ

124+
(
D̄2224+uD̄2314

)
Xµ

134

)

+
2y223y

2
34(Y124)aȧ

ux413x
4
24

(
−
(
D̄2143+uD̄2242

)
Xµ

124+
(
D̄2233−uD̄2332

)
Xµ

134

)

+
2uy223y

2
24(Y134)aȧ

x413x
4
24

((
D̄2323−D̄2332

)
Xµ

124−
(
D̄2413+D̄2422

)
Xµ

134

)
.

(C.27)

– 45 –



J
H
E
P
1
0
(
2
0
1
9
)
2
4
7

The contributions with the ladder integral and logarithms are exactly the same as in (C.12),

and so we are able to extract the free correlator

〈Jµ
aȧO20′O20′O20′〉free=−y

2
23y

2
34(Y124)aȧX

µ
124+uy

2
23y

2
24(Y134)aȧX

µ
134+vy

2
24y

2
34(Y123)aȧX

µ
123

uvx413x
4
24

.

(C.28)

Meanwhile, for the stress-tensor we obtain

〈TµνO20′O20′O20′〉 = 4y223y
2
24y

2
34

3vx413x
4
24

(
u2
(
D̄4312 + vD̄4321 + vD̄4411 + vD̄4422

)
Xµ

124X
ν
124

+ 2u
(
D̄4222 − 2vD̄4231 − 2vD̄4321 + vD̄4332

)
X

(µ
124X

ν)
134

+
(
D̄4132 + vD̄4231 + vD̄4141 + vD̄4242

)
Xµ

134X
ν
134

)
,

(C.29)

which differs from (C.13) by

〈TµνO20′O20′O20′〉free =
4y223y

2
24y

2
34

(
(1 + v)Xµ

124X
ν
124 + (u+ v)Xµ

134X
ν
134 − 2vX

(µ
124X

ν)
134

)

3uvx413x
4
24

.

(C.30)

D Properties of D-functions

In this appendix, we summarize some basic properties of the D-functions which we encoun-

tered in this paper. A general D-function with n-external points is defined as an integral

in AdSd+1

D∆1,...,∆n =

∫
dz0d

dz

zd+1
0

n∏

i=1

(
z0

z20 + (~z − ~xi)2

)∆i

. (D.1)

After some standard manipulations, the D-function can be written as a Feynman integral

πd/2Γ(Σ− d
2)Γ(Σ)

2
∏

i Γ(∆i)

∫ 1

0

n∏

j=1

dajδ


1−

∑

j

aj




∏
j a

∆j−1
j

(
∑

i<j aiajx
2
ij)

Σ
(D.2)

where Σ = 1
2

∑n
i=1∆i. One should notice that the d-dependence only appears in the overall

factor Γ(Σ− d
2), and therefore D-functions defined in all AdSd+1 are essentially the same.

From the Feynman representation, we can derive a useful relation

D∆1,...,∆i+1,...,∆j+1,...,∆n =
d/2− Σ

∆i∆j

∂

∂x2ij
D∆1,...,∆n , (D.3)

which relates D-functions of higher weights.

Let us now focus on the special case with n=5 and (∆1,∆2,∆3,∆4,∆5)=(1, 1, 1, 1, 2).

This seed function D11112 and its permutations generate all other D-functions in this paper

via the differential recursion relations (D.3). To explicitly evaluate D11112, we need to

compute the following integral

∫ 1

0

5∏

j=1

dajδ


1−

∑

j

aj


 a5

(
∑

i<j aiajx
2
ij)

3
. (D.4)
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In fact (D.4) is a special case of a more general class of integrals

In[P ({ai})] = Γ(n− 2)

∫ 1

0

n∏

j=1

dajδ


1−

∑

j

aj


 P ({ai})

(
∑

i<j aiajx
2
ij)

n−2
(D.5)

where P ({ai}) is a polynomial of ai. These integrals can be evaluated in terms of the scalar

one-loop box integral I4[1] [49, 50]. The result is

D11112 =
4π2

x214x
2
35x

2
25

5∑

i=1

ηi5Î
(i)
4

N5
. (D.6)

Here N5 and ηi5 are defined via a matrix ρ

ρ = Nnη
−1 , Nn = 2n−1 det ρ , (D.7)

where

ρ =




0 V4 1 1 V3
V4 0 V5 1 1

1 V5 0 V1 1

1 1 V1 0 V2
V3 1 1 V2 0




(D.8)

with

V1 =
x225x

2
34

x224x
2
35

, V2 =
x231x

2
45

x235x
2
14

, V3 =
x224x

2
15

x214x
2
25

, V4 =
x212x

2
35

x225x
2
13

, V5 =
x214x

2
23

x213x
2
24

. (D.9)

The function Î
(i)
4 is the scalar one-loop box diagram where the point i is omitted from the

set of five. For example,

Î
(5)
4 = Φ(V1V4, V5) (D.10)

with

Φ(V1V4, V5) =
1

z − z̄

(
2Li2(z)− 2Li2(z̄) + log(zz̄) log

1− z

1− z̄

)
, (D.11)

and

V1V4 =
x212x

2
34

x213x
2
24

= zz̄ , V5 =
x214x

2
23

x213x
2
24

= (1− z)(1− z̄) . (D.12)

The one-loop box diagrams satisfy the following differential recursion relations [40]

∂zΦ =
Φ

z̄ − z
+

log(1− z)(1− z̄)

z(z̄ − z)
+

log(zz̄)

(z − 1)(z − z̄)
,

∂z̄Φ =
Φ

z − z̄
+

log(1− z)(1− z̄)

z̄(z − z̄)
+

log(zz̄)

(z̄ − 1)(z̄ − z)
. (D.13)
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Figure 9. A five-point function can be written in terms of sum of four-point function where one

of the operators appears in the OPE of (12) or in terms of a sum of three-point function where now

one of the operator appears in OPE of (12) and the other in the OPE of (35).

E Five-point conformal blocks

A CFT correlator contains information about lower-point functions, which can be accessed

through the OPE. For example, a five-point function can be either written in terms of a sum

of four-point functions or a double sum of three-point functions, as illustrated in figure 9

〈O1(x1) . . .O5(x5)〉 =
∑

k

CO1O2Ok

(x212)
∆1+∆2−∆k+J

2

〈Ok,J(x1)O3(x3)O4(x4)O5(x5)〉 (E.1)

=
∑

k

CO1O2Ok
CO3O5Ok′

(x212)
∆1+∆2−∆k+J

2 (x235)
∆3+∆5−∆

k′
+J′

2

〈Ok,J(x1)Ok′,J ′(x3)O4(x4)〉 ,

where the sum is over both primary and descendant operators.23 The conformal algebra

fixes the contribution of the descendants in terms of the primary operators, in what is

usually called the conformal block. In the following we will be interested in obtaining this

kinematical contribution to the double OPE channel (12)(35) of the five-point function.

This can also be viewed by inserting a complete basis of states labeled by their dimension

and spin

〈0|O1O2O3O4O5|0〉 =
∑

E,E′

sE1 s
E′

2 〈O1|O2|E〉〈E|O4|E′〉〈E′|O5|O3〉 (E.2)

where s1 = e−(τ2−τ4) and s2 = e−(τ4−τ5) are two cross ratios and we have used the cylinder

picture of figure 10, which is obtained with aWeyl transformation that maps Rd to R×Sd−1.

The goal of this appendix is to lay out the strategy to obtain the conformal blocks for five-

point functions in the double OPE24 in the channels (12) and (35) as an expansion in

terms of powers of s1 and s2. The method used here is an adaptation of the one already

implemented for four-point functions in [74, 75].

23We chose to perform the OPE in the (12) and (35) channels.
24Conformal blocks for n-point function have been recently obtained in [72] for d = 1, 2. See also [73] for

recent results on higher-point conformal blocks.
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Figure 10. The five-point correlation function in the plane Rd can be mapped through a Weyl

transformation to the cylinder R× Sd−1.

The double OPE in the cylinder picture (E.2) will not be explicitly used in the deriva-

tion of the conformal blocks but its schematic form and simplicity makes it very appealing

to explain the key points in the derivation. First notice that there are three three-point

functions in this decomposition with two of them of the form scalar-scalar-spin while the

third has two spinning operators and one scalar

〈O1|O2|E,µ1 . . . µJ〉, 〈E′, ν1 . . . νJ ′ |O5|O3〉, 〈E,µ1 . . . µJ |O4|E′, ν1 . . . νJ ′〉(m). (E.3)

The spinning operators must transform in a symmetric traceless representation since they

appear in the OPE of two scalar operators. A three-point function scalar−scalar−spin has

only one structure, but on the other hand a three-point function with scalar− spin− spin

has two fundamental structures [46] and the upper index m is used to label this property.

The spinning operators carry with them Lorentz indices that should be contracted among

each of the three-point functions. The most efficient way to do this contraction of indices

is to introduce null polarization vectors z1 and z3 that are contracted with the indices of

the J − J ′ − scalar three-point function and use the differential operator

Dz =

(
d

2
− 1 + z · ∂

∂z

)
∂

∂zµ
− 1

2
zµ

∂2

∂z · ∂z (E.4)

in order to recover the tensor structures. The final formula for the contraction is given by

(see [46] for more details)
(
x12 ·Dz1

)J(
x35 ·Dz3

)J ′

(z1 ·z3x213 − 2z1 ·x13z3 ·x13)m(z1 ·x31)J−m(z3 ·x13)J ′−m

J !J ′!(h− 1)J(h− 1)J ′ (x212)
J
2 (x235)

J′

2

= HJ,J ′,m(ξi)

(E.5)

where h = d/2, and z3 ·x13, z1 ·x13 and z1 · z3x213 − 2z1 ·x13z3 ·x13 are related with the

fundamental structures Vi,jk and Hij of spinning three-point functions

Hij = zi · zjx2ij + zi · xijzj · xij , Vi,jk =
zi · xijx2ik − zi · xikx2ij

x2jk
. (E.6)

In the formula above we used conformal symmetry to put the point x4 to infinity and x213=1

to simplify the computation. The right-hand side of (E.5) depends only on the angles

ξ1 =
x12 · x13
(x212x

2
13)

1
2

, ξ2 =
x13 · x35
(x235x

2
13)

1
2

, ξ3 =
x12 · x35x213 − 2x12 · x13x13 · x35

(x212)
1
2 (x235)

1
2

. (E.7)
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Figure 11. A five-point scattering amplitude can also be decomposed by inserting a complete

basis of states labeled by the mass of the intermediate particles and their spin.

This is equivalent to the contraction of unit vectors in the cylinder picture. The steps to

obtain the explicit form of HJ,J ′,m(ξi) are lengthy but follow by straightfoward application

of the derivatives in (E.5). We omit the details and present only the final result25

HJ,J ′,m(ξ1, ξ2, ξ3)=

⌊J
2
⌋∑

k=0

⌊J′

2
⌋∑

k′=0

m∑

n1=0

J ′−n1∑

n2=0

(−1)J+k′+k−n1

22k+2k′−m+n1

ξJ−2k−n1
1 ξJ

′−2k′−n2
3 ξn2

2

(
J ′−2k′

n2

)
J !J ′!(k!)

(
J
m

)(
J ′

J ′−n1

)
(J−2k)!k!k′!(J ′−2k′)!n1!m!

×
(h−1)J−k(h−1)J ′−k′(2k−J)n1(−m)n1C

−k′

J ′−n2−n1
(ξ1)

(k−m+n1)!(h−1)J(h−1)J ′

. (E.8)

As a side remark notice that this angular function HJ,J ′,m(ξ1, ξ2, ξ3) should also appear

in the double partial decomposition of a five-point scattering amplitude, see figure 11. It

would be interesting to make this relation more precise and try to apply it in the context

of the S-matrix bootstrap.

The index contraction in (E.2) is already taken into account by HJ,J ′,m(ξi) even if the

operator in the three-point function is a descendant. In fact we can say more, the dimension

of each descendant differs from the corresponding primary operator by an integer n and

n′, with their spins j and j′ in the range [75]

j = J + n, J + n− 2, . . . ,max(J − n, J + n mod 2). (E.9)

This analysis shows that the conformal block can be written in terms of a double expansion

in s1 and s2

G∆k,∆k,J,J ′,m(s1, s2, ξi) =

∞∑

n=n′=0

∑

j,j′

min(j,j′)∑

m′=0

an,n′,j,j′,m′s∆k+n
1 s

∆k′+n′

2 Hjj′m′(ξ1, ξ2, ξ3).

(E.10)

s21 =
x212x

2
34

x213x
2
24

, s22 =
x235x

2
14

x213x
2
45

(E.11)

25We also include this formula in the supplementary material attached to this paper.
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The coefficients an,n′,j,j′,m′ are fixed by conformal symmetry alone and they could be ob-

tained by working out precisely how the contribution of a primary operator is related

with the corresponding descendant in (E.2). However we find it easier to use the property

that the conformal block G satisfies two eigenvalue equations coming from applying the

quadratic Casimir of the conformal group

[
1

2

(
L1
AB + L2

AB

) (
L1,AB + L2,AB

)
− C∆k,J

]
1

(x212x
2
35)

∆O

(
x213

x214x
2
34

)∆O

G , (E.12)

[
1

2

(
L3
AB + L5

AB

) (
L3,AB + L5,AB

)
− C∆k′ ,J

′

]
1

(x212x
2
35)

∆O

(
x213

x214x
2
34

)∆O

G , (E.13)

where Li
AB are generators of the conformal group acting on the operator at position i and

C∆,J = ∆(∆− d) + J(J + d− 2) is the Casimir eigenvalue.

This differential equation can be written in terms of the cross ratios by acting on the

conformal block G∆k,∆k,J,J ′,m(s1, s2, ξ1, ξ2, ξ3) with

[
D(0)

12 +D(1)
12 − C∆k,J

]
G = 0 , (E.14)

[
D(0)

35 +D(1)
35 − C∆k′ ,J

′

]
G = 0 , (E.15)

where

D(0)
12 = s21∂

2
s1+(ξ21−1)∂2ξ1+2(ξ1ξ3+ξ2)∂ξ1∂ξ3+(ξ23−1)∂2ξ3−(2h−1)

[
s1∂s1−ξ1∂ξ1−ξ3∂ξ3

]
,

(E.16)

D(1)
12 =−d(1)12 s

2
1∂s1+d

(2)
12 (s1s2∂s2−s1∆1)+d

(3)
12 s1+s1ξ1(s

2
1∂

2
s1+s1∂s1(s2∂s2−(∆1−1)))

(E.17)

d
(1)
12 =(ξ1ξ2+ξ3)∂ξ2−3(ξ1ξ3+ξ2)∂ξ3+2(1−ξ21)∂ξ1 , d

(2)
12 =(ξ3ξ1+ξ2)∂ξ3−(1−ξ21)∂ξ1

d
(3)
12 =2(ξ1ξ3−2(h−1)ξ2)∂ξ3+(ξ21+2(h−1))∂ξ1+(1−ξ23−ξ1ξ3ξ2−ξ22)∂ξ3∂ξ2

+2ξ1(ξ
2
3−1)∂2ξ3−ξ1(ξ3+ξ1ξ2)∂ξ1∂ξ2+3(ξ1ξ3+ξ2)ξ1∂ξ1∂ξ3+ξ1(ξ

2
1−1)∂2ξ1 . (E.18)

The differential equation for D(0)
35 and D(1)

35 can be obtained with the replacement ξ1 ↔ ξ2.

Notice that the differential operators D(0)
12 ,D

(0)
35 keep the degree of the cross ratios s1 and

s2, while the other differential operators raise the degree of cross ratios by one.

The angular function HJ,J ′,m(ξi) plays an analogous role in the conformal block as the

Gegenbauer polynomial for the case of four-point functions [75]. In particular it has to

satisfy two eigenvalue equations coming from the leading order limit of (E.14)

[
(1−ξ21)∂2ξ1+(1−ξ23)∂2ξ3−(2h−1)(ξ1∂ξ1+ξ3∂ξ3)−2(ξ1ξ3+ξ2)∂ξ1∂ξ3+CJ

]
H=0 (E.19)

[
(1−ξ22)∂2ξ2+(1−ξ23)∂2ξ3−(2h−1)(ξ2∂ξ2+ξ3∂ξ3)−2(ξ2ξ3+ξ1)∂ξ2∂ξ3+CJ ′

]
H=0

with CJ = J(J + 2h− 2). The solution, HJ,J ′,m(ξi), is a polynomial of degree J, J ′ and m

in ξ1, ξ2 and ξ3 respectively. It is natural to consider an expansion of H in powers of ξ3

HJ,J ′,m(ξi) =
m∑

m′=0

ξm−m′

3 fm′(ξ1, ξ2). (E.20)
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The action of the differential operators (E.19) will transform (E.20) into a differential

recurrence relation. For example the first line in (E.20) becomes

ξm3
[
(1− 2h− 2m)ξ1∂ξ1f0 −

(
ξ21 − 1

)
∂2ξ1f0 + (J −m)(2h+ J +m− 2)f0

]

+ ξm−1
3

[
ξ1(3− 2h− 2m)∂ξ1f1 − 2mξ2∂ξ1f0 −

(
ξ21 − 1

)
∂2ξ1f1

+(J −m+ 1)(2h+ J +m− 3)f1] + . . . (E.21)

where the . . . represent subleading terms in ξ3 and there is also a similar equation coming

from the other channel (35). The leading order differential equation can be recognized as

the equation for the Gegenbauer polynomial in one variable ξ1 with spin J −m

Ch−1+m
J−m

(
ξ1
)
. (E.22)

The solution from the equation of the channel (35) is of the same form with the replacement

ξ1 → ξ2, J → J ′. Obviously the differential equation does not fix the normalization of the

solution. Comparison with (E.8) imposes the normalization to be

f0(ξ1, ξ2)=
(−1)J+m(J−m)!(J ′−m)!

2J+J ′−2m(h−1+m)J−m(h−1+m)J ′−m
Ch−1+m
J−m

(
ξ1
)
Ch−1+m
J ′−m

(
ξ2
)
. (E.23)

The leading order solution f0 will enter as a non-homogeneous term in the differential

equation for the subleading order. The homogeneous solution to the differential equation

in the subleading order is solved by the Gegenbauer polynomial

Ch+m−2
J−m+1(ξ1), (E.24)

while the non-homogeneous part is also solved by a Gegenbauer polymial but with other

indices. This indicates that the generic solution is of the form

HJ,J ′,m(ξi) =

m∑

m′=0

ξm−m′

3

m′∑

a,b=0

ra,b,m′Ch+m−a−1
J−m+m′ (ξ1)C

h+m−b−1
J ′−m+m′ (ξ2). (E.25)

We did not try to find the coefficients ra,b,m′ in full generality since we have an alternative

representation for H given by (E.8). However it would be interesting to pursue this further

and also try to apply the same ideas to the angular functions relevant to higher-point

functions.

Now we notice that all the differential operators d
(i)
12 depend only on the angles (E.7)

and moreover their action on the function H is simple

ξ1HJ,J ′,m(ξi) = −HJ+1,J ′,m(ξi) +
(m− J)(J +m+ 2h− 3)

4(h+ J − 2)(h+ J − 1)
HJ−1,J ′,m(ξi)

− m(m+ h− 2)

2(h+ J − 2)(h+ J − 1)
HJ−1,J ′,m−1(ξi) , (E.26)

d
(i)
12HJ,J ′,m(ξi) =

1∑

n1,n2,n3=−1

c(i)n1n2n3
HJ+n1,J ′+n2,m+n3(ξi) , (E.27)
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where the non-zero c
(i)
n1n2n3 are given by

c
(1)
100=(2J−J ′+2m),

c
(1)
−100=− (J−m)(12+8h2+2J2+J ′−J(10+J ′−4m)−4m+3J ′m−4m2+4h(−5+2J+m))

4(h+J−1)(h+J−2)
,

c
(1)
−10−1=−m(6h+4J+J ′−2m−6)(h+m−2)

2(h+J−1)(h+J−2)
, c

(1)
−101=− (J ′−m)(m−J)(1−J+m)

4(h+J−1)(h+J−2)
,

c
(1)
101=(J ′−m), c

(2)
100=−J, c

(2)
−100=

(2h+J−2)(J−m)(2h+J+m−3)

4(h+J−1)(h+J−2)
,

c
(2)
−10−1=

m(h+m−2)(2h+J−2)

2(h+J−1)(h+J−2)
, c

(3)
100= J(J ′−J−2m), c

(3)
101= J(m−J ′),

c
(3)
−101=

(2h+J−2)(J ′−m)(J−m)(1−J+m)

4(h+J−1)(h+J−2)
,

c
(3)
−10−1=− (2h+J−2)(4h+3J+J ′−2m−4)m(h+m−2)

2(h+J−1)(h+J−2)
, (E.28)

c
(3)
−100=

(2h+J−2)(m−J)(6−10h+4h2−5J+4hJ+J2+J ′−JJ ′−2m+2hm+3Jm+3J ′m−4m2)

4(h+J−1)(h+J−2)
.

(E.29)

Obviously there are similar relations for the differential operators d
(i)
35 . These are obtained

by replacing J → J ′.

These properties of the H function make the action of the Casimir differential equation

on the ansatz (E.10) particularly simple

0 =
∑[

D(0)
12 +D(1)

12 − C∆k,J

]
an,n′,j,j′,m′s∆k+n

1 s
∆k′+n′

2 Hjj′m′(ξ1, ξ2, ξ3)

=
∑

an,n′,j,j′,m′s
∆k′+n′

2 s∆k+n
1

[
2s1d

(3)
12 H− 2(∆ + n)s1d

(1)
12 H− 2s1(∆1 −∆′ − n′)d

(2)
12 H+

− (C∆+n,J ′ − C∆,J)H+ 2ξ1(∆ + n)sn+1
1 (∆−∆1 +∆′ + n+ n′)H

]
(E.30)

Now one can use that H functions with different indices jj′m′ are orthogonal to each other

to write a recurrence relation between the unknown coefficients an,n′,j,j′,m′ in (E.10).

We verified that this method gives the same result as the one where we use the formal

expression for the OPE twice on the five-point function26

O1(x1)O2(x2) ≈
∑

k

C12k

(x212)
∆1+∆2−∆k+J

2

[
F (12k)(x12, ∂x1 , Dz1)Ok,J(x1, z1)

]
, (E.32)

F (12k)(x12, ∂x1 , Dz1) =
∞∑

n,m=0

l∑

q=0

an,m,q(x ·D)l−q(x2∂y ·D)q(x · ∂y)n(x2∂2y)m ,

with a0,0,0 = l!(h− 1)l.

26The coefficients an,m,q associated with a given primary in this expression for the OPE can be obtained

by solving the equation

〈O1(x1)O2(x2)Ok(x3, z3)〉 =
F (12k)(x12, ∂x1 , Dz1)

(x2
12)

∆1+∆2−∆k+J

2

〈Ok(x1, z1)Ok(x3, z3)〉. (E.31)
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