
1

20 Years of Turbo Coding and Energy-Aware

Design Guidelines for Energy-Constrained Wireless

Applications

Matthew F. Brejza∗, Liang Li∗‡, Robert G. Maunder∗, Bashir M. Al-Hashimi∗, Claude Berrou† and Lajos Hanzo∗

∗School of ECS, University of Southampton, SO17 1BJ, UK
†Technople Brest-Iroise, CS 83818, 29238 Brest Cedex 3, France

Email: ∗{mfb2g09, rm, bmah, lh}@ecs.soton.ac.uk, ‡liang.li@cirrus.com, †claude.berrou@telecom-bretagne.eu

Abstract—During the last two decades, wireless communication
has been revolutionized by near-capacity Error-Correcting Codes
(ECCs), such as Turbo Codes (TCs), which offer a lower Bit
Error Ratio (BER) than their predecessors, without requiring
an increased transmission Energy Consumption (EC). Hence,
TCs have found widespread employment in spectrum-constrained
wireless communication applications, such as cellular telephony,
Wireless Local Area Network (WLAN) and broadcast systems.
Recently however, TCs have also been considered for energy-
constrained wireless communication applications, such as Wire-
less Sensor Networks (WSNs) and the ‘Internet of Things’ (IoT).
In these applications, TCs may also be employed for reducing
the required transmission EC, instead of improving the BER.
However, TCs have relatively high computational complexities
and hence the associated signal-processing-related ECs are not in-
significant. Therefore, when parameterizing TCs for employment
in energy-constrained applications, both the processing EC and
the transmission EC must be jointly considered. In this tutorial,
we investigate holistic design methodologies conceived for this
purpose. We commence by introducing turbo coding in detail,
highlighting the various parameters of TCs and characterizing
their impact on the encoded bit rate, on the Radio Frequency
(RF) bandwidth requirement, on the transmission EC and on the
BER. Following this, energy-efficient TC decoder Application-
Specific Integrated Circuit (ASIC) architecture designs are ex-
emplified and the processing EC is characterized as a function
of the TC parameters. Finally, the TC parameters are selected
in order to minimize the sum of the processing EC and the
transmission EC.

Index Terms—Turbo code, BCJR algorithm, energy efficiency,
holistic design, optimization, wireless sensor network

I. INTRODUCTION

Wireless communication holds the promise of ubiquity,

featuring in almost all electronic devices employed for a wide

variety of applications. These applications may be classified

by the particular constraints that they impose both upon the

design of the wireless communication schemes and on the

electronic devices. For example, cellular telephony, Wireless

The financial support of the EPSRC, Swindon UK under the grants
EP/J015520/1 and EP/L010550/1 is gratefully acknowledged.

c©2015 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Local Area Networks (WLANs) and broadcast systems [1]–

[3] may be considered to be spectrum-constrained, since

the ever-increasing demand for faster data rates creates a

correspondingly increased demand for the limited Radio Fre-

quency (RF) resources. Therefore, successive generations of

cellular telephony, as well as WLAN and broadcast systems

have been designed to make increasingly efficient use of

the RF spectrum. In parallel to this trend, there has been

a significant amount of recent interest in energy-constrained

wireless communication applications [4]–[7], such as in

Wireless Sensor Networks (WSNs) and in the ‘Internet of

Things’ (IoT) [8]–[12]. These applications are characterized

by the requirement of maintaining sporadic, but reliable data

transmissions for extended periods of time. Typically, the

communication devices employed in this scenario are required

to be mobile, preventing them from relying on access to fixed

energy supplies, such as mains electricity. The devices are

often required to be shirt-pocket-sized, light-weight and low-

cost, preventing the employment of high-capacity batteries.

Furthermore, the communication devices may be expected

to operate without human interaction, preventing the regular

replacement or recharging of batteries. For these reasons, the

communication devices are required to make efficient use

of all available energy resources, which may include low-

capacity batteries and energy harvesters, such as solar cells.

In this paper, we focus our attention on the employment of

Turbo Codes (TCs) [13], [14] in energy-constrained wireless

communication applications, considering the joint design of

both the communications and the hardware architecture. In

this paper, TCs are invoked for energy-constrained wireless

communication applications due to their widespread employ-

ment in operational communication standards, such as LTE [1]

and WiMAX [15].

Wireless communication has been revolutionized by the

invention of TCs [13], [14] and other sophisticated Error-

Correcting Codes (ECCs). These codes provide resilience to

the transmission errors that are caused by noise, interference

and fading during wireless transmission. This is achieved

by using a turbo encoder to process all information before

transmitting it, then employing a corresponding turbo de-

coder in the receiver to detect and correct any transmission

errors. Compared to previous ECCs, TCs facilitate signifi-



2

cantly higher information bit rates and/or significantly lower

RF bandwidth requirements, without requiring an increased

transmission Energy Consumption (EC) or imposing an in-

creased transmission error probability. In other words, TCs

facilitate significantly improved spectral efficiencies η, without

requiring an increased Signal-to-Noise Ratio (SNR) per bit

Etx
b /N0 or imposing an increased Bit Error Ratio (BER). Here,

the spectral efficiency η has units of bit/s/Hz and is given by

the ratio of the information bit rate to the required bandwidth.

Meanwhile, the transmission EC Etx
b has units of J/bit and is

expressed by the SNR per bit Etx
b /N0, where it is normalized

by the noise power spectral density N0. Finally, the BER

quantifies the transmission error probability by expressing the

number of information bits that are erroneously decoded as a

ratio to the total number of information bits. Figure 1 plots

the capacity of a particular wireless channel, which quantifies

the maximum spectral efficiency η for which it is theoretically

possible to achieve a vanishingly low BER [16], as a function

of the SNR per bit Etx
b /N0. The crosses in Figure 1 show that

at an Etx
b /N0 of about 11 dB, a low BER can be achieved

by a particular repetition code having a spectral efficiency

of η = 1/3 bits/s/Hz, assuming a Nyquist roll-off-factor of

α = 0. By contrast, a particular punctured TC is capable of

achieving this BER, while using a significantly higher spectral

efficiency of η = 0.81 bits/s/Hz, which is much nearer to

the channel capacity. Owing to this benefit, TCs are often

referred to as near-capacity ECCs and have found widespread

employment in spectrum-constrained wireless communication

applications, such as cellular telephony, WLAN and broadcast

systems. However, Figure 1 also illustrates an alternative appli-

cation for TCs in energy-constrained wireless communication

systems, where the attainable energy efficiency of 1/Etx
b is

of more grave concern than the spectral efficiency η. The

crosses in Figure 1 show that when no puncturing is used,

the TC considered achieves the same low BER and the same

spectral efficiency of η = 1/3 bits/s/Hz as the repetition code,

albeit at a significantly lower Etx
b /N0 value of 1.6 dB. This

corresponds to a 9.4 dB reduction in transmission EC Etx
b ,

which is nearly an order of magnitude. This demonstrates why

TCs have found application not only in spectrum-constrained

wireless communication scenarios, but also recently in energy-

constrained scenarios, such as WSNs and the IoT.

TCs most commonly take advantage of the Bahl-Cocke-

Jelinek-Raviv (BCJR) decoding algorithm and its variants with

the objective of mitigating the transmission errors corrupting

the received information. When used in TCs, the BCJR

decoder, also known as the Maximum A Posteriori (MAP)

decoder, is activated in an iterative manner. In a similar

fashion to the classic Low-Density Parity-Check (LDPC)

decoders [17] operating on the basis of the min-sum and

sum product algorithm, the iterative operation of the BCJR

algorithm approximates the capacity-approaching performance

of a Maximum Likelihood Detector (MLD), with the appealing

benefit of imposing a fraction of the complexity [18]. The

BCJR algorithm operates on the basis of a trellis in a similar

manner to the Viterbi Algorithm (VA) [19], which has a lower

complexity but does not facilitate iterative decoding and hence

has a reduced error correction capability. The complexity

BER is achievable
Region where low

1

E
tx

b

[bit/J]
efficiency
energy

Improved

In
cr
ea
se
d
pu
nc
tu
ri
ng

η [bit/s/Hz]
efficiency
spectral

Improved

turbo code
punctured
0.81-rate

code
repetition

1

3
-rate

code
turbo

1

3
-rate

Rayleigh fading channel
uncorrelated narrowband

BPSK-modulated
DCMC capacity of a

SNR per bit Erx

b
/N0 [dB]

S
p
ec
tr
al

effi
ci
en
cy

η
[b
it
/s
/H

z]

14121086420-2

1

0.8

0.6

0.4

0.2

0

Fig. 1. Combinations of spectral efficiency η and SNR per bit Erx
b
/N0

for which BERs of 10−3 can be achieved by three ECCs, namely (a) a 1/3-
rate repetition code employing soft decoding, (b) the 1/3-rate LTE TC [1]
employing a message length of 2048 bits and 6 decoding iterations, as well
as (c) the same LTE TC but punctured to give a coding rate of 0.81.

of a decoding algorithm is often quantified in terms of the

number of operations required for decoding, which can be

expressed in terms of the number of states or trellis-transitions.

However, this paper will demonstrate that the complexity of

the algorithm does not necessarily determine the complexity

and the EC of its Application-Specific Integrated Circuit

(ASIC) implementation, hence motivating the holistic design

methodologies investigated in this paper.

Despite having a complexity significantly less than the

optimal MLD, when employing TCs for the sake of reducing

the transmission EC Etx
b , consideration should also be given

to the TC’s processing EC Epr
b dissipated by its iterative

decoder. While turbo encoders have relatively low complexity

and EC [20], the EC Epr
b of turbo decoders is not insignificant

[21], even when implemented using an ASIC. This may be

attributed to the relatively high complexity of turbo decoding

algorithms, such as that of the BCJR algorithm [22]. Indeed,

the authors of [23] considered the power consumption of the

various components of a transceiver, finding that for the range

of LTE base-stations which were considered, the turbo code

consumes approximately the same power as the baseband

radio components. Additionally, it was found for the small-

est ‘femto’ base-stations that the turbo code also consumes

approximately the same power as the Power Amplifier (PA)

components. Conventionally, it has been a challenge to jointly

optimize both the transmission EC Etx
b and the processing EC

Epr
b during the design of TCs for energy-constrained wireless

communication applications. While the transmission EC Etx
b

can be characterized at an early design stage using BER

simulations, it has not previously been possible to characterize

the processing EC Epr
b until after the turbo decoder ASIC

has been designed, which is a much later design stage. If

at this time, it is discovered that the processing EC Epr
b is

unacceptably high, then it becomes necessary to revert to an



3

earlier design stage and try again. This motivates the holistic

TC design methodologies that we demonstrate in this tutorial.

These methodologies model the processing EC Epr
b of an

energy-efficient TC decoder ASIC architecture as a function

of the TC design parameters, allowing joint optimization at an

early design stage.

Typically, the open literature on wireless communication

algorithms [24]–[26] considers them independently of the

hardware implementation, despite the dependence on each

other. Instead, often a simplistic approach is pursued, when

considering the implementation aspects. For example, it is

typical for a paper in wireless communications to quantify the

computational complexity of an algorithm using the number

of computational operations which have to be undertaken [24].

This gives a reasonable metric for comparing similar schemes,

however this method typically does not offer a fair comparison

between dissimilar schemes [27]. Typically the parameters

which are important are the energy consumption and hardware

resources of a scheme, as this is what ultimately determines

the cost and battery life of the system. Furthermore, without

considering the hardware implementation, it is not possible to

consider metrics such as processing latency and throughput,

which can impose bottlenecks upon the overall latency and

throughput, particularly in applications such as Machine-to-

Machine (M2M) communications for next generation devices

[28]. As explored in this paper, considering the algorithm and

its implementation jointly allows for holistic optimization of

the overall energy consumption, cost, latency and throughput

as functions of all algorithmic and implementation design

decisions.

Chip area

Processing latency

Throughput

Flexibility

Processing energy efficiency

Transmission Latency

Control overhead

Antenna number

Transmission energy efficiency

Error rate

Trade-offs

Algorithmic ArchitectualAlgorithmic Architectual

Bandwidth efficiency

Channel characteristics

Fig. 2. Design trade-offs in a communication system.

Algorithm

Design

Section II

BER

Simulation

Section II

Architecture

Design

Section III

Energy

Estimation

Section IV

Section V

Holistic

Charaterization
Overall System EC

Algorithms

Architectures

Requirements

Implementation
Trade-offs

BER Performance

Decoding Energy
(nJ/bit)

Fig. 3. The design methodology explored by this paper

Against this background, Figure 2 summarizes the trade-offs

the designer of a TC decoder has to consider. These have been

split into the categories of algorithmic trade-offs and architec-

tural trade-offs, since these have previously been considered

separately. Building on this, Figure 3 illustrates the structure of

this paper and the holistic design and optimization approach of

this tutorial. This facilitates a system-wide EC optimization,

while considering how the trade-offs on different sides of

Figure 2 influence each other. We commence in Section II

by introducing in detail the TC, and its BER performance.

Section III considers the implementation of the TC, with

particular consideration of the computationally intensive Loga-

rithmic BCJR (Log-BCJR) algorithm. The requirements of the

Log-BCJR algorithm affect the design decisions made for the

architecture, while conversely, architectural trade-offs have to

be made which may modify the operation and performance of

the Log-BCJR algorithm. This reciprocal relationship is shown

in Figure 3, where the algorithmic design and architectural

design are closely linked. We focus our attention on the

three main areas of the architectural design, namely on the

datapath, on the controller and on the memory, exploring

different methods which have been developed for reducing the

corresponding EC. The remainder of this tutorial then focuses

on the joint optimization of the algorithm and architecture

parameterization, with consideration of the possible options

developed during the design stage. To achieve this, Section IV

discusses a range of different approaches conceived for es-

timating the processing EC Epr
b for the different algorithm

parameterizations. Although typically extensive simulations

are required for estimating the EC of a circuit, this section

discusses methods of significantly reducing the required sim-

ulation complexity, which is achieved by characterizing the

processing EC Epr
b of a turbo decoder as a function of its

parameters. Finally, we holistically consider the performance

and energy consumption of the candidate algorithm and archi-

tecture trade-offs in Section V. The techniques gleaned from

the literature and explored in this section facilitate all of the

factors seen in Figure 2 to be jointly considered, allowing the

selection of carefully optimized TC parameters that minimize

the sum of the processing EC Epr
b and of the transmission

EC Etx
b . The tutorial concludes with our recommended design

guidelines in Section VI.

II. TURBO CODING

In this section, we introduce the TC scheme of Figure 4. We

begin in Section II-A by describing the convolutional encoders,

which are concatenated in parallel in order to form the turbo

encoder of Figure 4. The integration of the turbo encoder into

a BPSK transmitter is discussed in Section II-B. Following

this, Section II-C describes the modeling of transmission over

an Additive White Gaussian Noise (AWGN) channel, subject

to a certain path loss. Section II-D discusses the operation of

the turbo-coded BPSK receiver of Figure 4. This operates on

the basis of the most frequently used variant of the BCJR

decoder, namely the Log-BCJR decoder, which is detailed

in Section II-E. Modifications of the Log-BCJR algorithm

are conceived for the practical implementations, which are

discussed in Section II-G, before the TC’s error correction

performance is characterized in Section II-F.

A. Convolutional encoder

The convolutional encoder [29] is a widely adopted com-

ponent in sophisticated error correcting schemes, forming



4

π

Lower
Convolutional

Encoder

Upper
Convolutional

Encoder

Mapper Upsampler Tx Filter

b
s
1

b
u
2b

u
1

b
l
1 b

l
2

b3

π

Lower
Log-BCJR
Decoder

Upper
Log-BCJR
Decoder

Demapper Sampler Rx Filter

b̃
u,a

2

b̃
u,a

1

b̃
l,a

1

b̃
l,a

2

b̃3

ππ

b̃
l,e

1

b̃
u,e

1
S1

b̃
u,s

1b̃
u,p

1

Input

−1

Turbo Encoder

b̃
l,s

1

Mixer

Output
Power

Amplifer

Mixer
LNA

Turbo Decoder

(a) Transmitter

(b) Receiver

Output

Channel

Baseband BPSK Modulator

Baseband BPSK Demodulator

fc

fc

Fig. 4. A BPSK-modulated R = 1/3 TC scheme.

the basis of the turbo encoder, as shown in Figure 4. In

this application, the input of the convolutional encoder is

a message frame b1 comprising N bits, while the output

is an N -bit encoded frame b2. The parametrization of a

convolutional encoder may be specified by a trellis, which

graphically illustrates the relationship between the frames b1

and b2. The example trellis of Figure 5 corresponds to a

simple convolutional encoder, which may be used for encoding

a message frame b1 comprising N = 5 bits. This encoder

adopts one of two possible states following the encoding

of each bit in the frame b1, as represented by the dots in

Figure 5. Depending on the value of this bit, the encoder state

is selected by following one of two possible transitions from

the previous state, as represented by the lines in Figure 5. As

shown in Figure 5, the convolutional encoder is initialized in

state 1 before encoding the first bit in the message frame b1.

Each selected transition identifies a bit value for the encoded

frame b2. For example, the message frame b1 = [1, 1, 0, 0, 1]
corresponds to the sequence of transitions that is highlighted in

bold in Figure 5. In turn, this sequence identifies the encoded

frame b2 = [1, 0, 0, 0, 1].

0/0

1/1

0/1
1/0

1/1

0/0

0/1
1/0

1/1

0/0

0/1
1/0

1/1

0/0

0/1
1/0

1/1

0/0
State 1

State 2

Bit 1 Bit 2 Bit 3 Bit 4 Bit 5

Input 1 1 0 0 1

Output 1 0 0 0 1

Fig. 5. An example convolutional code trellis having two possible states.
Each transition T is labeled with the notation a1(T )/a2(T ). A particular
transition T from the current state will be selected if the corresponding bit
in the message frame b1 has the value a1(T ), while a2(T ) is the value that
will be output for the corresponding bit in the encoded frame b2.

Note that the convolutional code’s trellis of Figure 5 has

2m = 2 states, which corresponds to a shift register having

m = 1 memory element. Furthermore, each transition between

states is selected based on the value of k = 1 message bit,

resulting in the generation of n = 1 encoded bit. This results in

a coding rate for this convolutional encoder of R = k/n = 1,

and an overall coding rate for the turbo code of Figure 4 of

R = 1/3. However, the convolutional codes of generalized

TCs may employ a shift register having any number m of

memory elements. Furthermore, transitions may be selected

based on any number k of message bits, resulting in the

generation of any number n of encoded bits. While the TC

of the LTE standard in cellular telephony [1] also employs

k = 1 and n = 1, its shift register has m = 3 memory

elements, resulting in a trellis having 2m = 8 states. The

mapping of message and encoded bit values to each transition

in the LTE TC trellis is specified by its generator polynomials.

Furthermore, the LTE TC appends three additional termination

bits to each message frame b1, in order to guarantee that the

convolutional encoder always reaches the same particular state

at the end of the encoding process.

B. Turbo coded transmitter

As shown in Figure 4, the turbo encoder comprises a

parallel concatenation of two convolutional encoders, which

we refer to as the upper and lower encoders. The upper encoder

processes the frame of message bits bu
1 in their original order,

while the lower encoder processes the same bits, but in a

different order. This reordering is performed by the interleaver

π of Figure 4, which outputs the interleaved message frame

b
l
1. The upper and lower convolutional encoders produce the

N -bit encoded frames bu
2 and b

l
2, respectively. These encoded

frames provide 2N parity bits, which are multiplexed in the

crossed block of Figure 4 with N systematic bits, which

are provided by the N -bit message frame b
u
1 . The resultant

transmission frame b3 comprises 3N bits, corresponding to a

coding rate of R = N/(3N) = 1/3.

Following turbo encoding, the transmitter of Figure 4

employs BPSK modulation, upsampling, pulse shaping, RF

mixing and power amplification. These are employed in order

to transmit the frame b3 using the desired carrier frequency

fc at a desired transmission energy per bit Etx
b . Note that

the power amplifier may have an efficiency of only around

33%, which corresponds to a power amplifier efficiency loss

A of 4.8 dB [4]. Here, Etx
b is related to the energy Etx

s

dissipated per modulated symbol according to Etx
b [dBJ] =

Etx
s − 10 log10(η), where η = R log2(M), R is the coding

rate and M is the modulation order of the modulation scheme,

with M = 2 in the case of BPSK. Note that the employment

of Etx
b is typically preferable to Etx

s , since this allows a fair

comparison amongst schemes having different coding rates R
and modulation orders M in terms of their transmission energy

consumption.

C. Channel

The wireless channel of Figure 4 conveys the BPSK-

modulated signal between the transmitter and receiver anten-

nas, but imposes degradation. These antennas can be character-

ized by their gain (Gtx and Grx) for the intended direction of

propagation. In the scenario where there is a dominant line-of-

sight (LOS) path between these antennas, the degradation may

be modeled by the inverse-second-power free space path loss

and AWGN. Here, the path loss is imposed by the attenuation



5

of the BPSK-modulated signal as it propagates through free

space. This depends on the distance between the transmit and

receive antennas d (in m) and the carrier frequency fc (in Hz)

[30], according to

Pl(d)[dB] = 20 log10(d) + 20 log10(fc) + 20 log10

(

4π

c

)

,

(1)

where c = 2.998× 108 m/s is the speed of light, resulting in

the last term of (1) having a constant value of -147.55 dB.

However, the free space path loss model may be optimistic,

since often there are multiple paths between the transmitter

and receiver but the LOS path might be absent. In order to

account for this, the path loss equation can be generalized by

parameterizing the path loss exponent p [4], [5], according to

Pl(d)[dB] = 10p log10(d) + 20 log10(f)− 147.55. (2)

Path loss exponents between p = 2 and p = 4 can

be expected in the diverse environments encountered. The

AWGN is imposed by the Brownian motion of electrons,

resulting in thermal noise at the receiver, which has the

power spectral density of N0[dBJ] = 10 × log(k · T ), where

k = 1.3806503×10−23JK−1 is the Boltzmann constant. For

the case of the room temperature T = 300K, we obtain

N0 = −203.8 dBJ. Note that depending on the operating

conditions, co-user interference is often more significant than

the thermal noise. To model this, N0 can instead be replaced

with the noise power spectral density that is expected in the

operating conditions of the wireless link [31].

Considering the above channel effects, we can therefore

relate the energy per bit at the receiver Erx
b in terms of

the energy dissipated at the transmitter Etx
b and the channel

conditions, according to

Erx
b [dBJ] = 10 log10(E

tx
b )−A− Pl(d) +Gtx +Grx, (3)

where all quantities are expressed in dB, except Etx
b which

is expressed in Joules. Note that if shadowing or fading is

prevalent in the particular wireless environment considered,

then (3) can be modified to model this by additionally sub-

tracting corresponding fading margins [32].

D. Turbo coded receiver

In the receiver of Figure 4, the BPSK-modulated signal

provided by the receive antenna is passed to a Low Noise

Amplifier (LNA). This is employed to boost the weak received

signals, while introducing only a minimal amount of additional

noise, which is quantified by its Receiver Noise Figure (RNF).

The amplified signal is mixed down from the RF range to the

baseband, where it is filtered to remove the out-of-band noise,

down-sampled and provided to the BPSK demodulator.

The role of the BPSK demodulator is to extract information

pertaining to the turbo-encoded bits from the received signal.

However, the BPSK demodulator can never be certain of

the correct value for each bit, owing to the unpredictable

nature of the degradation imposed by the channel. Rather

than making a binary hard decision of ‘1’ or ‘0’ for each

bit, superior error correction performance can be obtained if

the demodulator makes a soft decision. Here, a soft decision

expresses not only what the most likely value of the bit

is, but also how likely this value is. More specifically, the

demodulator, which is also often referred to as a demapper, can

express the soft information pertaining to a particular bit using

a Logarithmic Likelihood Ratio (LLR), which represents the

probabilities associated with the value of the bit b according

to b̃ = ln[Pr(b = 1)/Pr(b = 0)]. Here, the sign of

an LLR expresses whether a value of ‘1’ or ‘0’ is more

likely for the corresponding bit, while the magnitude of the

LLR is commensurate with how likely this value is. When

employing BPSK modulation, it can be shown that each LLR

is directly proportional to the corresponding sample provided

by the down-sampler [33]. As shown in Figure 4, the BPSK

demodulator generates the LLR sequences b̃
u,s
1 , b̃

u,a
2 and b̃

l,a
2 ,

which pertain to the bit sequences bu
1 , bu

2 and b
l
2 respectively.

Furthermore, an interleaver π is employed for converting b̃
u,s
1

into the LLR sequence b̃
l,s
1 , which pertains to the bit sequence

b
l
1. These LLR sequences are then provided to the turbo

decoder, which is invoked for mitigating the corresponding

uncertainty and for eliminating transmission errors. As shown

in Figure 4, the turbo decoder comprises two Log-BCJR

decoders, which correspond to the two convolutional encoders

of the turbo encoder.

The turbo decoder is operated in an iterative manner, with

the switch labeled ‘S1’ in Figure 4 being left open during the

first decoding iteration. This enters the LLR sequence b̃
u,s
1

provided by the BPSK demodulator directly into the upper

Log-BCJR decoder b̃
u,a
1 . As shown in Figure 4, the upper

Log-BCJR decoder’s other input b̃
u,a
2 is supplied by the BPSK

demodulator. The upper Log-BCJR decoder combines the old

(or “a priori”) information provided by its two input LLR

sequences, in order to extract new (or “extrinsic”) information

for the output LLR sequence b̃
u,e
1 . Since this LLR sequence

pertains to the uncoded bit sequence b
u
1 , the interleaver π may

be used for converting it into information pertaining to the bit

sequence b
l
1. Following this, the resultant interleaved LLR

sequence may be added on a bit-by-bit basis to the values in

the LLR sequence b̃
l
1,s provided by the BPSK demodulator,

which also pertains to b
l
1. The resultant LLR sequence is then

forwarded to the lower Log-BCJR decoder’s input b̃
l,a
1 , as

shown in Figure 4. Meanwhile, the lower Log-BCJR decoder’s

other input b̃
l,a
2 is supplied by the BPSK demodulator. In turn,

the lower Log-BCJR decoder combines these a priori LLR

sequences, in order to obtain the extrinsic LLR sequence b̃
l,e
1 ,

completing the first decoding iteration.

In the second and in all subsequent decoding iterations,

the switch labelled ‘S1’ in Figure 4 is closed. This allows

the extrinsic LLR sequence b̃
l,e
1 to be deinterleaved π−1 and

added on a bit-by-bit basis to the values in the LLR sequence

b̃
u,s
1 , in order to generate an improved a priori LLR sequence

b̃
u,a
1 for the upper Log-BCJR decoder. This motivates the

repeated operation of the upper Log-BCJR decoder, in order

to produce an improved extrinsic LLR sequence b̃
u,e
1 . In turn,

this may be interleaved and added on a bit-by-bit basis to

the values in the LLR sequence b̃
l,s
1 , in order to generate

an improved a priori LLR sequence b̃
l,a
1 for the lower Log-

BCJR decoder. Likewise, the operation of the lower Log-



6

BCJR decoder may be repeated for obtaining an improved

extrinsic LLR sequence b̃
l,e
1 . This process may be repeated

during the third iteration and during all further iterations,

in order to gradually improve the quality of the iteratively

exchanged LLR sequences. However, as we will show in

Section II-G, each additional iteration yields a diminishing

return, until convergence is eventually achieved, whereupon

additional iterations provide no further improvement. Once

a sufficient number I of iterations has been performed, we

may obtain a final output by adding the LLR sequences b̃
u,a
1

and b̃
u,e
1 on a bit-by-bit basis. The resultant LLR sequence

b̃
u,p
1 contains all (or “a posteriori”) information pertaining

to the turbo encoder’s input bit sequence b
u
1 . Finally, these

soft-valued LLRs may be converted into hard-valued bits by

considering the sign of each LLR, where a positive value

corresponds to a ‘1’ and a negative value corresponds to a

‘0’.

E. Log-BCJR decoder

In this section, we provide an overview of the Log-BCJR

algorithm [34], which is employed both by the upper and lower

Log-BCJR decoders of Figure 4. Note that the Log-BCJR

algorithm is a reduced-complexity version of the BCJR algo-

rithm, as will be discussed in greater detail in Section II-F,

together with a discussion of other variants of the BCJR

algorithm. Here, we use an example, where the trellis of

Figure 5 is imposed for combining the example a priori LLR

sequences b̃
a
1 = [−5, 4, 1, 6,−2] and b̃

a
2 = [3, 5,−4,−2,−1],

in order to obtain the extrinsic LLR sequence b̃
e
1. Note that

these example LLRs have been rounded to the nearest integer,

for the sake of simplicity. The Log-BCJR algorithm comprises

four intermediate steps, in which four sets of metrics are

calculated, namely the γ(T ), α(S), β(S) and δ(T ) values,

where T refers to a particular transition in the trellis and

S refers to a particular state, as detailed in the following

discussion. We will show that the calculations of each step

can be decomposed into simple Add-Compare-Select (ACS)

operations. Further detailed discussions are available in [18],

[35].

In the first step of the Log-BCJR algorithm, a γ(T ) value

is calculated for each transition in the trellis of Figure 5.

This γ(T ) value represents the a priori probability that the

transition T was selected during the convolutional encoding

process. The γ(T ) value for a particular transition T in the

trellis of Figure 5 is calculated according to

γ(T ) = a1(T ) · b̃
a
1,i(T ) + a2(T ) · b̃

a
2,i(T ), (4)

where a1(T ) and a2(T ) are described in Figure 5. Here, i(T )
is the index of the bits that are represented by the transition

T , while b̃a1,i(T ) is the LLR having that specific index i(T ) in

the sequence b̃
a
1. Likewise, b̃a2,i(T ) is the corresponding LLR

in the sequence b̃
a
2. In Figure 6 each transition is labeled with

the particular γ(T ) value that results for our example. Note

that relatively high γ(T ) values result for transitions where the

a priori LLRs match with that transition’s a1(T ) and a2(T )
combination. Since a1(T ) and a2(T ) have binary values, each

γ(T ) value is given by 0, b̃a1,i(T ), b̃
a
2,i(T ) or b̃a1,i(T ) + b̃a2,i(T ).

Therefore, the entire set of γ(T ) values can be calculated using

only addition and selection operations.

Uncoded input

Coded input

1 6 -2

-4 -2 -1

0 0 0

-3 4 -3

1 6 -2
-4 -2 -1

-5 4

3 5

0 0

-2
9

4
5

Fig. 6. Calculating the γ(T ) values for some example a priori LLRs.

The second step of the Log-BCJR algorithm is to calculate

an α(S) value for each state S in the trellis. These α(S) values

represent the probability that a particular state was entered into

during the encoding process. This is obtained by considering

the probabilities of the previous states having been entered into

during encoding, as well as the probabilities that the transitions

between these pairs of states have been taken. Owing to

these dependencies between the probabilities associated with

consecutive states, a forward recursion is required in order

to calculate the α(S) values for the states of the trellis in a

specific order, evolving from left to right. The calculation for

an α(S) for a particular state S is given by

α(S) = max*
T∈to[S]

[γ(T ) + α(fr[T ])] , (5)

where to[S] returns the set of all transitions merging into

the state S, while fr[T ] returns the particular state that the

transition T emerges from. The operation max* for two inputs

A and B is defined as max*(A,B) = max(A,B) + ln(1 +
e−|A−B|). Since this operation is associative, it can be readily

extended to more inputs. In the example of Figure 7, each

state in the trellis is labeled with its α(S) value, where the

max* operator has been approximated using the max operation

for simplicity. As shown in Figure 7, the forward recursion is

initialized by setting the α(S) value of the state at the far left

of the trellis to zero. Note that the α(S) values are calculated

using only addition and max* operations, which can be further

decomposed into only ACS operations, as we shall show in

Section II-F.

In the third step of the Log-BCJR algorithm, a β(S) value is

calculated for each state in the trellis, using a similar process

to that of the α(S) values. While the α(S) values depend

on the previous α(S) values in the trellis, the β(S) value of

a particular state depends on those of the next states in the

trellis. Therefore the β(S) values must be calculated in order,

using a backward recursion order, evolving from the right end

of the trellis to the left end. This is achieved according to

β(S) = max*
T∈fr[S]

[γ(T ) + β(to[T ])] , (6)

where fr[S] returns the set of all transitions that emerge from

the state S, while to[T ] returns the particular state that the

transition T merges into. Once again, the β(S) values for our

example are shown on the states of Figure 7, where the max*

operator has been approximated using the max operation for

simplicity. As shown in Figure 7, the backward recursion is



7

0 0

-2

2

9

10

5

11

14

0

0

0

-1

3

6

3

4

13

9

0

-3

0

4

Fig. 7. Calculating the α(S) and β(S) values. The previous γ(T ) trellis is

shown for reference. The circled ‘M’ represents the max* operation, which
we have approximated using the max operation in the presented calculations,
to maintain integer values for simplicity.

initialized by setting the β(S) values of the states at the far

right of the trellis to zero. Like the α(S) values, the β(S)
values can be calculated using only ACS calculations.

The fourth set of metrics required for the Log-BCJR

algorithm are the δ(T ) values, which combine the results

from previous metrics in order to represent the a posteriori

probabilities that the transitions were followed in the encoder.

The δ(T ) value of a particular transition T is calculated by

adding its γ(T ) value to the α(S) value of the state it emerges

from and the β(S) value of the state it merges into, according

to

δ(T ) = α(fr[T ]) + γ(T ) + β(to[T ]). (7)

The δ(T ) calculations detailed for our example can be seen

in Figure 8. Since the δ(T ) values are calculated using only

additions, they can be decomposed into ACS operations.

Finally, the Log-BCJR algorithm can combine the δ(T )
values in order to calculate the output extrinsic LLRs. This

is achieved according to

b̃e1,i = max*

T

∣

∣

∣

a1(T )=1

i(T )=i

[δ(T )]− max*

T

∣

∣

∣

a1(T )=0

i(T )=i

[δ(T )]− b̃a1,i, (8)

where T
∣

∣

∣

a1(T )=0
i(T )=i

is the set of all transitions for which the

represented uncoded bit value a1(T ) is zero and the index

i(T ) of that uncoded bit is i. As shown in the example of

Figure 8, this corresponds to the grouping of the δ(T ) values

into two sets, which are then combined using max* operations.

Following this, the a priori LLR b̃a1,i is subtracted from the

difference between these two max* calculations. Note that the

extrinsic LLRs are calculated using only subtraction and max*

operations, which can be further decomposed into only ACS

operations, as we shall show in Section II-F. This completes

the Log-BCJR decoding process.

F. Algorithmic modifications to the Log-BCJR decoder

The Log-BCJR algorithm is universally preferred for im-

plementation over the BCJR algorithm owing to its reduced

computational complexity. More specially, the BCJR algorithm

Uncoded input
1 6 -2-5 4

-

-

13

5

3

7
5

13

5

5

13
11

10

13

11
2

11

8

12

13

Uncoded output
1 -3 1-13 2

0 10

-1

44

13

0

Fig. 8. Calculating the δ(T ) values and the extrinsic LLRs. The circled

‘M’ represents the max* operation, which we have approximated using the
max operation in the presented calculations, to maintain integer values for
simplicity.

operates in the normal domain, requiring addition and multi-

plication operations for calculating the bit probabilities. Since

these probabilities have a high dynamic range, a large number

of bits are required for their digitial representation. By convert-

ing the equations of the BCJR algorithm into the logarithmic

domain, the Log-BCJR algorithm replaces multiplications with

additions, and replaces additions with the max* operation.

These operations have a lower computational complexity,

and representing the probabilities in the logarithmic domain

requires fewer bits.

As shown in Section II-E, the max* operation of

the Log-BCJR algorithm is defined by max*(A,B) =
max(A,B) + f(|A−B|), where the correction term is given

by f(|A−B|) = ln(1 + e−|A−B|). Since the logarithmic and

exponential functions of f(|A − B|) are costly to implement

in hardware, they are often approximated in practical applica-

tions of TCs. In the Maximum Log-BCJR (Max-Log-BCJR)

approximation [36] of the Log-BCJR algorithm, max*(A,B)
is approximated using max(A,B). As shown in Figure 9, the

value of f(|A − B|) is always in the range [0, 0.69], which

is typically small compared to max(A,B), justifying this

approximation. The Max-Log-BCJR approximation imposes

a low computational complexity, but its error correction capa-

bility is lower than that of the original Log-BCJR algorithm

[34]. This motivates the conception of a Look-Up-Table based

Log-BCJR (LUT-Log-BCJR) algorithm [37], which uses a

Look-Up Table (LUT) for approximating f(|A − B|). As

shown in Figure 9, the range of |A − B| values for which

f(|A−B|) has a significant value is limited, meaning the LUT

size can be small. Figure 9 shows how as few as four values

given by {0, 0.25, 0.5, 0.75} can be used for approximating

f(|A − B|), hence offering an error correction capability for



8

the LUT-Log-BCJR which approaches that of the Log-BCJR

algorithm [37], as shown in Figure 15.

Both of the Max-Log-BCJR and the LUT-Log-BCJR algo-

rithms can be implemented using only ACS operations. Firstly,

the max(A,B) operation is performed by comparing A and

B, and selecting the largest value. Based on the knowledge

of max(A,B), the subtraction |A−B| of the LUT-Log-BCJR

can be carried out so that a positive number is returned. By

comparing this result to the boundary points of the LUT, the

approximate value for f(|A − B|) can be selected, and then

added to the value of max(A,B).

Four-level quantization
Exact function

|A−B|

f
(|
A
−
B
|)

32.521.510.50

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fig. 9. Plot of f(|A−B|) = ln(1 + e−|A−B|), showing the quantization
steps and points when a four-level quantization is employed.

As shown in Section II-E, the α(S) and β(S) calculations

require forward and backward recursions respectively due to

their data dependencies between consecutive states. Owing to

this, the Log-BCJR and its variants are not naturally suited to

parallel processing. Furthermore, a large amount of memory

is required, since the α(S) and β(S) values are calculated

in different directions along the trellis. More specifically, in

order to generate the first output extrinsic LLR b̃e1,1, it is

necessary to have first calculated the β(S) values for every

state in the trellis and then to store them for the calculation

of the subsequent output extrinsic LLRs.

An appealing technique for overcoming the data dependency

issue is to decompose the trellis into N/ws number of smaller

windows [38], each having the above-mentioned length ws.

The Log-BCJR algorithm (or one of its approximations) can be

applied to each window independently, significantly reducing

the memory required for storing metrics. However, with this

approach, it is necessary to initialize the α(S) values of the

states at the left end of each window, as well as the β(S) values

of the states at the right end. If the windows are processed

sequentially in a left to right ordering, the boundary α(S)
values can be passed from the right end of each window to

the left end of the subsequent window. However, this approach

cannot supply boundary β(S) values for the right end of each

window, requiring a pre-backward recursion to generate these

boundary conditions [39]. This technique generates boundary

conditions by starting to calculate the β(S) values ahead of

the window, then carrying out a backwards recursion towards

the edge of the window. The first β(S) values used by the pre-

backward stage are initialized to zero, then the pre-backwards

length wp is chosen for ensuring that the beta values generated

at the boundary of the window converge to those values in the

non-windowed Log-BCJR algorithm. Further detailed reading

on the pre-backward technique is available in [40]. Other

windowing techniques include the Previous Iteration Value

Initialization (PIVI) technique of [39], [41], which is also

known as State-Metric Propagation (SMP) [42]. This avoids

the extra computation associated with the pre-backwards step

by initializing the windows during the current turbo decoding

iteration using the boundary conditions ‘inherited’ from the

previous iteration.

G. Turbo Code Performance

When analyzing the performance of error correcting codes,

typically the BER of the code is plotted against the SNR per

bit Erx
b /N0, where Erx

b is the energy received per message bit.

A TC’s BER plot can be used for determining the minimum

Erx
b /N0 required for reliable communication.

Figure 10 provides a BER plot for a R = 1/3 LTE turbo

code, which uses the schematic shown in Figure 4. Figure 10

shows that the error correction performance improves with

successive iterations of the decoder, until about 8 iterations

have been completed. Beyond this convergence point however,

there are diminishing returns, resulting in very little further

improvement.

14 Iterations

1 Iteration

Erx

b
/N0 (dB)

B
E
R

43210-1

100

10−1

10−2

10−3

10−4

10−5

Fig. 10. BER performance of a 6144-bit R = 1/3 LTE turbo code employing
varying number of iterations I = 1, 2, 3, ..., 14, for communication over an
AWGN channel.

A specific feature of turbo codes is that they perform

better with the aid of longer interleavers. Figure 11 shows

the attainable BER performance for the message lengths of

N = 40, 440 and 6144 bits, as well as for the uncoded

BPSK case. While all of the turbo coded schemes offer an

improved BER for Erx
b /N0 values above 0 dB, the longer

frame lengths have a much steeper cliff than shorter ones.

Owing to this, shorter frame lengths N correspond to higher

Erx
b /N0 requirements for achieving reliable communication.

Figure 11 shows that the LTE TC provides a coding gain Gc

of around 8 dB over the uncoded scheme, which equates to a

corresponding transmission energy saving at the transmitter.

Using (3) we can express the transmission energy per

message bit Etx
b required to achieve a particular target BER



9

uncoded
N = 6144
N = 440
N = 40

Gc

Erx

b
/N0 (dB)

B
E
R

1086420-2

100

10−1

10−2

10−3

10−4

10−5

Fig. 11. BER performance of R = 1/3 LTE turbo codes employing 10
iterations and having different frame lengths when communicating over an
AWGN channel. The coding gain Gc is achieved by the turbo code relative
to the uncoded case, when achieving a target BER of 10−4.

as

Etx
b [dBJ] = St +N0 +RNF + Pl +A−Gtx −Grx, (9)

where all quantities are expressed in dB, and St is the

minimum SNR per bit Erx
b /N0 that is required to achieve the

target BER.

III. TURBO DECODER ARCHITECTURES

In this section, we will commence by reviewing the existing

approaches to low power design for turbo decoders. We shall

then narrow our focus to three major areas for formulating

design considerations. Firstly, Section III-A considers the most

significant challenges in energy-efficient datapath design, as

well as in architectural solutions to these. Secondly, Sec-

tion III-B considers the issues of algorithm control, where

the scheduling of the decoder by the controller will be in-

vestigated, under the consideration of beneficial modifications

to the algorithm that achieve a lower energy consumption at

a minimal loss to error correction performance. This perfor-

mance loss can then be considered during the holistic design

stage, when minimizing the overall energy consumption of the

system, as shown in Figure 3. Finally the various aspects of

energy-efficient memory usage is discussed in Section III-C.

Table I shows a range of ASIC turbo decoder architectures

disseminated in the literature, which have been designed for

meeting a variety of design goals. In particular, the authors

of [50] designed their low-dissipation architecture for low-

throughput applications, where the energy consumption of

the receiver is of primary concern. This architecture employs

the LUT-Log-BCJR of [37], which provides a superior error

correction performance and a reduced transmission energy

compared to the faster, less complex Max-Log-BCJR [36]

approximation. Low throughput turbo decoders also tend to

have a reduced chip area, which results in a reduced static

energy consumption and a reduced cost, which is often a

concern in these applications. This is in contrast to con-

ventional turbo decoder architectures [48], [49], [54], which

are typically designed for bandwidth-constrained applications,

such as cellular telephony, WLAN and broadcast systems.

More specifically, these architectures are designed to have a

high processing throughput, in order to match the high trans-

mission throughputs that are sought in these applications. As

a trade-off, these applications use the Max-Log-BCJR, which

allows for a simpler approximation of the max* calculation to

support higher throughputs, but comes at the expense of both

a degraded BER performance and an increased transmission

energy requirement. Section III-B below discusses this trade-

off, as well as methods aimed at mitigating their performance

loss.

This section will concentrate on conventional decoders,

however alternate approaches have also been proposed for

implementing the BCJR algorithm, which will be briefly

discussed here. Firstly, stochastic decoders [55] represent each

LLR as a series of bits, where the value of the sequence

is represented by how many ‘1’s or ‘0’s there are in the

sequence. In contrast to the conventional fixed-point binary

representation, each bit in a stochastic sequence has the

same significance. During decoding, each bit in these LLR

sequences is processed sequentially by the stochastic decoder.

The decoder only processes one bit of each LLR in each clock

cycle, which results in a significant reduction of the number

of gates required in the decoder. However, since long LLR

sequences are required for a high error correction performance,

stochastic decoders typically require many more clock cycles

compared to a conventional decoder, hence resulting in lower

throughputs.

Another alternative architecture is constituted by the family

of analog turbo decoders [56]. In these architectures, soft

information is represented with the aid of analog currents,

while the various operations of the decoder are performed

using analog arithmetic circuits. Analog decoders have shown

a promising decoding energy consumption Edec
b , outperform-

ing the comparable digital turbo decoders. However, they

also impose additional challenges which have limited their

potential. For example, the difficulties in matching analog

circuits on a large scale leads to a potential performance

degradation [57]. Furthermore, accurately simulating the BER

performance of the circuit before its fabrication is not feasible

or accurate. In [58] an analog architecture, which supports

long frames is described, although this is associated with

other challenges. In particular, a sampling circuit is required

at each input of the decoder, which holds the analog value

constant during decoding. However, these analog values cannot

be readily maintained for extended periods of time, hence

affecting the achievable error correction performance.

In the following subsections, we consider three salient

aspects of conventional digital decoders, namely the design

issues of the data path, of the controller and of the memory.

A. Data Path Considerations

Some of the designs listed in Table I rely on architectures

that were designed for meeting the requirements of the latest

telephony standards, resulting in optimizations for very high

throughputs. These conventional architectures typically em-

ploy dedicated modules for each of the different steps in the



10

TABLE I
SUMMARY OF TURBO DECODING ARCHITECTURES FOR A VARIETY OF APPLICATIONS

Work Algorithm Eb/N0

[dB] at
BER =
10−3

Tech-
nology
[nm]

Voltage
[V]

Area
[mm2]

Area
at
90nm
[mm2]

Iterations Throughput
[Mb/s]

Energy con-
sumption
[nJ/bit/iter.]

Energy con-
sumption @
90nm, 1 V
[nJ/bit/iter.]

Bickerstaff M. et al. 2002 [43] LUT-Log 0.32 180 1.8 9 2.25 10 2 14.6 2.3

Bickerstaff M. et al. 2003 [44] LUT-Log 0.37 180 1.8 14.5 3.63 8 24 11.1 2.0

Li F. et al. 2008 [45] LUT-Log - 180 1.8 8.2 2.05 6.5 4.17 12.7 1.59

Benkeser C. et al. 2009 [46] Max-Log 0.46 130 1.2 1.2 0.58 5.5 20.2 0.54 0.26

May M. et al. 2010 [47] Max-Log - 65 1.1 2.1 4 6 150 0.31 0.35

Sun Y. et al. 2010 [48] - - 65 0.9 8.3 15.9 6 1280 0.11 0.19

Studer C. et al. 2011 [49] Max-Log 0.63 120 1.2 3.57 2 5.5 390.6 0.37 0.19

Li L. et al. 2011 [50] LUT-Log 0.32 90 1.0 0.35 0.35 5 1.03 0.4 0.4

Studer C. et al. 2012 [51] Max-Log - 180 1.8 0.45 0.11 542 0.84 0.13

Ilnseher T. et al. 2012 [52] Max-Log - 65 1.1 7.7 14.8 6 2150 - -

Belfanti S. et al. 2013 [53];
Roth C. et al. 2014 [42]

Max-Log 0.66 65 1.2 2.49 4.8 5.5 1013 0.17 0.16

LUT-Log-BCJR decoding algorithm. More specifically, they

use separate hardware for calculating each of the α, β, δ values

and the extrinsic LLRs. However, this can result in a long

critical path in the hardware implementation, which precludes

having a high processing energy efficiency for the following

three reasons:

1) Firstly, a lengthening of the critical path implies a greater

variety of data path lengths. The differences amongst the

data path lengths in the circuit may improse significant

energy wastage owing to spurious transitions (glitches)

[59]. Indeed, spurious transitions may account for a

significant part of the dynamic energy consumption of

ASIC implementations [60]. Reducing spurious transi-

tions requires the lengths of the paths that converge at

each register in the circuit to be roughly equal.

2) Secondly, a long critical path prevents the decoder from

employing a high clock frequency. In order to implement

the conventional LUT-Log-BCJR architecture at a high

clock frequency, it is necessary to employ additional

hardware during the synthesis for the sake of short-

ening the critical path. This is achieved by employing

more complex circuits, such as the ‘look-ahead adder’

for minimizing their long datapaths. Unfortunately, this

increases the chip area of the datapaths, hence resulting

in a higher EC. On the other hand, operating at a

lower clock frequency in order to avoid introducing

this additional hardware would result in some of the

hardware resources associated with shorter datapaths

remaining idle for longer, hence increasing the static EC.

The energy wasted by the static EC becomes more and

more significant, when the process technology is scaled

down [61].

3) Thirdly, the high complexity of the conventional archi-

tecture imposed by its circuits dedicated to the different

tasks increases the requirements imposed on the clock

tree and on the buffers for multiple input signal loads

[62]. Hence, this may impose a significant additional

energy dissipation on the decoder.

On this basis, we shall now discuss a pair of techniques,

which can be employed for mitigating the energy inefficiencies

inherent in designs having a long critical path.

The first method we will discuss is pipelining, which is

employed extensively within the architectures of [48], [51],

[52]. Pipelining reduces the critical path between two registers

by adding additional registers to the middle of this path.

This has the result of shortening the paths so that a higher

clock frequency can be employed, but also adds latency to

the circuit, since the number of clock cycles required before a

result is available is increased for every pipeline stage that is

added. This can therefore result in a slow down of a circuit’s

operation, if one part has to wait for a pipelined calculation

to become available.

Figure 12 shows an example of pipelining in the turbo

decoder of [51], which uses a similar decoder core to that

proposed by the authors of [46], [49]. High-throughput turbo

decoders, such as those proposed by [49], [52], [53], typically

employ a multitude of these cores in parallel. The architecture

of Figure 12 employs separate hardware units for calculating

the α (forward state-metrics) and β (reverse state-metrics),

each having dedicated hardware for generating the γ values.

Since this architecture utilizes windowing, a separate dummy

state-metric-recursion unit is used for generating the boundary

conditions of the windows, as described in Section II-F.

This parallelization within each decoder core facilitates higher

throughputs than the alternative approaches. To perform the

pipelining, registers are placed between the branch metric

computation units that are used for calculating the γ values, as

well as between the ACS Units that are used for calculating

the α or β values. Note that due to their recursive nature,

no pipelining can take place within the ACS Units. This is

because the values for one bit depend on that of an adjacent

bit, which is calculated in the preceding clock cycle. Adding

pipelining to the ACS Unit then increases the number of cycles

it takes for a new value to be calculated, hence slowing down

the operation of the decoder, rather than speeding it up.

With careful pipelining, the critical paths in a design can

be kept low and the path length can be kept more similar,

therefore mitigating the previously mentioned impediments.

However, as mentioned above, pipelining cannot be used in the

recursive parts of the BCJR algorithm and the additional chip

area as well as the EC associated with the pipeline registers

must also be considered.



11

Fig. 12. Pipelining in a high throughput Max-Log-BCJR decoder. From
c©IEEE [51]. The pipelining registers are shown by the gray rectangles.

Building upon the pipelining philosophy, we shall now focus

our attention on the turbo decoder architecture of [50], which

is shown in Figure 13. This architecture has been specifically

designed for a low processing EC for energy-constrained

wireless communication applications, such as WSNs and the

IoT. The philosophy of this architecture is to redesign the

timing of the conventional architecture into a series of small

steps, each with the same length, in a similar manner to

that which is achieved when adding pipeline stages. In con-

trast to the high-throughput architectures discussed previously,

where each of the pipelined stages are performed at the

same time, the architecture of [50] sequentially carries out

the operations using small functional units. This produces an

architecture comprising only a low number of inherently low-

complexity functional units, which are collectively capable

of implementing the entire LUT-Log-BCJR algorithm at a

high hardware efficiency. Further wastage is avoided, since

the critical paths of the functional units are naturally short

and have a similar length, hence eliminating the requirement

for additional hardware to manage them.

Figure 14 shows an ACS Unit, which perform the necessary

operations of the LUT-Log-BCJR algorithm, as previously

discussed in Section II-F. The ACS Unit is based around an

adder and an XOR gate, with the control signals O[5:0]1,

and the status flags C[2:0]. We can see that changing the

control signals changes the operation of the ACS unit. For

example, the input code O[5:0] = 0000002 performs addition,

and O[5:0] = 1000002 performs subtraction. As detailed in

[50], this ACS Unit can perform a LUT-max* operation over

four clock cycles, when external control logic is used for

correctly sequencing the ACS Unit. When calculating the

LUT-max*, the status flags C[2:0] hold the result of the LUT

operation, which is then used for selecting which of the four

quantized values gleaned from Figure 9 are added on to the

result in the final cycle of the LUT-max calculation.

Due to the short critical path and owing to the serial

nature of this approach, it naturally results in a low chip-

1This indicates the signal O is comprised of 6 bits

CU

R
eg

ba
nk

1
R

eg
ba

nk
2

M
et

ri
c 

m
em

or
y

L
L

R
 m

em
or

ie
s

M
U

X
M

U
X

M
U

X

R1 R2 R3 Interconnection ACS

R1 R2 R3 Interconnection ACS

R1 R2 R3 Interconnection ACS

M
ai

n 
m

em
or

ie
s

CU

CU

Fig. 13. The LUT-Log-BCJR architecture of [50].

9

9

9

9

9

+
9

C2

r̃q̃

p̃

ca
rry

M
S
B

0

1
O0

O2

O3

O4

O5

C0

C1

C2

Loading signal for 1-bit register C0

Loading signal for 1-bit register C1

Loading signal for 1-bit register C2

O1

C1

C0

Fig. 14. The ACS unit of [50].

area and a high clock frequency, which implies having a

low static EC. The architecture is based on the fact that

the LUT-Log-BCJR comprises only addition, subtraction and

max* operations, which can be further decomposed into three

fundamental operations, namely the ACS operations, as shown

in Section II-E.

B. Algorithm Control

In this section, we consider the control of the architecture,

where the controller instructs both the datapath and the mem-

ory to carry out a particular sequence of operations, in order

to implement the algorithm.

In the LUT-Log-BCJR algorithm, the basic operation that

imposes the highest computational overhead is the LUT-

max* operation [37]. This is of particular concern in high-

throughput decoders, where the max* calculation is used

within the forward- and backward-recursive loops, preventing

its pipelining for speeding up the decoder, as described in

Section III-A. By contrast, the low-power, low-throughput

architecture of Figure 13 does not suffer from this problem,

since it performs all algorithmic steps using the same set of

functional units, which are all capable of performing the same

tasks, rather than having dedicated hardware for each part of

the Log-BCJR algorithm. Owing to this, there are no parts

of the decoder that are required to wait, while another part

completes the operation of a slower task.

It is therefore desirable to favour the Max-Log BCJR

over the LUT-Log-BCJR in applications, requiring a higher

throughput. However, the naive employment of the Max-

Log-BCJR results in a performance loss, when compared



12

Max-Log-BCJR
Max-SE-Log-BCJR

LUT-Log-BCJR
Exact Log-BCJR

0.320.1

Erx

b
/N0 (dB)

B
E
R

10.80.60.40.20-0.2-0.4

100

10−1

10−2

10−3

10−4

10−5

Fig. 15. Error correction performance of 6144-bit turbo decoders em-
ploying extrinsic scaling (Max-SE-Log-BCJR), the Max-Log-BCJR and the
LUT-Log-BCJR, in relation to that offered by the exact Log-BCJR. A LUT
comprising 8 entries was used for the LUT-Log-BCJR, and a scaling factor
of 0.7 was employed for the Max-SE-Log-BCJR.

to the LUT-Log-BCJR. This motivates the employment of a

technique known as extrinsic LLR scaling, which is capable of

mitigating some of this performance loss [46], [63]. Figure 15

compares the error correction performance of the Log-BCJR,

LUT-Log-BCJR, Max-Log-BCJR and Maximum with Scaled

Extrinsic Log-BCJR (Max-SE-Log-BCJR) decoders. It can be

seen that the extrinsic scaling technique improves the perfor-

mance, which will be within a small margin of 0.1 dB of that

offered by the Log-BCJR algorithm. This is a typical margin

that may be observed for other turbo code parameterizations

designed for communicating over AWGN and Rayleigh fading

[64] channels.

The Max-SE-Log-BCJR decoder relies on multiplying the

extrinsic LLR output of the decoder blocks in the receiver by

a constant value of less than 1. This represents a reduction

of confidence in the extrinsic LLRs, which is due to the

non-optimal implementation of the max* calculation. The

author of [65] discuss the optimal selection of this constant,

which is found to be between 0.6 and 0.8, depending on the

SNR at the receiver. However, practical implementations tend

to use a fixed scaling value [64]. A typical choice for the

extrinsic scaling factor is one that leads to a simple hardware

implementation using just adders. For example, a scaling factor

of 0.75 can be achieved using fixed point arithmetic by simply

adding the extrinsic output right-shifted once, to the extrinsic

output right-shifted twice.

Extrinsic LLR scaling is also used in the Max-Log-BCJR

architecture of [46], resulting in a 45% reduction in area

and a 50% improvement in throughput, when compared to a

similar architecture, which uses the LUT-Log-BCJR algorithm

instead. The reduction in the number of logic gates required

for the max* calculation also results in a reduced EC.

As described above, the use of extrinsic LLR scaling in con-

junction with the Max-Log-BCJR results in an error correction

performance loss relative to the LUT-Log-BCJR decoder. This

equates to more transmit energy being required, but offers the

advantage of requiring lower decoding energy. Note that the

holistic design method discussed in Section V will address

these conflicting design choices. This conflict demonstrates

the importance of considering both the architecture and the

algorithm jointly, since a holistic design approach facilitates

striking the right balance between the algorithm and the

architecture, resulting in the lowest overall EC and the best

overall performance for the system.

Another beneficial technique for the implementation of

turbo decoders is the Radix-4 transformation of [44], [52],

which combines two trellis stages into a single one. Owing to

this, the decoder considers twice the number of a priori LLRs

at once and the number of transitions emerging from each

state of the Radix-4 trellis is squared. However, this technique

halves the number of state metrics that have to be calculated

and stored, since it halves the number of stages in the

trellis. In the most common case, where only two transitions

emerge from each state, the total number of transitions per

frame will remain constant. This leads to a moderate area

increase for radix-4 decoders over radix-2 decoders [49], partly

because more ACS operations per transition are required, when

considering several transitions at once. The main advantage of

radix-4 decoders is that by transversing two states at once, the

degree of parallelism can be doubled, hence facilitating higher

throughputs.

There are a number of other techniques that may be em-

ployed in turbo decoder implementations, as follows.

• Early Stopping [46], [53], which terminates the turbo de-

coding process early, if the correct bit-stream is unlikely

to be found, thus saving energy. This technique considers

the values of the LLRs, and detects if their quality no

longer improves in successive decoding iterations, indi-

cating that the remaining errors in the message will not

be corrected. Furthermore, early stopping can also stop

the iterative decoding process once the correct message

is found, as verified using a Cyclic Redundancy Check

(CRC).

• Modulo normalization [46], [51], which allows the state

metrics to overflow, relying on the nature of the two’s

complement arithmetic to correct this overflow, instead

of requiring a larger number of bits to represent these

metrics. An additional logic gate is required for the max

logic, in order to allow it to correctly process numbers,

which have experienced an overflow.

• Voltage scaling [46], [49], which reduces the supply

voltage when the throughput requirements are lower, or

when less iterations are required, because the SNR is

higher, resulting in a reduced energy consumption.

C. Memory Considerations

Turbo decoder architectures require a large amount of

memory for their operation. This memory is required for

storing the a priori LLRs, the extrinsic LLRs generated by

each of the Log-BCJR decoders and the intermediate α or β
values of the Log-BCJR decoder, as discussed in Section II-E.

While Section II-F discussed beneficial techniques, such as

windowing for reducing the required memory, frequent access

will still be required of this memory. Since accessing this

memory dissipates energy [66], having an EC comparable to

that of the datapath [50], it is desirable to minimize the number



13

of memory accesses, in order to reduce the overall EC of an

architecture.

To address this issue, the architecture shown in Figure 13

additionally employs two register banks, namely Regbank1

and Regbank2, which act as a cache memory between the

main memory and the processing units. The combined usage

of both the dedicated registers and of the register banks allows

an entire Log-BCJR stage of the trellis to be processed without

requiring access to the main memory. A similar approach is

pursued in [67], where a cache memory is employed between

the LLR memories and the decoder. This reduces the required

number of memory accesses, since each of the hardware blocks

for the α, β and output LLR units access the cache rather than

directly accessing the main memory.

As described in Section II-F, the Log-BCJR algorithm’s data

dependencies require an entire forward-recursion or backward-

recursion to be carried out, before any extrinsic LLRs can

be generated. This gives rise to the memory requirement for

storing the α or β values calculated during this recursion.

The authors of [52] have proposed an additional method

for reducing the storage requirement of state metrics dur-

ing this initial forwards- or backwards-recursion. This ‘re-

computation’ method reduces the number of values stored in

the memory during on the initial recursion, which is achieved

by storing only every nth set of state metrics. However, this

requires the missing state metrics to be recalculated as and

when needed, during the subsequent pass through the trellis.

The implementation advocated in [52] opted for storing every

6th set of state metrics, since it was found that the extra

hardware required for the re-computation circuit occupied a

smaller area than the memory, which would otherwise have

been required.

For any design, the required amount of memory storage and

the number of memory accesses can be traded-off against the

requirement of repeating the computation of unstored values

in the decoder. However, as a minimum, the a priori LLRs

have to be fetched from memory into the Log-BCJR decoder,

while the extrinsic LLRs have to be stored from the Log-BCJR

decoders into memory. The values, which require minimal

computation may be readily recomputed as and when required,

such as the γ values, which typically necessitate no more than

a single addition per transition. Conversely, due to the data

dependencies, memory will be required for at least some of

the forwards- or backwards- recursion values, so that they can

be stored until they are needed for the duration of a window.

In high-throughput decoders, that employ parallelization by

concurrently operating multiple decoder cores, accessing the

shared LLR memories may cause contention. As described

in Section II-B, the interleavers within the turbo decoder

dictate the memory accesses of the decoder cores. In particular,

the interleavers enforce the requirement for the a priori and

extrinsic LLR memories to be shared between each of the

decoder cores, rather than having independent LLR memories

for each of the decoding cores. In the case where there are M
decoder cores, it is desirable for the LLR memories to be split

into M separate memory blocks, with the interleaver designed

for ensuring that only one decoder core requires access to

each memory block at a time. An interleaver that meets this

criterion for some values of M is said to be contention-free

[68]. However, an interleaver which is not contention-free will

cause inefficiencies in the decoder, since some of the decoding

blocks will have to stall their operation, while they wait to

individually access the memory.

. . .

. . .

0 N − 1

i

π(i)

window 0 window M − 1window 2window 1

Fig. 16. Contention-free interleaver using the same indices within each
window, where address i is interleaved to yield the address π(i). The
interleaving pattern is shown for two sets of addresses.

While contention-free interleavers allow the LLR memories

to be broken into separate memory blocks, the address decod-

ing logic has to be duplicated for each of these memory blocks,

hence increasing both the chip area and the associated EC. It is

therefore also desirable for each decoder core to fetch or store

the LLRs using the same addresses for their corresponding

one from the set of these M blocks of memory. This design

of the interleaver will allow contention-free memory accesses

to be implemented using a single address decoding circuit,

since each decoder core uses the same address. As shown in

Figure 16, each decoder core carries out its fetching or storing

action using a different memory window, but the index used

within each window is the same. A pair of specific interleaver

designs which meet both of these criteria are constituted by

the so-called ARP and QPP interleavers [68]. The QPP design

was chosen for the LTE standard [1]. The specific interleaver

design has a significant affect on the BER performance of a

turbo code, hence requiring a careful design of the interleaver

for meeting the contention-free implementation requirement,

as well as the BER performance requirement [69]. The authors

of [49], [70] demonstrated how to facilitate contention-free

memory accesses, where a permutation network is employed

for routing the LLRs between the memory and the decoder

cores.

IV. PROCESSING ENERGY CONSUMPTION ESTIMATION

In this section, we will discuss various techniques invoked

for characterizing the expected EC of a turbo decoder ar-

chitecture. Referring to Figure 3, accurately processing EC

estimation is important for the holistic design process, since it

typically makes a similar contribution to the overall EC as the

transmission energy in energy-constrained scenarios. Indeed,

in some applications, the processing energy can actually

exceed the transmission energy. We commence by briefly con-

sidering the most common design characterization methods,

before focusing our attention on the method of [27]. This work

parametrizes the estimated EC per bit per iteration, therefore

aiding the joint design of the architecture and the algorithm,

as it will be further discussed in Section V. The energy per

bit per iteration is employed as the metric for comparing the



14

EC of different architectures, since it is independent from the

algorithm which is being operated. Furthermore, the EC per

bit metric is preferred over the power consumption per bit,

since the EC is independent of the decoder’s throughput.

For the majority of the ASIC architectures proposed by the

authors listed in Table I, the EC of the architecture is obtained

from post-layout simulations. The EC per bit per iteration

can then be readily derived by taking into consideration

both the throughput and the number of iterations employed.

However, when characterizing the EC as a function of the TC

parameters, the above-mentioned approach has the disadvan-

tage of having to modify the design and to rerun the post-

layout simulations for each of the different parameters that

are considered during the holistic optimization. Table I lists a

range of architectures designed for a variety of applications,

resulting in a diverse range of throughputs and EC figures.

These EC results are obtained from simulations using only a

single particular parameterization of the design.

By contrast, a different framework was proposed in [27] for

estimating the EC of a Log-BCJR decoder as a function of its

parameters, which can be generalized to any turbo decoder.

The objective of this framework is to quantify the EC during

the TC design stage, in order to assist the designer in selecting

appropriate parameters for the code.

In order to provide accurate EC predictions, the authors of

[27] stipulate some assumptions, which are based on the later

implementation stages. In particular, the Integrated Circuit (IC)

fabrication process technology [49], the supply voltage and

the clock frequency of the implemented circuit can all have

a significant impact on the EC. When the designer wishes

to consider a range of technology nodes or supply voltages

(Vdd), the chip area, throughput and energy consumption can

be scaled according to the scaling rules as follows [53].

s = lold/lnew, (10)

Area ∼ 1/s2, (11)

tpd ∼ 1/s, (12)

Pdyn ∼ 1/s(V ′
dd/Vdd)

2, (13)

where s is the scaling factor between the two technology

nodes, tpd is the propagation delay, and Pdyn is the dynamic

power consumption. Reducing tpd increases the clock fre-

quency the IC can operate at, which results in an increased

throughput. The power consumption reduces with the tech-

nology node, which results in a corresponding reduction of

Edec
b . This allows the energy analysis to be performed only

once, and then scaled to allow holistic design decisions to be

taken. The specific parameters which affect the overall EC

are summarized in Table II. When using the technique of [27]

for estimating the Log-BCJR decoder’s EC, the designer has

the ability to change these parameters, in order to investigate

their impact on the EC.

In order to derive an overall EC estimate for a turbo decoder,

the EC is divided into three main components which will

be discussed here. Each of these steps focuses on the three

areas discussed in Section III, namely on the datapath, on

the scheduling of the decoder by the controller and on the

memories.

TABLE II
SUMMARY OF THE VARIABLES IN THE ENERGY ESTIMATION FRAMEWORK.

k the number of inputs of each component encoder

m the number of memory elements of each component
encoder

n the number of non-systematic outputs of each com-
ponent encoder

N the block length

I the number of decoding iterations performed

v the supply voltage

f the clock frequency

l the technology node

z the number of bits employed in the fixed-point
number representation

1) Datapath functional unit characterization: The first step

of the technique conceived in [27] is to analyze the EC

of each of the sub-blocks that comprise the datapath of

the architecture. More specifically, the energy used by the

different sub-blocks as they perform the tasks of addition,

subtraction and max* is characterized as functions of the

related parameters. It was found in [27] that the complexity of

some sub-blocks varies according to some of the parameters

of Table II. In particular, the number of states in the decoder

and the number of bits used for number representations have

a significant effect upon the EC. It is therefore suggested that

the Register-Transfer Level (RTL) design [71] of the functional

units should be written in a way that allows the parameters to

be readily changed, in order to characterize a whole range of

EC results.

2) Timing analysis: Next, the base operations undertaken

by the decoder as instructed by the controller are analyzed for

each time-step. More specifically, for a given set of turbo code

parameters and a given set of implementation parameters of

Table II, the total number of addition, subtraction, max* and

idle operations undertaken by each of the functional units of

the decoder can be characterized. This therefore characterizes

how often each of the operational modes of the datapath are

used during decoding. This allows the designer to promptly

characterize the effect of the different parameters of Table II,

which can be used in the ensuing steps to examine, how the

EC is affected by changing the parameters.

The results from the previous two steps can be combined to

estimate for the EC of the datapath, when considering a set of

given parameters and a particular scheduling of operations. By

multiplying the energy used per operation of step 1) and the

number of operations per bit from step 2) an accurate estimate

if the overall EC can be made. It was shown in [27] that

this method of estimating the EC has at most 7% error, when

compared against the EC simulation of the entire decoder.

3) Memory power usage: The databook provided for the

memories by the standard library developer [72] provides

specifications, which allow the EC to be calculated. For a

technology scale of l = 90nm, the Taiwan Semiconductor

Manufacturing Company (TSMC) 90 nm databook [72] states

that the power consumption of a particular memory module

size can be estimated by considering both the accessing rate

a in units of accesses per clock cycle, as well as the clock

frequency f and the supply voltage v. In the standard cell



15

library, the power consumption of the SRAM used in the

architecture can be estimated using the reference table of [72].

Here, the typical memory access power consumption pa and

leakage current Il are given for memory blocks having various

sizes and operand-widths. The power consumption Pa can be

used for calculating the dynamic EC, when the memory is

being accessed. Similarly, the leakage current Il can be used

for calculating the static EC of the memory, when it is idle.

Similarly to the EC of the datapath and of the memories

discussed above, the EC of the interleaver and of the controller

may also have to be considered. The authors of [27] provided

the analysis of the EC of these components. However, it was

found that their contribution is minor compared to that of

the datapath and memories. Furthermore, their EC per bit per

Log-BCJR decoder activation is unlikely to change between

different parameterizations. Owing to this, when making com-

parisons between two candidate scheme parameterizations, any

error in the interleaver or controller EC estimation will be

common to both schemes, hence having little effect on the

comparison.

V. HOLISTIC DESIGN CHARACTERIZATION

In this section, we explore a range of methods capable of

characterizing and holistically parameterizing an overall wire-

less communications system, while investigating the energy

efficiency of different TCs and the effect their parameters. We

shall explore the techniques outlined by the authors of [4] and

[27], showing how these techniques can be applied to a specific

scenario and architecture, in order to demonstrate the holistic

design approach and to show the effect of the various system

parameters on the overall EC. By considering the energy con-

sumption in both the transmitter and the receiver, the candidate

TCs may be evaluated holistically for employment in energy-

constrained applications, such as WSNs and the IoT. More

specifically, the transmitter’s energy consumption is comprised

of the turbo encoder’s processing energy consumption Eenc
b ,

the modulator’s energy consumption Emod
b and the PA energy

consumption Etx
b . Likewise, the receiver energy consumption

is comprised of the demodulator’s energy consumption Edem
b

and the turbo decoder’s processing energy consumption Edec
b .

The techniques discussed in this section are similar to various

other examples of holistic characterization that are available

in the literature [73]–[75]. For example, the authors of [75]

considered the holistic optimization of cellular networks, while

the authors of [73], [74] investigated whether Multiple-Input

Multiple-Output (MIMO)-based sensor networks can provide

energy savings over conventional networks.

The conventional design method optimizes the algorithm

and architecture separately, without considering the processing

EC at the receiver alongside the transmission EC. By contrast,

the methods explored in this section allow the TC to be

used for reducing the overall EC of a wireless communication

system. As highlighted in Figure 3, the holistic design charac-

terization bridges the algorithm design and the implementation

design, allowing the parameters of each to be combined, when

considering the performance of the eligible schemes for a

particular design scenario.

The objective of the design methods described is to de-

termine the particular parametrization of the TC design that

optimizes the overall EC of the system over the range of

operating conditions expected in a particular scenario. The

component encoder of the design is specified by the parameters

k, m and n, as well as by the generator polynomial. Further-

more, different turbo coding schemes may be employed, which

may use different arrangements of the component encoders.

For example, Multiple-Component Turbo Codes (MCTCs)

[76] employ multiple parallel component encoders, where the

number of encoders employed also becomes a parameter of

the scheme. Further parameters to be considered are those,

which relate to the hardware implementation, such as which

max* approximation to utilize, as well as the number of bits

used for representing the LLRs and other internal variables.

Additionally, the number of decoding iterations performed also

affects both the decoding EC Edec
b and the minimum required

transmission EC Etx
b quite significantly.

The holistic design approaches of [4] and [27] go beyond the

approaches proposed by the authors of [76], [77]. In these con-

tributions, the decoder complexity is quantified by the number

of operations undertaken in the decoder, which is related both

to the number of Log-BCJR decoder activations and to the

number of states in the trellis. This measure of complexity

is used for representing the relative energy consumption of

different codes. However, as shown in Section III, the absolute

energy consumption heavily depends on the architecture, as

well as on factors such as the amount of memory in the design.

As an example, [27] shows that two different schemes having

the same operations-based complexity have a 45% difference

in their processing EC Edec
b . Furthermore, schemes having a

lower coding rate also result in the modulation of more bits

on to the channel, resulting in a higher Emod
b and Edem

b . This

illustrates that while the complexity-based comparison of [76]

is useful for comparing the relative processing EC of schemes

where the Log-BCJR decoders are similar, it does not allow

the overall EC to be optimized, since it does not facilitate a fair

comparison between different architectural parameterizations.

This is because it has no knowledge of how the architecture

performs the decoding, wherein different parameterizations of

the architecture will cause different activation of blocks in the

decoder. During the holistic optimization, the designer may

also wish to compare the performance of different architectural

parameterizations, which is not provided by the approaches

disseminated in [76], [77].

In order to demonstrate the holistic design techniques, this

tutorial considers a scenario, which is representative of a

low-power, relatively low-throughput receiver, as is typical

in WSNs and in the IoT. By using the energy estimation

techniques discussed in Section IV, we may obtain a reliable

estimation of the processing EC for different turbo code

parameters. We shall consider a Twin-Component Turbo Code

(TCTC) as discussed in Section II-D, as well as two MCTCs

[76] having three and four constituent codes, which we refer to

as 3MCTC and 4MCTC, respectively. The TCTC and 3MCTC

schemes are both R = 1/3-rate codes, while the 4MCTC is

a R = 1/4-rate code. These TCs employ the generator poly-

nomials (17, 15)o, (4, 7)o and (2, 3)o, respectively. A fourth



16

scheme considered is provided by the uncoded case, which

is associated with no TC processing energy Edec
b , allowing

us to explore the specific situations, where using TCs is the

most energy efficient. A number of different parameters will

also be considered for each of these codes. Furthermore, we

will investigate the effect of employing various approximations

of the Log-BCJR algorithm, namely the LUT-Log-BCJR, the

Max-Log-BCJR and the Max-SE-Log-BCJR [46]. In particu-

lar, we will explore which approximations are most appropri-

ate, when attempting to reduce the overall EC. The number of

iterations in the receiver will also be considered in the holistic

characterization.

TABLE III
ENVIRONMENT ASSUMPTIONS AND SYSTEM SPECIFICATION FOR THE TWO

CONSIDERED WSNS.

Parameter Scenario 1 Scenario 2

Transmission frequency (fc) 5.8 GHz 433 MHz

Power amplifier efficiency loss (A) 4.8 dB 5 dB

Transmit antenna gain (Gtx) 2 dBi -2 dBi

Receive antenna gain (Grx) 7 dBi 3 dBi

Receiver noise figure (RNF) 6 dB 15 dB

Path loss exponent (p) 4 2

BER target 10−5 10−5

Temperature 300 K 300 K

Thermal noise (N0) -203.8 dBJ -203.8 dBJ

Transmitter modulator power consump-
tion (Pmod)

4.6 mW 1.7 mW

Receiver demodulator power consump-
tion (Pdem)

6.5 mW 3.3 mW

Symbol period (ts) 1µs 4µs

Table III shows two different operating scenarios, which

will be considered in this tutorial, representing a range of en-

vironmental factors faced by energy-constrained systems. The

power consumption figures Pmod and P dem are representative

of those achieved by a particular low-power state-of-the-art

transceiver [78]. While naturally, only a limited number of

parameterizations are considered in this tutorial, the designer

of a real communications system may wish to consider a wider

range of candidate schemes. For example, error correction

codes such as LDPC [17], Repeat Accumulate (RA) [79], or

Reed-Solomon (RS) [80] codes may provide a lower overall

energy consumption, depending on the scenario. For example,

TCs out perform LDPC codes at lower coding rates [81],

while LDPC and RA codes lend themselves to be conveniently

implemented in parallel, albeit at the expense of a large chip

area. Likewise, the designer may wish to consider Hybrid

Automatic Repeat Request (HARQ) [82] as an alternative

method of reducing the EC. While these rate-compatible

schemes have been shown to reduce the transmission EC of a

scheme, usually the EC of the decoder is not considered. The

techniques detailed in this section can be extended to both

HARQ and to other similar techniques, however for reasons

of space-economy, they are not discussed here.

A. Methodology

To evaluate the transmission energy required for each can-

didate scheme, first the BER requirement must be specified

based on the target application. Here, a BER of 10−5 is

assumed as the maximum tolerable BER. Table IV shows

the Erx
b /N0 required for achieving a BER of 10−5 for each

of the candidates considered in this tutorial. The correspond-

ing BER simulation results of these candidate schemes are

provided in [26], while the relative performance of different

approximations of the Log-BCJR algorithm are taken from

[64]. Next, the path loss model given in Section II-C is used

for calculating the transmission EC per information bit Etx
b , by

invoking Equation (9). This path loss model may be substituted

by alternative channel models, such as a Rayleigh fading [83]

channel, if this is more appropriate for the design scenario.

The assumptions and specifications for the target scenario of

Table III are applied to the specific path loss model, having the

parameters defined in Section II. Furthermore, the decoding

EC Edec
b of the candidate schemes can be estimated using the

techniques discussed in Section IV. The decoding EC Edec
b for

the example architecture of Figure 13 is shown alongside the

required Erx
b /N0 in Table IV. Using the coding rates of the

candidate schemes, the modulation and demodulation energy

consumption can be calculated according to

Emod
b = Pmod × ts/η, (14)

Edem
b = P dem × ts/η. (15)

The encoding energy Eenc
b is typically considerably lower than

the decoding EC [84], and therefore in this design example

it is assumed to be negligible. Finally, the overall EC of

the candidates can be calculated by summing these figures

according to (Etx
b + Emod

b + Eenc
b + Edec

b + Edem
b ), in order

to obtain the combined energy consumption per bit.

3TCTC, 8 iterations, Max*
4MCTC, 8 iterations, Max*

TCTC, 4 iterations, Max
TCTC, 8 iterations, Max-ES

TCTC, 8 iterations, Max
TCTC, 8 iterations, Max*

Uncoded

Distance (m)

C
om

b
in
ed

E
n
er
gy

C
on

su
m
p
ti
on

(n
J
)

140120100806040200

102

101

Fig. 17. Combined EC for the four candidate schemes, when operating in
scenario 1 of Table III

B. Results

Figures 17 and 18 show the combined transmission and

processing EC for the four candidate schemes, when operating

in Scenarios 1 and 2, respectively. These graphs show how

the combined EC increases with the transmission distance,

allowing the designer to make decisions based on the range

of required distances. It can be seen that for very short

transmission distances, the uncoded candidate scheme has



17

TABLE IV
THREE TURBO CODE SCHEMES WITH THEIR DECODING ENERGY CONSUMPTION PER BIT (Edec

b
), AND THE Eb/N0 FOR WHICH A BER OF 10−5 IS

ACHIEVED.

Max Max-SE (Scaled Extrinsic) LUT-Max*

Edec
b

(nJ) Eb/N0 (dB) Edec
b

(nJ) Eb/N0 (dB) Edec
b

(nJ) Eb/N0 (dB)

Iterations 4 8 4 8 4 8 4 8 4 8 4 8

Uncoded 0 0 9.5 9.5 0 0 9.5 9.5 0 0 9.5 9.5
TCTC 2.31 4.63 1.4 1.0 5.00 10.01 1.0 0.6 5.00 10.01 0.9 0.5
3MCTC 2.52 5.04 1.6 0.6 5.45 10.90 1.2 0.2 5.45 10.90 1.1 0.1
4MCTC 3.36 6.72 1.6 0.6 7.27 14.53 1.1 0.2 7.27 14.53 1.0 0.1

TABLE V
THE COMBINED TRANSMIT, RECEIVE, AND DECODING ENERGY CONSUMPTION (Etx

b
+ Edec

b
+ Emod

b
+ Edem

b
) [NJ] OF THE THREE SCHEMES UNDER THE

DIFFERENT CONDITIONS AT A RANGE OF DISTANCES d. BRACKETS SHOW NUMBER OF ITERATIONS PERFORMED AND APPROXIMATION USED. BOLD

FONT INDICATES THE LOWEST ENERGY CONSUMPTION OBTAINED FOR EACH TRANSMISSION DISTANCE.

Scenario 1 Scenario 2

Scheme Edec
b

Eb/N0 η d [m] 10 20 50 100 250 2000 5000 10000 20000 50000

uncoded 0.0 9.5 1.0 11.1 11.6 31.9 343.6 13001.3 23.9 44.3 117.3 409.1 2451.7
TCTC (4,Max) 2.3 1.4 0.3 35.6 35.7 38.8 87.4 2056.8 62.9 66.1 77.4 122.9 440.7
TCTC (4,Max-SE) 2.4 1.0 0.3 35.7 35.8 38.7 82.7 1870.6 63.0 65.9 76.2 117.4 405.9

TCTC (8,Max) 4.6 1.0 0.3 37.9 38.0 40.8 84.4 1851.8 65.2 68.0 78.2 119.0 404.2
TCTC (8,Max-SE) 4.9 0.6 0.3 38.2 38.2 40.8 80.7 1700.1 65.4 68.0 77.3 114.6 376.0
TCTC (8,Max-LUT) 10.0 0.5 0.3 43.3 43.4 45.9 84.7 1660.0 70.5 73.0 82.1 118.4 372.6

3MCTC (4,Max-SE) 2.6 1.2 0.3 36.0 36.0 39.0 85.4 1966.7 63.2 66.3 77.1 120.5 424.1
3MCTC (8,Max-LUT) 10.9 0.1 0.3 44.2 44.3 46.6 82.1 1525.8 71.3 73.7 82.0 115.3 348.3

4MCTC (4,Max-SE) 3.5 1.1 0.3 47.9 48.0 51.0 96.4 1942.8 84.1 87.1 97.7 140.3 438.2
4MCTC (8,Max-LUT) 14.5 0.1 0.3 58.9 59.0 61.3 96.8 1536.7 95.0 97.3 105.6 138.8 371.2

3TCTC, 8 iterations, Max*
4MCTC, 8 iterations, Max*

TCTC, 4 iterations, Max
TCTC, 8 iterations, Max-ES

TCTC, 8 iterations, Max
TCTC, 8 iterations, Max*

Uncoded

Distance (m)

C
om

b
in
ed

E
n
er
gy

C
on

su
m
p
ti
on

(n
J
)

4000035000300002500020000150001000050000

102

Fig. 18. Combined EC for the four candidate schemes, when operating in
scenario 2 of Table III

the lowest EC due to the processing overhead of the turbo

coded schemes, as well as the additional modulator Emod
b

and demodulator Edem
b energy required for transmitting the

additional parity bits. As the distance increases, the turbo

coded schemes overtake the uncoded one, since they facilitate

a lower transmit energy. The low-complexity TC schemes

have an advantage for shorter transmission distances, while

the transmit power dominates the EC over longer distances,

where the best performing scheme becomes the one having

the best BER performance.

Table V summarizes the combined EC for a selection of the

candidate schemes over a range of distances. It can be seen

that the Max-SE-BCJR decoder offers an attractive trade-off.

At short distances, it offers an energy saving due to its lower

processing energy Edec
b compared to the LUT-Max-BCJR

decoder, while at higher distances its slight BER performance

degradation results in only a small increase of the overall

EC. Compared to the Max-BCJR decoder, the Max-SE-BCJR

decoder offers an improvement for the majority of distances

considered. Indeed, the only distances for which the Max-

BCJR decoder offers a lower combined EC than the Max-

SE-BCJR decoder is at distances, where the uncoded scheme

provides the lowest EC.

The schemes offering the best BER performance are

3MCTC and 4MCTC of Table IV, however they also have

the highest decoding EC Edec
b . As a result, these schemes

provide the lowest overall EC at longer distances, especially,

when compared to the TCTC schemes, which have a slightly

worse BER performance.

The authors of [4] refer to the point at which using an error

correcting code becomes beneficial over uncoded transmission

as the critical distance dcr. This can be expressed as follows

Etx,e
b (dcr) + Emod,e

b + Edem,e
b + Edec

b + Eenc
b

=Etx,u
b (dcr) + Emod,u

b + Edem,u
b (16)

where Etx,u
b (dcr) is the transmission EC of the uncoded

scheme at the critical distance, Etx,e
b (dcr) is the transmission

EC of the coded scheme at the critical distance, and Emod,e
b ,

Edem,e
b and Emod,u

b , Edem,u
b are the energy consumptions

for the respective encoded and uncoded modulator and de-

modulator components. The critical distance depends on the

particular error correction code used, as well as on all of the

other factors shown in Table III. Figure 19 shows how the

critical distance varies both with the carrier frequency and

with the path loss coefficient p for a variety of schemes.

The case study of [76] offers a simple example for demon-

strating the philosophy of the proposed holistic design method.

Naturally, numerous idealized simplifying assumptions of the



18

3MCTC, 8 iterations, Max*
4MCTC, 8 iterations, Max*
TCTC, 8 iterations, Max-ES

TCTC, 4 iterations, Max

p = 4

p = 3

Frequency (GHz)

C
ri
ti
ca
l
D
is
ta
n
ce

(m
)

1010.1

104

103

102

101

Fig. 19. Critical distances for path loss exponents of p=3 and p=4

environment and of the WSN specifications had to be stip-

ulated here for avoiding distraction from the holistic design

methodology. As a benefit, the design methodologies discussed

here are capable of assisting the designer in holistically

optimizing a TC design by considering numerous different

design aspects. For example, apart from the basic parameters

of TC schemes that were considered in our example, the

longest block length N of a TC determines both the memory

requirement of the hardware implementation. The number of

decoding iterations performed has a significant effect on both

the BER performance and on the decoding EC. Additionally,

the number of hops employed in a multi-hop network deter-

mines the average transmission range and the sensor densities.

All of these aspects directly affect both the transmission EC

and the decoding EC. As a result, these design methods can

be used for optimizing a wide variety of related specifications

for improving the system’s energy efficiency.

VI. CONCLUSIONS AND DESIGN GUIDELINES

In conclusion, energy-constrained scenarios such as WSNs

and the IoT constitute emerging applications for TCs, where

they can be employed for reducing the overall EC of commu-

nication systems. To achieve this goal, new design methodolo-

gies are required for TCs, which consider the EC throughout

the entire design process. The key issue is to ensure that the

potentially high-complexity turbo decoder has only a moderate

EC Edec
b , while also reducing the transmission energy Etx

b .

By achieving this goal, a holistically-considered overall EC

(Etx
b +Edec

b +Eenc
b +Emod

b +Edem
b ) can be realized. In this

tutorial, the parameters of TCs were detailed and turbo decoder

architecture design techniques were presented, particularly

for the case of TCs specifically designed for reducing the

EC of the decoder, without impacting the error correcting

performance. Furthermore, energy estimation methods were

conceived for estimating Edec
b during an early design stage.

Based on these three topics, holistic TC design methods were

proposed for reducing the overall EC. The selected design

guidelines may be summarized as follows:

• Determine the environmental parameters of the target

scenario, as exemplified in Table III.

• Establish the path loss model, as exemplified by the path

loss model of Section II-C.

• Select the code design candidates, for example the can-

didates shown in Table IV including the specific design

parameters of Table II and the architectural approxima-

tions discussed in Section III.

• Invoke the energy estimation framework of Section IV

for estimating the processing EC Edec
b of the candidates.

• Using BER simulations and the path loss model, estimate

the transmission EC Etx
b of the candidates, as demon-

strated in Section V.

• Compare the overall ECs (Etx
b +Edec

b +Eenc
b +Emod

b +
Edem

b ) to find the most energy-efficient design, as demon-

strated in Section V.

• Implement this most energy efficient design.

Using the discussed holistic design method, a specific design

example was presented. The results demonstrated that the

design methods presented are capable of finding the most

desirable TC design and architectural choices from an energy

efficiency point of view. The conventional approach, which

used the BER and computational complexity derived from the

number of states and decoder activations, could not achieve

this optimal design decision due to its separate consideration

of the architecture and algorithm.

In a communications system there are a wide variety of

conflicting design trade-offs. The holistic design techniques

of this paper allow all of the relevant trade-offs to be consid-

ered together, for the sake of minimizing the overall energy

consumption. In particular, a joint optimization of these trade-

offs can be used for holistically improving the entire system.

REFERENCES

[1] ETSI TS 136 212 LTE; Evolved Universal Terrestrial Radio Access (E-

UTRA); multiplexing and channel coding, V10.2.0 ed., 2011.
[2] IEEE 802.11n-2009 Standard for information technology - telecom-

munications and information exchange between systems - local and

metropolitan area networks - specific requirements - Part 11: wireless

LAN Medium Access Control (MAC) and Physical Layer (PHY), 2009.
[3] “Digital video broadcasting (DVB); framing structure, channel coding

and modulation for satellite services to handheld devices (SH) below 3
GHz,” 2010.

[4] S. L. Howard, C. Schlegel, and K. Iniewski, “Error control coding in
low-power wireless sensor networks: When is ECC energy-efficient?”
EURASIP Journal of Wireless Communications and Networking, Special

Issue: CMOS RF Circuits for Wireless Applications, vol. 2006, Apr., pp.
1–14, 2006.

[5] N. Sadeghi, S. Howard, S. Kasnavi, K. Iniewski, V. Gaudet, and
C. Schlegel, “Analysis of error control code use in ultra-low-power
wireless sensor networks,” in Proceedings of International Symposium

on Circuits and Systems, Island of Kos, 2006, pp. 3558–3561.
[6] M. E. Pellenz, R. D. Souza, and M. Fonseca, “Error control coding in

wireless sensor networks,” Telecommunication Systems, vol. 44, no. 1-2,
pp. 61–68, 2009.

[7] A. Brokalakis and I. Papaefstathiou, “Using hardware-based forward
error correction to reduce the overall energy consumption of WSNs,”
in 2012 IEEE Wireless Communications and Networking Conference

(WCNC). IEEE, April 2012, pp. 2191–2196.
[8] J. Misic, “Enforcing patient privacy in healthcare WSNs using ECC im-

plemented on 802.15.4 beacon enabled clusters,” in Sixth Annual IEEE

International Conference on Pervasive Computing and Communications,
2008.

[9] M. Dermibas, “Wireless sensor networks for monitoring of large public
buildings,” University at Buffalo, Tech. Rep, 2005.



19

[10] V. Potdar, A. Sharif, and E. Chang, “Wireless sensor networks: a survey,”
2009 International Conference on Advanced Information Networking

and Applications Workshops, pp. 636–641, May 2009.
[11] M. R. Yuce, “Implementation of body area networks based on

MICS/WMTS medical bands for healthcare systems,” in IEEE Engi-

neering in Medicine and Biology Society Conference (IEEE EMBC08),
August 2008, pp. 3417–3421.

[12] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” Communications Magazine, IEEE, vol. 40, no. 8,
pp. 102–114, 2002.

[13] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error correcting coding and decoding: Turbo codes,” in Proceedings of

the IEEE International Conference on Communications, vol. 2, Geneva,
Switzerland, 1993, pp. 1064–1070.

[14] C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: turbo-codes,” IEEE Transactions on Communications, vol. 44,
no. 10, pp. 1261–1271, 1996.

[15] IEEE Standard for Local and Metropolitan Area Networks. Part 16: Air

Interface for Fixed Broadband Wireless Access Systems, IEEE 802.16-

2004, IEEE Std., 2004.
[16] C. E. Shannon, “A mathematical theory of communications,” Bell Syst.

Tech. J., vol. 27, pp. 379–423,623–656, 1948.
[17] R. Gallager, “Low-density parity-check codes,” IEEE Transactions on

Information Theory, vol. 8, no. 1, pp. 21–28, January 1962.
[18] L. Hanzo, T. H. Liew, B. L. Yeap, R. Tee, and S. X. Ng, Turbo Coding,

Turbo Equalisation and Space-Time Coding. John Wiley & Sons Inc,
2011.

[19] A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Transactions on Information

Theory, vol. IT-13, pp. 493–497, 1967.
[20] C. Desset, B. Debaillie, V. Giannini, A. Fehske, G. Auer, H. Holtkamp,

W. Wajda, D. Sabella, F. Richter, M. J. Gonzalez, H. Klessig, I. Godor,
M. Olsson, M. A. Imran, A. Ambrosy, and O. Blume, “Flexible power
modeling of LTE base stations,” in 2012 IEEE Wireless Communications

and Networking Conference (WCNC). IEEE, April 2012, pp. 2858–
2862.

[21] T. Limberg, M. Winter, M. Bimberg, R. Klemm, E. Matus, M. B.
Tavares, G. Fettweis, H. Ahlendorf, and P. Robelly, “A fully pro-
grammable 40 GOPS SDR single chip baseband for LTE/WiMAX
terminals,” in ESSCIRC 2008 - 34th European Solid-State Circuits

Conference. IEEE, September 2008, pp. 466–469.
[22] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of

linear codes for minimizing symbol error rate,” IEEE Transactions on

Information Theory, vol. 20, no. 3, pp. 284–287, 1974.
[23] G. Auer, V. Giannini, and C. Desset, “How much energy is needed to

run a wireless network?” Wireless Communications, IEEE, vol. 18, pp.
40–49, 2011.

[24] S. Sugiura and L. Hanzo, “MIMO-aided near-capacity turbo transceivers:
taxonomy and performance versus complexity,” IEEE Communications

Surveys & Tutorials, vol. 14, no. 2, pp. 421–442, 2012.
[25] M. El-Hajjar and L. Hanzo, “EXIT charts for system design and

analysis,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1,
pp. 127–153, 2014.

[26] H. Chen, R. G. Maunder, and L. Hanzo, “A survey and
tutorial on low-complexity turbo coding techniques and a holistic
hybrid ARQ design example,” Jan. 2013. [Online]. Available:
http://eprints.soton.ac.uk/347846/1/Hanzo79.pdf

[27] L. Li, R. G. Maunder, B. M. Al-Hashimi, M. Zwolinski, and
L. Hanzo, “Energy-conscious turbo decoder design: A joint signal
processing and transmit energy reduction approach,” IEEE Transactions

on Vehicular Technology, vol. 62, pp. 3627–3638, 2013. [Online].
Available: http://eprints.soton.ac.uk/344400/

[28] F. Boccardi, R. Heath, A. Lozano, T. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Communications

Magazine, vol. 52, no. 2, pp. 74–80, Feb. 2014.
[29] P. Elias, “Coding for noisy channels,” IRE Int. Convention Record, vol. 3,

no. 4, pp. 37–46, 1955.
[30] D. Tse and P. Viswanath, Fundamentals of wireless communication.

Cambridge: Cambridge University Press, 2005.
[31] V. S. Annapureddy and V. V. Veeravalli, “Gaussian interference net-

works: sum capacity in the low-interference regime and new outer
bounds on the capacity region,” IEEE Transactions on Information

Theory, vol. 55, no. 7, pp. 3032–3050, July 2009.
[32] L. Hanzo, S. X. Ng, T. Keller, and W. T. Webb, Quadrature Amplitude

Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised

and Space-Time Coded OFDM, CDMA and MC-CDMA Systems, 3rd ed.
Wiley-IEEE Press, 2004.

[33] J. Hagenauer, “The turbo principle: Tutorial introduction and state of
the art,” in Proc. International Symposium on Turbo Codes, 1997, pp.
1–11.

[34] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,”
in Proceedings of IEEE International Conference of Communication,
vol. 2, Seattle, WA, USA, 1995, pp. 1009–1013.

[35] L. Hanzo, J. P. Woodard, and P. Robertson, “Turbo decoding and
detection for wireless applications,” in Proceedings of the IEEE, vol. 95,
no. 6, 2007, pp. 1178–1200.

[36] J. Vogt, K. Koors, A. Finger, and G. Fettweis, “Comparison of different
turbo decoder realizations for IMT-2000,” in Seamless Interconnec-

tion for Universal Services. Global Telecommunications Conference.

GLOBECOM’99. (Cat. No.99CH37042), vol. 5. IEEE, 1999, pp. 2704–
2708.

[37] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-optimal
maximum a posteriori algorithms suitable for turbo decoding,” European

Transactions on Telecommunications, vol. 8, no. 2, pp. 119–125, 1997.

[38] C. Schurgers, F. Catthoor, and M. Engels, “Memory optimization of
MAP turbo decoder algorithms,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 9, no. 2, pp. 305–312, 2001.

[39] C.-H. Lin, C.-Y. Chen, E.-J. Chang, and A.-Y. Wu, “A
0.16nJ/bit/iteration 3.38mm2 turbo decoder chip for WiMAX/LTE
standards,” in 13th International Symposium on Integrated Circuits

(ISIC), 2011, pp. 168–171.

[40] Y. Sun and J. R. Cavallaro, “Efficient hardware implementation of a
highly-parallel 3GPP LTE/LTE-advance turbo decoder,” Integration, the

VLSI Journal, vol. 44, no. 4, pp. 305–315, September 2011.

[41] D. Yoge and N. Chandrachoodan, “GPU implementation of a pro-
grammable turbo decoder for software defined radio applications,” 25th

International Conference on VLSI Design (VLSID), pp. 149–154, 2012.

[42] C. Roth, S. Belfanti, C. Benkeser, and Q. Huang, “Efficient parallel
turbo-decoding for high-throughput wireless systems,” IEEE Transac-

tions on Circuits and Systems I: Regular Papers, vol. 61, no. 6, pp.
1824–1835, June 2014.

[43] M. A. Bickerstaff, D. Garrett, T. Prokop, C. Thomas, B. Widdup,
G. Zhou, L. M. Davis, G. Woodward, C. Nicol, and R.-H. Yan, “A
unified turbo/viterbi channel decoder for 3GPP mobile wireless in 0.18-
µm CMOS,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11, pp.
1555–1564, 2002.

[44] M. Bickerstaff, L. Davis, C. Thomas, D. Garrett, and C. Nicol, “A
24Mb/s radix-4 logMAP turbo decoder for 3GPP-HSDPA mobile wire-
less,” in 2003 IEEE International Solid-State Circuits Conference, 2003.

Digest of Technical Papers. ISSCC., vol. 1. Ieee, 2003, pp. 150–484.

[45] F.-M. Li, C.-H. Lin, and A.-Y. Wu, “Unified convolutional/turbo decoder
design using tile-based timing analysis of VA/MAP kernel,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 16,
no. 10, pp. 1063–8210, 2008.

[46] C. Benkeser, A. Burg, T. Cupaiuolo, and Q. Huang, “Design and
optimization of an HSDPA turbo decoder ASIC,” IEEE Journal of Solid-

State Circuits, vol. 44, no. 1, pp. 98–106, 2009.

[47] M. May, T. Ilnseher, N. Wehn, and W. Raab, “A 150Mbit/s 3GPP LTE
turbo code decoder,” pp. 1420–1425, Mar. 2010.

[48] Y. Sun and J. R. Cavallaro, “Efficient hardware implementation of a
highly-parallel 3GPP LTE, LTE-advance turbo decoder,” Integration, the

VLSI Journal, vol. 44, no. 1, pp. 1–11, 2010.

[49] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and
implementation of a parallel turbo-decoder ASIC for 3GPP-LTE,” IEEE

Jouranal of Solid-State Circuits, vol. 46, pp. 8–17, 2011.

[50] L. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “A
low-complexity turbo decoder architecture for energy-efficient wireless
sensor networks,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. PP, no. 99, pp. 1–9, 2011. [Online]. Available:
http://eprints.soton.ac.uk/271820/

[51] C. Studer, S. Fateh, C. Benkeser, and Q. Huang, “Implementation trade-
offs of soft-input soft-output MAP decoders for convolutional codes,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59,
no. 11, pp. 2774–2783, 2012.

[52] T. Ilnseher and F. Kienle, “A 2.15 GBit/s turbo code decoder for LTE
advanced base station applications,” Aug 2012, pp. 21–25.

[53] S. Belfanti, C. Roth, M. Gautschi, C. Benkeser, and Qiuting Huang, “A
1Gbps LTE-advanced turbo-decoder ASIC in 65nm CMOS,” in VLSI

Circuits (VLSIC), 2013 Symposium on, 2013, pp. C284–C285.

[54] J. Chen and J. Hu, “High throughput stochastic turbo decoder based on
low bits computation,” Signal Processing Letters, IEEE, vol. 20, no. 11,
pp. 1098–1101, 2013.



20

[55] Q. T. Dong, M. Arzel, C. Jego, and W. J. Gross, “Stochastic decoding of
turbo codes,” IEEE Transactions on Signal Processing, vol. 58, no. 12,
pp. 6421–6425, Dec. 2010.

[56] D. Vogrig, A. Gerosa, A. Neviani, A. Amat, G. Montorsi, and
S. Benedetto, “A 0.35-m CMOS analog turbo decoder for the 40-bit
rate 1/3 UMTS channel code,” IEEE Journal of Solid-State Circuits,
vol. 40, no. 3, pp. 753–762, Mar. 2005.

[57] V. Gaudet and P. Gulak, “A 13.3-Mb/s 0.35-µm CMOS analog turbo
decoder IC with a configurable interleaver,” IEEE Journal of Solid-State

Circuits, vol. 38, no. 11, pp. 2010–2015, Nov. 2003.
[58] M. Arzel, C. Lahuec, F. Seguin, D. Gnaedig, and M. Jezequel, “Semi-

iterative analog turbo decoding,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 54, no. 6, pp. 1305–1316, June 2007.
[59] S. Devadas and S. Malik, “A survey of optimization techniques targeting

low power VLSI circuits,” in Proceedings of the 32nd ACM/IEEE

conference on Design automation conference - DAC ’95. New York,
New York, USA: ACM Press, January 1995, pp. 242–247.

[60] A. Ghosh, S. Devadas, K. Keutzer, and J. White, “Estimation of
average switching activity in combinational and sequential circuits,” in
Proceedings 29th ACM/IEEE Design Automation Conference. IEEE
Comput. Soc. Press, 1992, pp. 253–259.

[61] T. Karnik, S. Borkar, and V. De, “Sub-90nm technologies: challenges
and opportunities for CAD,” in Proceedings of the 2002 IEEE/ACM

international conference on Computer-aided design - ICCAD ’02. New
York, New York, USA: ACM Press, November 2002, pp. 203–206.

[62] J.-S. Yang, J. Pak, X. Zhao, S. K. Lim, and D. Z. Pan, “Robust clock tree
synthesis with timing yield optimization for 3D-ICs,” in Proceedings of

the 16th Asia and South Pacific Design Automation Conference, IEEE
Press. IEEE Press, Jan. 2011, pp. 621–626.

[63] D. Kim and T. Kwon, “A modified two-step SOVA-based turbo decoder
with a fixed scaling factor,” Circuits and Systems, 2000. Proceedings.

ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, 2000.
[64] J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,”

Electronics letters, vol. 36, pp. 1937–1939, 2000.
[65] M. van Dijk, “Correcting systematic mismatches in computed log-

likelihood ratios,” European Transactions on Telecommunications,
vol. 14, pp. 227–244, 2003.

[66] Y. Cao, H. Tomiyama, T. Okuma, and H. Yasuura, “Data memory de-
sign considering effective bitwidth for low-energy embedded systems,”
Proceedings of the 15th international symposium on System Synthesis,
2002.

[67] C.-C. Lin, Y.-H. Shih, H.-C. Chang, and C.-Y. Lee, “A low power
turbo/viterbi decoder for 3gpp2 applications,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 14, no. 4, pp. 426–430,
2006.

[68] A. Nimbalker, Y. Blankenship, B. Classon, and T. K. Blankenship,
“ARP and QPP interleavers for LTE turbo coding,” 2008 IEEE Wireless

Communications and Networking Conference, pp. 1032–1037, March
2008.

[69] S. Crozier, P. Guinand, and A. Hunt, “Estimating the minimum dis-
tance of turbo-codes using double and triple impulse methods,” IEEE

Communications Letters, vol. 9, no. 7, pp. 631–633, July 2005.
[70] A. Ardakani, M. Mahdavi, and M. Shabany, “An efficient VLSI archi-

tecture of QPP interleaver/deinterleaver for LTE turbo coding,” in 2013

IEEE International Symposium on Circuits and Systems (ISCAS2013).
IEEE, May 2013, pp. 797–800.

[71] D. E. Thomas, Algorithmic and Register-Transfer Level Synthesis:

The System Architects Workbench: The System Architect’s Workbench.
Springer, 1990.

[72] Taiwan Semiconductor Manufacturing Company, “TSMC 90nm low
power high density synchronous single port with redundancy SRAM
compiler databook,” 2007.

[73] S. Jayaweera, “Virtual MIMO-based cooperative communication for
energy-constrained wireless sensor networks,” IEEE Transactions on

Wireless Communications, vol. 5, no. 5, pp. 984–989, May 2006.
[74] S. Cui, A. Goldsmith, and A. Bahai, “Energy-efficiency of MIMO and

cooperative MIMO techniques in sensor networks,” IEEE Journal on

Selected Areas in Communications, vol. 22, no. 6, pp. 1089–1098, Aug.
2004.

[75] E. Calvanese Strinati and L. Hérault, “Holistic approach for future
energy efficient cellular networks,” e & i Elektrotechnik und Informa-

tionstechnik, vol. 127, no. 11, pp. 314–320, Nov. 2010.
[76] H. Chen, R. G. Maunder, and L. Hanzo, “Low-complexity multiple-

component turbo-decoding-aided hybrid ARQ,” IEEE Transactions on

Vehicular Technology, vol. 60, no. 4, pp. 1571–1577, May 2011.
[77] R. Demo Souza, M. Pellenz, and T. Rodrigues, “Hybrid ARQ scheme

based on recursive convolutional codes and turbo decoding,” IEEE

Transactions on Communications, vol. 57, no. 2, pp. 315–318, February
2009.

[78] A. Wong, M. Dawkins, G. Devita, N. Kasparidis, A. Katsiamis, O. King,
F. Lauria, J. Schiff, and A. Burdett, “A 1V 5mA multimode IEEE
802.15.6/bluetooth low-energy WBAN transceiver for biotelemetry ap-
plications,” in 2012 IEEE International Solid-State Circuits Conference.
IEEE, Feb. 2012, pp. 300–302.

[79] D. Divsalar, H. Jin, and R. J. McEliece, “Coding theorems for turbo-
like codes,” in Proceeding of 36th Allerton Conf. on Communication,

Control and Computing, Allerton, Illinois, 1998, pp. 201–210.
[80] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”

SIAM Journal of Applied Math, vol. 8, pp. 300–304, 1960.
[81] K. S. Andrews, D. Divsalar, S. Dolinar, J. Hamkins, C. R. Jones, and

F. Pollara, “The development of turbo and LDPC codes for deep-space
applications,” Proceedings of the IEEE, vol. 95, no. 11, pp. 2142–2156,
Nov. 2007.

[82] K. Narayanan and G. Stuber, “A novel ARQ technique using the turbo
coding principle,” IEEE Communications Letters, vol. 1, pp. 49–51,
1997.

[83] B. Sklar, “Rayleigh fading channels in mobile digital communication
systems .I. Characterization,” IEEE Communications Magazine, vol. 35,
no. 7, pp. 90–100, July 1997.

[84] L. Li, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo, “An
energy-efficient error correction scheme for IEEE 802.15. 4 wireless
sensor networks,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 57, no. 3, pp. 233–237, 2010. [Online]. Available:
http://eprints.soton.ac.uk/267462/

Matthew F. Brejza recieved a first class honors
BEng in Electronic Engeering from the University
of Southampton, UK, in July 2012, where he is
currently working toward the Ph.D. degree with the
Communications Research Group, School of Elec-
tronics and Computer Science. His research interests
include flexible hardware implementation, channel
coding and their applications in low power data
communications.

Liang Li received his B.S. degree in Mircoelectron-
ics from Peking University, Beijing, China, in 2006
and his M.Sc. degree from University of Southamp-
ton, Uk, in 2008. He has joined the Communication
Research Group, University of Southampton since
2008 to do study energy-efficient hardware archi-
tectures for turbo or LDPC codes and received his
Ph.D, degree in 2012. He is currently working in
Cirrus Logic Inc. focusing on low-power audio chip
design for mobile devices.

Robert G. Maunder has studied with Electronics
and Computer Science, University of Southampton,
UK, since October 2000. He was awarded a first
class honors BEng in Electronic Engineering in July
2003, as well as a PhD in Wireless Communications
in December 2007. He became a lecturer in 2007
and an Associated Professor in 2013. Rob’s re-
search interests include joint source/channel coding,
iterative decoding, irregular coding and modulation
techniques. For further information on this research,
please refer to http://users.ecs.soton.ac.uk/rm.



21

Bashir M. Al-Hashimi is an ARM Professor of
Computer Engineering and Dean of the Faculty of
Physical Sciences and Engineering, University of
Southampton. In 2009, he was elected fellow of the
IEEE for significant contributions to the design and
test of low-power circuits and systems. He holds
a Royal Society Wolfson Research Merit Award
(2014-2019). He has published over 300 technical
papers, authored or co-authored 5 books and has
graduated 31 PhD students.

Claude Berrou (F’09) is a Professor at Telecom
Bretagne (Institut Mines-Telecom), Brest, France.
In the early 90’s, he introduced the concept of
probabilistic feedback into error correcting decoders
(in collaboration with Prof. Glavieux) and developed
a new family of quasi-optimal error correction codes,
that he nicknamed turbo codes. He also pioneered
the extension of the turbo principle to joint de-
tection and decoding processing, known today as
turbo detection and turbo equalization. His current
research interest is computational intelligence in the

light of information theory. Prof. Berrou has received several distinctions,
amongst which the 1998 IEEE (Information Theory) Golden Jubilee Award
for Technological Innovation, the 2003 IEEE Richard W. Hamming medal,
the 2003 Grand Prix France Telecom de l’Acadmie des sciences and the
2005 Marconi Prize. He has been elected a member of the French Academy
of sciences in 2007.

Lajos Hanzo (http://www-mobile.ecs.soton.ac.uk)
FREng, FIEEE, FIET, Fellow of EURASIP, DSc
received his degree in electronics in 1976 and
his doctorate in 1983. In 2009 he was awarded
the honorary doctorate “Doctor Honoris Causa” by
the Technical University of Budapest. During his
38-year career in telecommunications he has held
various research and academic posts in Hungary,
Germany and the UK. Since 1986 he has been with
the School of Electronics and Computer Science,
University of Southampton, UK, where he holds

the chair in telecommunications. He has successfully supervised about 100
PhD students, co-authored 20 John Wiley/IEEE Press books on mobile radio
communications totalling in excess of 10 000 pages, published 1400+ research
entries at IEEE Xplore, acted both as TPC and General Chair of IEEE
conferences, presented keynote lectures and has been awarded a number of
distinctions. Currently he is directing a 100-strong academic research team,
working on a range of research projects in the field of wireless multimedia
communications sponsored by industry, the Engineering and Physical Sciences
Research Council (EPSRC) UK, the European Research Council’s Advanced
Fellow Grant and the Royal Society’s Wolfson Research Merit Award. He is
an enthusiastic supporter of industrial and academic liaison and he offers a
range of industrial courses. He is also a Governor of the IEEE VTS. During
2008 - 2012 he was the Editor-in-Chief of the IEEE Press and a Chaired
Professor also at Tsinghua University, Beijing. His research is funded by
the European Research Council’s Senior Research Fellow Grant. For further
information on research in progress and associated publications please refer
to http://www-mobile.ecs.soton.ac.uk Lajos has 22 000+ citations.


