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Abstract

Reservoir Computing (RC) techniques use a fixed (usually randomly created) recur-
rent neural network, or more generally any dynamic system, which operates at the
edge of stability, where only a linear static readout layer is trained. In this work,
RC is used for detecting complex events in autonomous robot navigation. This can
be extended to robot localization which is solely based on low-range, high-noise
sensory data. The robot thus builds an implicit map of the environment. These
techniques are demonstrated in both a simple simulation environment and in the
physically realistic Webots simulation of the commercially available e-puck robot,
using several complex and even dynamic environments.
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1 Introduction

Autonomous robot navigation systems have been extensively developed in the
literature [1–3]. Early navigation strategies are either deliberative (generation
of robot trajectories based on path planning) or reactive (robot control based
on a direct mapping of sensory input to actions). Current state-of-the-art au-
tonomous robot control architectures are hybrid [1]: they have an underlying
reactive controller which takes care of the real-time basic behaviors such as ob-
stacle avoidance; while an upper deliberative control layer steers this reactive
part for performing declarative high level tasks such as planning. Information
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flow in this architecture is both downwards, from abstract deliberative tasks
to concrete physical reactive behaviors, and upwards, from physical data to
abstract symbols used for deliberative planning.

This paper investigates two cases of upward information flow: a system for
recognizing complex events in particular environments (such as detecting if the
robot goes through a door); and a system for determining the current robot
location. Both are based solely on low-range, high-noise sensory information,
typically found in small and cheap mobile robots. Both tasks are achieved
using the same setup.

These tasks have been shown to be difficult [4]. Traditional algorithms based
on the Simultaneous Localization and Mapping (SLAM) concept are expensive
to implement due to high computational and memory demands and also hold
uncertainties during the calculation of the robot’s pose [4]. They usually need
high precision ranging data from, for example, a 2D laser range scanner. These
devices are currently still very expensive, consume a lot of power, and cannot
be applied in small robots. Cheap, small and lightweight robots that have a
high battery autonomy will thus not be able to use a SLAM based approach.
These robot platform usually only have access to a limited number of ranging
sensors which are low range and have high noise.

This work uses an implicit way of forming a representation of the robot’s envi-
ronment that is based on a Recurrent Neural Network (RNN), more specifically
using Reservoir Computing (RC). This is a term that groups three similar com-
puting techniques, namely, Echo State Networks [5], Liquid State Machines
[6], and BackPropagation DeCorrelation [7]. All three techniques are charac-
terized by having a fixed (usually random) RNN that is used as a reservoir of
rich dynamics and a linear static readout output layer. Only the readout layer
is trained by supervised learning, while the recurrent part of the network (the
so called reservoir) has fixed weights, but is scaled so that its dynamic regime
is at the edge of stability. Theoretical analysis of reservoir computing meth-
ods [8] and a broad range of applications [9] (which sometimes even drastically
outperform the current state-of-the-art [10]) show that RC is very powerful
and overcomes many of the problems of traditional RNN training such as slow
convergence, bifurcations and high computational requirements.

The short-term memory, present in these networks, is crucial for solving the
event detection and localization tasks. It is not only the instantaneous sensory
inputs that are needed to solve the tasks, but also the sensory history [11] and
dynamics.

It has already been shown in [12] that RC can be used to detect events in an
autonomous robot setting. This work extends these results by also considering
dynamic environments for event detection, and goes largely beyond that work
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by using it to construct implicit maps of the environment for robot localization.

The idea of employing a neural network as a localization model for the robot
is also inspired by biological systems. Experiments accomplished on rats show
that the hippocampus forms activation patterns that are associated with loca-
tions visited by the rat. These so called place cells encode the spatial location
of the animal into its environment. They fire when the animal is in a particular
location [13]. A similar approach is used in this work where distinct outputs
are used to encode specific locations in the environment.

The experiments in this work 2 are performed using both a simple simulator
developed by [2] and the physically realistic Webots [15] simulation of an e-
puck robot [16]. The datasets generated by these simulators are used to train a
RC system to detect events as well as to predict the robot location in several
complex and dynamic environments. The training is done in a supervised
fashion, but we plan to develop an autonomous and on-line way of learning
novel locations as the robot drives in its environment (resembling the place
cells in biological systems).

This work is organized as follows. In Section 2 we give an overview of the
RC setup used in this work. Section 3 presents the two different robot models
and simulators used in the experiments. The experimental results for event
detection and robot localization are presented in Section 4 and 5 respectively.
We conclude and present future research directions in Section 6.

2 Reservoir computing

In this work, we use the Echo State Network approach as learning model for
performing event detection as well as robot localization. An ESN is composed
of a discrete hyperbolic-tangent RNN (i.e., the reservoir) and a linear readout
output layer which maps the reservoir states to the desired output. The general
state update equation for the nodes in the reservoir and the readout output
equation are as follows:

x(t + 1) = f
(

Wres
resx(t) + Wres

inpu(t) + Wres
outy(t) + Wres

bias

)

(1)

y(t + 1) =Wout
res x(t + 1) + Wout

inpu(t) + Wout
outy(t) + Wout

bias (2)

where: u(t) denotes the input at time t; x(t) represents the reservoir state;
y(t) is the output; and f() = tanh() is the hyperbolic tangent activation func-
tion. The initial state is set to x(0) = 0. All weight matrices to the reservoir

2 This paper is an extended version of [14] which was presented at ICANN 2007.
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Fig. 1. Reservoir Computing network. The reservoir is a dynamical system of recur-
rent nodes. Solid lines represent connections which are fixed. Dashed lines are the
connections which can be trained.

(denoted as Wres
·

) are initialized randomly (represented by solid arrows in
Fig. 1), while all connections to the output (denoted as Wout

·
) are trained

(represented by dashed arrows in Fig. 1).

However, for the experiments in this work, we discard the readout’s output
feedback to the reservoir and we add a leak rate α as in [17] to the state
update equation:

x(t + 1) = f
(

(1 − α)x(t) + α(Wres
resx(t) + Wres

inpu(t) + Wres
bias)

)

. (3)

The output calculation gets simpler once we do not use the direct connections
from input to output neither the connections from output to output:

y(t + 1) = Wout
res x(t + 1) + Wout

bias. (4)

The leak rate can effectively tune the dynamics of the reservoir. If the leak
rate is chosen correctly, the reservoir dynamics can be adjusted to match
the timescale of the input flow, making it possible to achieve enhanced perfor-
mance (this can also be achieved by resampling the input [18,14]). In this work,
some experiments use 3 pools of neurons in the reservoir with distinct leak
rates to achieve better performance. Further investigation about timescales in
reservoirs and leaky integrator neurons can be found in [17,18].

Each element of the connection matrix Wres
res is drawn from a normal distribu-

tion with mean 0 and variance 1. For most applications, the best performance
is attained with a reservoir that operates at the edge of stability. The randomly
created Wres

res matrix is rescaled such that the system is stable. This can be
accomplished by rescaling the matrix so that the spectral radius (the largest
absolute eigenvalue) of the linearized system is slightly smaller than one [8]. In
this work we scale all reservoirs to a spectral radius of of |λmax| = 0.9 which is
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near optimal for most experiments, but the value of the spectral radius could
be further optimized for each experiment separately.

Training is performed using either linear regression (least squares method)
or ridge regression [19]. In the latter, the regularization parameter is found
by grid search on a validation set. The computational efforts for training are
related to computing the transpose of a matrix and matrix inversion. It takes
just a few seconds to train a RC network for the experiments in this work on
an Intel Core2 Duo processor-based system. Once trained, the resulting RC-
based system can be used for real-time operation on moderate hardware since
the computations are very fast (only matrix multiplications of small matrices).

For the supervised training of Wout
res , we use fisher labeling[20] to get enhanced

classification performance. Let Ŷ be a matrix containing the desired outputs
where each line represents one output (+1 and −1) over time. As the number
of positive desired outputs might be different from the number of negative
desired outputs in each line, each element ŷi(t) of the i-th line ŷi of Ŷ is
rescaled so that the whole line ŷi sums up to 0:

ŷi
fish(t) =











ni

+
+ni

−

ni

+

if ŷi(t) > 0

−
ni

+
+ni

−

ni

−

if ŷi(t) < 0
, (5)

where ni
+ = |{ŷi(t)|ŷi(t) > 0}| and ni

−
= |{ŷi(t)|ŷi(t) < 0}| denote the number

of positive and negative required outputs in the i-th line of Ŷ, respectively.

In the rest of this paper, we consider the following notations:

ni : number of inputs

nr : number of neurons in the reservoir

no : number of outputs

dt : downsampling rate of the dataset

nf : number of folds used in the cross-validation

α1, α2, α3: leak rates for each neural pool in the reservoir

3 Robot Models

We use two robot models in the following experiments. Their respective simu-
lation environments generate the data necessary for training the RC networks.
The first model is part of the 2D SINAR simulator [2] and is described next.
The environment of the robot is composed of several objects, each one of a
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Fig. 2. Robot models used in the experiments. (a): robot model from SINAR simu-
lator. (b): e-puck robot model.

particular color. Obstacles are represented by blue objects whereas targets are
given by yellow objects. The robot model is shown in Fig. 2(a) . The robot
interacts with the environment by distance and color sensors; and by one actu-
ator which controls the movement direction (turning). Seventeen (17) sensor
positions are distributed uniformly over the front of the robot (from -90◦ to
+90◦). Each position holds two virtual sensors (for distance and color per-
ception) [2]. The distance sensors are limited in range (i.e., they saturate for
distances greater than 300 distance units (d.u.)) and are noisy (they exhibit
Gaussian noise on their readings, generated from N(0, 60) in d.u.). A value
of 0 means near some object and a value of 1 means far or nothing detected.
At each iteration the robot is able to execute a direction adjustment to the
left or to the right in the range [0, 15] degrees and the speed is constant (0.28
distance units (d.u.)/s).

The second model is the e-puck robot model [16]. We use the Webots simula-
tion environment [15] for data generation which provides a physics model of
the e-puck robot. The model is shown in Fig. 2(b). It has a 7 cm diameter. The
e-puck is equipped with 8 infra-red sensors which measure ambient light and
proximity of obstacles in a range of 4 cm originally. However, we change this
range value in the simulator to 5 cm (for event detection experiments) and
15 cm (for robot localization experiments) in order to provide sufficient rich
data for learning the respective tasks. This can be achieved by adding cheap
infra-red range sensors to the real e-puck robot via an extension module. The
actuators of the robot are 2 stepper motors and we limit its velocity to [0.6, 3]
cm/s.

A comparison between both robot models is shown in Table 1. The robots
from both models explore their environments according to specific controllers.
The controller for the SINAR model (based on [2]) is a reactive system made of
hierarchical neural networks which learn by interaction with the environment.
Only already trained robot controllers, which all show very good exploratory
behavior after training, are used for generating data. The controller for the
e-puck model is made of a simple algorithm which follows predefined points
from a trajectory in the environment. The robot speed for the event detection
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task is set to either 0.63 cm/s or 1.25 cm/s depending on the proximity of
obstacles (it can be 3 cm/s, 1.25 cm/s or 0.63 cm/s for the localization task).

The data from distance sensors and actuators collected from the robot simu-
lator are used to train and test RC networks in a Matlab environment using
the RCT Toolbox 3 [9].

4 Event Detection for Mobile Robots

Event detection in noisy environments is not a trivial task. There can be very
similar scenes from the robot’s perspective so that precise event detection
becomes very difficult to accomplish [8]. The goal here is to achieve efficient
event detection using reservoir computing. The detection of events from raw
sensory data is much related to the so called symbol grounding problem (or
anchoring) in robotics [21]. Several applications are appealing in this context
once deliberative robotic systems can benefit in several ways from efficient
meaning extraction from sensory data [22–24].

Two experiments are conducted for the event detection task. The environments
used for SINAR and e-puck are shown in Fig. 3(b) and Fig. 3(c), respectively.
The first environment is composed of a large (blue) corridor with a (yellow)
target at each end (they appear as dark and light gray objects in black and
white format). During simulation, the robot keeps navigating through the
corridor and capturing the targets (that are sequentially put back in the same
location). A blinking object located in the middle of the corridor (with random
blink interval) can force the robot to change direction by blocking its way. In
the second environment, the e-puck robot follows a predefined trajectory which
continually visits the entire environment. Its trajectory can be changed when
it reaches the middle of the environment (dotted line in Fig. 3(c)) with a

3 This is an open-source Matlab toolbox for Reservoir Computing which is freely
available at http://www.elis.ugent.be/rct

Table 1
Robot models

SINAR model e-puck model

No. Dist. Sensors 17 8

Range of Dist. Sens. 300 d.u. 5 cm or 15 cm

Noise on sensors N(0,60 d.u.) 30%

Speed 0.28 d.u. 3 cm/s, 1.25 cm/s or 0.63 cm/s

Physics model no yes
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(a) Definition of the 4 events (b) SINAR environment E1

(c) e-puck environment P1

Fig. 3. Environments used for the event detection task. (a) Four events are labeled
and shown graphically (by arrows). (b) SINAR environment with a blinking obstacle
in the middle of the corridor, indicated by an arrow. A typical robot trajectory (after
controller learning) can be seen in the figure. Two boxes in the environment are used
as targets for the robot. (c) e-puck simulation environment (the 4 events are defined
similarly). The dotted line represents a decision point which makes the robot cross
the line or go back with equal probabilities.

probability of 50%.

There are four possible events of predefined duration and location, which are
labeled in Fig. 3(a). The interpretation should be: when the robot passes
through a predefined location with a specific heading, an event should be
detected (e.g. entering the corridor corner area, passing through the middle of
the corridor).

Experiment 1 is accomplished considering the SINAR environment E1 and
experiment 2 takes place in the e-puck environment P1. Experiments 1 and 2
have 126.000 and 120.000 timesteps of simulation time, respectively. Parameter
configuration for both experiments are shown in Table 2).

In order to match the dynamics of the sensory input to the temporal dynam-
ics of the reservoir, we make use of both data downsampling (dt) and leak
rate (α) in the reservoir. Although resampling and leak rate are considered
equivalent [17], it seems that the combination of both methods yields superior

Table 2
Parameter configuration for event detection

Model ni no dt α nr nf Wres
inp Training

SINAR 18 4 20 0.6 800 7 {±0.2, 0} Ridge regression

e-puck 10 4 15 0.8 800 8 {±0.2, 0} Ridge regression
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performance (as it will be shown in the results) by more finely adjusting the
temporal dynamics of the reservoir to the input signal’s dynamics. The value
of the parameters dt and α was optimized by performing a grid search (the
combination of parameters with highest test performance was chosen).

The inputs to the network for the SINAR model are 17 distance sensors and
1 robot actuator (direction adjustment) while for the e-puck model the inputs
are composed of 8 sensors and 2 motor actuators. The reservoir size is 800
neurons for all experiments in this work, although smaller reservoirs (e.g., 200
or 400 nodes) can already perform very good. The readout layer has 4 output
units (one for each event detector) which are postprocessed by a winner-take-
all function. This function sets the output of the most activated neuron to
1 whereas the others are set to −1. Note that if all the readouts output a
negative value, then the winner-take-all function set every output to −1 (this
means no event is detected). The connection matrix from input to the reservoir
(Wres

inp) is initialized to -0.2, 0.2 and 0 with probabilities 0.15, 0.15 and 0.7,
respectively. This parameter setting for weight matrices are not critical for the
tasks in this work.

The performance measure considers the number of correctly predicted ob-
servations and uses a 7-fold (8-fold) cross-validation method for the SINAR
model (e-puck). It is important to note that if the dataset is resampled, then
the output of the network is upsampled to the original sampling rate of the
dataset so that the performance is correctly calculated (differently from [14]).
Additionally we also calculate the percentage of correctly detected events for
each of the 4 possible events separately.

The results are shown in Fig. 4. For both robot models, a RC network per-
forms very good by achieving 95.4% and 93.1% of classification performance
on test data. Although the events in the run are not periodic, the 4 classes
of events are correctly detected during all the simulation, with few mispredic-
tions. Most of the errors are explained by the temporal resolution of the RC-
based detector, that is, the reservoir is sometimes not accurate enough in the
very beginning/end of an event (i.e., in the temporal boundary of events). This
problem has to do with the downsampling of the input signal (for matching
the reservoir dynamics) which is upsampled for performance measure. So, part
of the temporal resolution is lost in this process of downsampling/upsampling.
First investigations on reservoirs using only leak rate (without resampling the
input) yield equivalent temporal resolution, showing that it is difficult to get
perfect temporal resolution.

In Fig. 5, we can see how the downsampling rate of the dataset (dt) and reser-
voir size influence the test performance on the event detection task using the
e-puck robot model. If a dataset is downsampled by dt = 10, for instance, the
resulting dataset will be 1/10 smaller than the original one, effectively slowing
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(b) Event detection using e-puck model

Fig. 4. Event detection performed by RC network. The gray solid line represents
the actual event whereas the black points are the predicted events. Mispredictions
are marked with circles. (a) Using SINAR simulation model (performance of 95.4 %
on this test data) (b) Event detection using e-puck simulation model (performance
of 93.1 % on this test data).

Table 3
Results for event detection

Model Timesteps Train Perf. Test Perf. Perf. Events 1, 2, 3 and 4 resp.

SINAR 126 K 94.7 % 93.2 % 95.5% 95.6% 100% 99.6%

e-puck 120 K 93.2 % 92.3 % 86.9% 97.2% 96.7% 82.6%

down the input signal. Fig. 5 shows that a downsampling of 15 timesteps is
the optimal choice. It is possible to observe that when dt is bigger than 30
timesteps, as the downsampling rate increases the performance deteriorates.
The figure also shows that bigger reservoirs (with more neurons) have more
memory (while require less resampling), thus increasing performance.

Statistics on experiments 1 and 2 are given in Table 3. Each experiment is
evaluated 30 times with different stochastically generated reservoirs and the
results are averaged over these 30 runs. The table shows that the results are
consistent, with 93.2% and 92.3% of performance on test data for SINAR and
e-puck models, respectively.
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Fig. 5. Resampling rate and reservoir size vs. test performance. Each point of the
plot is the mean performance (correct classifications) over 30 runs for the event
detection task using the e-puck robot model.

5 Robot Localization

The previous section has shown that an RC network can be used to detect
complex events in robot navigation with good performance. Now this section
extends the experiments to robot localization. Instead of only detecting events,
we want to predict the current location of the robot based on the same kind of
sensory information (giving rise to a more difficult and interesting problem).

Localization (or position detection) for mobile robots is usually computation-
ally expensive in terms of space and time requirements [4]. Traditional algo-
rithms are based on explicit maps which must be constructed before robot
localization is possible. This section shows how a reservoir can be used for
robot localization. Similar work which uses a Long-Short Term Memory RNN
for this task is described in [25]. In this section, we show that localization is
achieved considering two abstract concepts: locations and rooms (in [25], only
rooms are considered).

The first investigations were made with the SINAR model. Two maze-like en-
vironments are used for the robot localization task (see Fig. 6). The first envi-
ronment contains 64 predefined locations, that are displayed by small triangles
labeled by numbers. The second environment has 29 locations distributed in
a symmetric map.

The parameter configuration used for the following experiments is shown in
Table 4. The size of the readout output layer (no) is equivalent to the num-
ber of predefined locations in the environment. The postprocessing function
for the readout units is the winner-take-all function which always takes the
most activated neuron and set it to 1 (the others are set to −1). So, there is
always a predicted location (in contrast to the no event detected situation in
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(a) SINAR Environment E2

(b) SINAR Environment E3

Fig. 6. Environments used for the experiments. The first environment is tagged
with 64 labels displayed by small triangles. The second environment has 29 labels
distributed through very similar areas.

previous section). The connection matrix from input to the reservoir (Wres
inp)

is initialized to -0.1, 0.1 and 0 for SINAR model (-0.9, 0.9 and 0 for e-puck)
with probabilities 0.15, 0.15 and 0.7, respectively.

Experiment 3 is accomplished with the first environment from Fig. 6 and lasts
180.000 timesteps. The resulting robot occupancy grid can be seen in Fig. 7(a):
it shows that the reservoir is predicting the robot location very well (the per-
formance is 91.6% on test data), with very few mispredictions. Experiment
4 uses the same environment E2 with 11 additional slow moving obstacles
distributed throughout the environment. These dynamic objects change the
robot’s behavior and also add more noise to sensor readings. The simulation
has 180.000 timesteps. The respective occupancy grid in Fig. 7(b) shows that
the reservoir is correct in most of the predictions (81.1 %). Some of the mis-
predictions are located a bit further from the actual position, due to the new
source of dynamics and noise, although they generally tend to be very short.

Experiment 5, accomplished in environment E3 (Fig. 6(b)), represents a new
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Table 4
Parameter configuration for localization

Model ni no dt α1 α2 α3 nr nf Wres
inp Training

SINAR 18 {64,29} 50 0.6 – – 800 3 {±0.1, 0} Least Sq.

e-puckloc 10 30 10 0.05 0.8 1 800 7 {±0.9, 0} Rid.regr.

e-puckroom 10 4 20 0.05 0.8 1 800 5 {±0.9, 0} Rid.regr.

challenge for the reservoir-based position detector: the environment has several
symmetries and identical areas. For instance, going from position 27 to 26
looks identical to the robot as going from position 22 to 24. The simulation
has 150.000 timesteps. The resulting occupancy grid in Fig. 7 shows an efficient
position detector, featuring a performance of 89.1 % of correct predictions on
test data.

The following experiments are done with the e-puck robot model. The envi-
ronment used is shown in Fig 8(a). It is composed of 4 big rooms with doors
connecting them. Fig 8(b) shows 30 points distributed in the map which are
connected by lines representing possible robot paths between them. When the
robot reaches a point which can lead to 2 other possible points, the robot
controller decides to choose one of the points with equal probabilities. In this
way, the robot may stay in room 3 for varying periods of time in the same
run, for instance. The localization task is to detect which one of the 30 points
the robot is most close to. The room detection task uses the map in Fig 8(c)
which shows the boundaries dividing the rooms.

The parameter configuration for both location and room detection is shown
in Table 4. The experiments with the e-puck consider 3 neural pools in the
reservoir, each with distinct leak rates (α1, α2, α3). This feature makes the
reservoir work in several timescales, thus, making it more efficient when the
task considers a robot with a varying speed (in our case, the robot can have
3 different velocities). The results in Fig. 9 show that the test performance
reaches 84% of correct classification when 3 distinct leak rates are used, an
increase of at least 6% compared to the experiment with no leak considered
(several mispredictions present in Fig. 9(a) are removed by the new setup in
Fig. 9(b)).

A summary of the localization experiments with associated results are shown
in Table 5. This table presents additional results from experiments considering
only dataset resampling (without the use of leak rates) so that we can reli-
ably draw conclusions. Each experiment is evaluated 30 times with different
stochastically generated reservoirs and the results are averaged over these 30
runs. We can observe that the use of leak rates yields the greatest increases
in performance for the experiments with the SINAR model in environment
E2mov(with moving obstacles) and with the e-puck robot (in this case, 3 neu-
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(b) Location Detection (E2 with 11 moving obstacles)
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(c) Location Detection (E3)

Fig. 7. Robot occupancy grids showing the predicted location (on test data, that is
1/3 of the total data) and the actual robot positions (solid gray line). Mispredicted
locations are represented by a circle. (a) Experiment in environment E2 (test per-
formance of 91.6% of correct detection). (b) Experiment in environment E2 with 11
slow moving obstacles (test performance of 81.1% of correct detection). (c) Experi-
ment in environment E3 (test performance of 89.1% of correct detection).

ral pools of distinct leak rates).

Room detection can also be achieved in a similar way. The results are shown
in Fig. 10 using the configuration from Table 4. The RC-based room detector
is very efficient during more than 7000 timesteps: it shows a performance
of 93.6% on test data. There are few mispredictions, and most of them are
located in the temporal boundaries between one room and the next one, which
is a result from the downsampling/upsampling artifact. Table 6 shows the
statistics for the room detection task. Each one of the rooms are correctly
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(a) Environment for e-puck (P2)

(b) Map for Location detection (c) Map for Room detection

Fig. 8. Environment used for localization experiments with the e-puck robot model.
(a): the environment used. (b) the map of the environment with the locations to be
detected. (c) the map of the environment showing the 4 rooms to be detected and
the robot exploring trajectory.

Table 5
Results for location detection

Model (Env) Leak Timesteps Train Perf. Test Perf. Std Test

SINAR (E2) no 180 K 94.0 % 89.2 % 0.4%

SINAR (E2) yes(1) 180 K 94.3 % 90.7 % 0.1%

SINAR (E3) no 150 K 94.4 % 88.6 % 0.3%

SINAR (E3) yes(1) 150 K 94.4 % 89.1 % 0.3%

SINAR (E2mov) no 180 K 93.0 % 76.0 % 0.7%

SINAR (E2mov) yes(1) 180 K 94.2 % 79.1 % 0.5%

e-puck no 40 K 87.2 % 78.9 % 0.4%

e-puck yes(3) 40 K 90.4 % 85.1 % 0.5%

detected by a rate of at least 91%.

Experiments only considering distance sensors (removing actuator) result in
similar performance reported for the previous experiments in this section. The
reservoir network also copes with the kidnapping situation (also reported in
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(b) 3 neural pools of distinct leak rates

Fig. 9. Location detection performed by a RC network (e-puck). (a) A normal
reservoir gives a performance of 77.7 % on test data (b): A reservoir containing 3
neural pools of distinct leak rates yields a performance of 84 % (test data). The gray
solid line represents the actual location whereas the black points are the predicted
location. Mispredictions are marked with circles.
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Fig. 10. Room detection performed by a RC network (e-puck). The points in the
plot (rooms) are correctly detected with a rate of 93.6 % (test data). The gray solid
line represents the actual room whereas the black points are the predicted room.
Mispredictions are marked with circles.

Table 6
Results for room detection

Model Timesteps Train Perf. Test Perf. Perf. Rooms 1, 2, 3 and 4 resp.

e-puck 39 K 97.2 % 93.1 % 95.4% 91.5% 91.8% 93.1%

[25]). In a new experiment using environment E2, the robot is replaced from
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Fig. 11. Occupancy grid after kidnapping the robot in environment E2 of Fig. 6. The
solid gray line represents the actual robot position. Correct predictions are given
by black points while wrong predictions are marked with circles. The predictions of
the RC network are labeled with numbers after the robot is kidnapped. (a) At time
step 9551, the robot is moved from position 34 to position 20. The reservoir network
predicts successfully the current robot position when the robot is in location 16. The
robot visits 2 locations (20 and 17) until the successful prediction. (b) At time step
22951, the robot is moved from position 53 to position 27. The reservoir network
predicts successfully the current robot position when the robot is in location 21.
The robot visits 3 locations (27, 28 and 22) until the successfull prediction.

location 34 to location 20 (see Fig. 11(a)). The network is able to successfully
predict the robot position when the robot reaches location 16. Note that the
predicted locations following the kidnapping are near location 34, as if the
robot kept the original path. After some timesteps, the reservoir realizes it is
actually in location 16, given the history of sensory inputs since the kidnap-
ping. Another example is given in Fig. 11(a), where the robot is kidnapped
from location 53 to location 27. Note that the RC network is not trained for
the kidnapping situation.

6 Discussions

In this work we show that it is possible to detect complex events and perform
robot localization in complex and even dynamic environments using a fixed,
randomly created dynamic system which is processed by a trained linear read-
out layer. Only a limited number of noisy and low range sensors are needed for
building successful RC-based detectors. The proposed system shows very good
performance in difficult environments such as mazes or environments which are
highly symmetric. The detection of events and locations is achieved through
a linear classification of the temporal dynamics existing in the fixed dynamic
system which in turn is completely determined by the anterior stream of the
sensory inputs. Thus, it is the short-term memory capabilities of the random
reservoir and its non-linear projections which allow the system to perform effi-
cient event detection and localization. The actual behaviors driving the robot
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were not used as inputs to the system (as in [12]), but only low-level motor
commands (only distance sensory inputs are sufficient for the tasks however).

When a RC-based system learns to perform robot localization, an implicit
map is formed by the reservoir’s dynamics in combination with the trained
readout. This might seem hard to grasp, but in [26] we showed that we can
run a trained RC-based localization system backwards, and create an explicit
representation of the map that is implicitly stored in the reservoir. The inputs
of the reverse system are locations, and the output are predicted sensor range
measurements. In this way, we can reconstruct the map of the environment by
driving the robot through different locations and recording what the reservoir
has in mind at the respective moment.

We show that event detection and localization works on a physically realistic
simulated robot model. As future work, we plan to implement both techniques
on the real robotic platform, as it is considered the standard and best evalu-
ation method for robotic systems. Furthermore, a deliberative robotic system
can now be constructed so that actual path planning and navigation is ac-
complished based on the information gathered by the RC-based localization
system (e.g. information about events, locations and rooms).

The importance of timescales in reservoir systems was clearly demonstrated in
this work, especially when the robot’s speed is not constant. From an RC view,
we could further improve the performance, for example, by using a so called
bandpass reservoir [27], for example. This idea consists of adding bandpass fil-
ters to the reservoir, making it possible to capture a wide range of timescales
inside a single reservoir. This setup could greatly improve the reservoirs per-
formance on tasks with a wide range of speeds.

Future work also includes the unsupervised detection and generation of loca-
tions, much resembling the creation of place cells in the hippocampus. The
current setup is trained in a completely supervised way. This is not realistic
from the perspective of intelligent autonomous systems. The current technique
can however be combined with approximate dead reckoning and on-line learn-
ing of novel locations to form a truly unsupervised localization and mapping
system.
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