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Abstract 

The dependence of the fracture toughness of two dimensional elasto-plastic lattices upon relative 

density and ductility of cell wall material is obtained for four topologies:  the triangular lattice, kagome 

lattice, diamond lattice, and the hexagonal lattice.  Crack tip fields are explored, including the plastic 

zone size and crack opening displacement.  The cell walls are treated as beams, with a material 

response given by the Ramberg-Osgood law.  There is choice in the criterion for crack advance, and 

two extremes are considered:  (i) the maximum local tensile strain anywhere in the lattice attains the 

failure strain, or (ii) the average tensile strain across the cell wall attains the failure strain (which can 

be identified with the necking strain).  The dependence of macroscopic fracture toughness upon 

failure strain, strain hardening exponent and relative density are obtained for each lattice, and scaling 

laws are derived.  The role of imperfections in degrading the fracture toughness is assessed by random 

movement of the nodes.  The paper provides a strategy for obtaining lattices of high toughness at low 

density, thereby filling gaps in material property space. 

Keywords: constitutive modelling of materials, mechanical properties of materials, micromechanics, 

plasticity 

1. Introduction 

Two dimensional (2D) lattice materials show promise for a wide range of applications ranging from 

structural armour to lightweight support for satellites, and are commonly used as the core of a 

sandwich panel [1,2].  Square lattices made from the elastic-brittle ceramic cordierite are used in 

catalytic converters and in particulate filters for automobiles, and the fracture properties of these 

have been explored recently [3,4].  Less is known about the fracture toughness of metallic lattices, 

such as titanium lattices with potential application in jet blast deflection structures and in heat 

exchangers [5–7].  Lattice materials offer the possibility of high strength and toughness at low density.  

However, in order to vector material development, there is a need to determine the sensitivity of 

fracture toughness to the choice of cell-wall material, topology, relative density  , cell-size and degree 
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of imperfection.  In so doing, there exists the opportunity to fill gaps in material property space.  This 

is the primary objective of the current study.   

The elasto-plastic crack tip fields are explored for four topologies of 2D lattice:  the triangular lattice, 

kagome lattice, diamond lattice, and the hexagonal lattice, as shown in Fig. 1(b)-(e).  Each lattice 

comprises struts of length  and thickness t, such that the relative density   is given by  

      
t

A                     (1) 

with the values of A listed in Table 1 [8–10]. 

The structural properties of these lattices are sensitive to the value of co-ordination number Z for each 

lattice [8].  When Z is less than 4, such as Z=3 for the hexagonal lattice, the lattice can accommodate 

macroscopic staining by cell wall bending without stretching.  In contrast, when the co-ordination 

number exceeds 4, such as Z=6 for the triangular lattice, macroscopic straining necessarily involves 

cell wall stretching, which is a much stiffer mode of deformation than cell wall bending.  The transition 

case is Z=4 and a range of macroscopic behaviours is possible.  For example, the diamond lattice is 

compliant when it is sheared along the direction of the struts, but is a stiff, stretching structure under 

direct straining in the strut-direction.  In contrast, the kagome lattice is an isotropic, stiff, stretching 

structure.  This broad range in behaviours motivates the choice of these four lattices in this study: the 

triangular, hexagonal and kagome lattices are isotropic in-plane, whereas the diamond lattice is 

strongly anisotropic.   

Consider a lattice made from an elastic, ideally plastic solid of cell wall modulus 
 
E

S
 and yield strength

YS .  The macroscopic modulus E and the macroscopic yield strength Y  in the 2x  direction of each 

lattice, as defined in Fig. 1, scale with   according to 

     b
SE B E                    (2) 

and 

     c
Y YSC                    (3) 

Now the exponents b and c equal unity for a stretching lattice, and exceed unity for a bending lattice, 

see [8–10].  Values for (B, b; C, c) are listed in Table 1 for the four lattices of interest, as taken from [11].  

We note in passing that the diamond lattice is highly anisotropic.  Its shear modulus G and shear 

strength in the in the 1 2x x  reference frame of Fig. 1 are given by  

    
1

4
SG E  and 

1

2
Y YS                 (4) 
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respectively, see [11,12].   

Much less is known about the fracture of lattice materials.  The fracture toughness of 2D elastic-brittle 

lattices has been recently studied by Fleck and co-workers [3,11,13] and by a number of other groups 

[14–16].  In contrast, only preliminary studies exist on the fracture toughness of a ductile hexagonal 

lattice [17], and on the reduction in strength of a ductile lattice due to the presence of short cracks 

[18].   

In the elastic-brittle case, finite element simulations were performed on selected 2D lattices containing 

a long crack [3,11,13].  In brief, a boundary layer analysis was performed, such that the outer boundary 

of an edge-cracked lattice was subjected to the asymptotic displacement fields associated with a 

remote mode I stress intensity factor, K .  The stress state in the lattice and the location of maximum 

local tensile stress max  near the crack tip were determined.  Upon equating max  to the fracture 

strength f , the macroscopic fracture toughness ICK  was estimated for the four lattices of Fig. 1, see 

[4,13].  It was demonstrated that ICK  scales with f , the cell size  and the relative density   of the 

lattice according to 

     d
IC fK D                   (5) 

where ( ,D d ) are tabulated in Table .  The sensitivity of fracture toughness to relative density is 

quantified by the exponent d :  the fracture toughness falls rapidly with diminishing   for the 

hexagonal lattice ( d =2), but less rapidly for the diamond lattice ( d =1), triangular lattice ( d =1) and 

kagome lattice ( d =1/2).  The value d =2 for the lattice is consistent with the fact that its cell walls bend 

under general in-plane loading, whereas the struts of the triangular lattice and diamond lattice 

stretch, giving d =1, see [8] for a full discussion.  The kagome lattice has an exceptionally high fracture 

toughness (with d =1/2), and this is ascribed to crack tip blunting by elastic zones of shear emanating 

from the crack tip, see [13].  However, the fracture toughness of the kagome lattice is sensitive to 

geometric imperfection:  Symons and Fleck [19] and Romijn and Fleck [11] have explored the 

knockdown in fracture toughness due to imperfections in the form of randomly displaced nodes.  They 

found that the kagome and diamond lattices are the most imperfection sensitive, while the triangular 

and hexagonal lattices are imperfection-insensitive.  In the current study, the significance of 

imperfection is re-visited for the case of ductile lattices that can undergo large deformations prior to 

failure.   

Scope of study 

This paper is in two parts.  First, the mode I crack tip field is obtained numerically for an elasto-plastic 

lattice of topology listed in Fig. 1.  Both the perfect topology and the imperfect case (random 
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misalignment of the nodes) are considered.  A Ramberg-Osgood description is used for the cell wall 

solid, such that the strain   is related to the stress   in uniaxial tension by  

     
0 0 0

n

S S S

  
  

 
   

 
            (6) 

in terms of the 3 material parameters 0 0( , , )S S n  , where 0S  is the yield strength, 0S  is the yield 

strain and n is the strain hardening exponent.  The plastic zone shape and size Pr , and the crack tip 

opening displacement   are obtained by finite element simulation of the small scale yielding 

problem.  And scaling laws are derived for the dependence of Pr  and   upon the magnitude of K, n, 

and  . 

Second, the fracture toughness of the ductile lattices is predicted, based on the maximum value of (i) 

local tensile strain (LTS) at any point in the lattice, or (ii) mean tensile strain (ATS) at any cross-section 

of the lattice upon averaging the axial strain over the strut thickness.  For both criteria, the 

significance of finite strain is determined.  Scaling laws are obtained for the fracture toughness as a 

function of relative density, topology, degree of imperfection and strain hardening exponent.  Finally, 

a scoping study is performed to determine the potential of lattices to fill gaps in material property 

space:  the intent is to achieve lightweight materials of high toughness. 

 

2.  The elasto-plastic crack tip field 

2.1 Scaling relations for plastic zone size 

The crack-tip field for each of the four lattices is determined by a boundary layer analysis, such that 

the outer boundary of a square mesh is subjected to the displacement field associated with the mode 

I stress intensity factor K.  Consider the general case of a semi-infinite edge crack in an orthotropic 

plate, as shown in Fig. 1(a).  Write the displacement field in Cartesian form as ( )i ju x , and introduce 

the polar coordinate system ( , )r   centred on the crack tip, with the crack faces lying along   .  

The displacement field in the elastic annulus surrounding the crack-tip plastic zone scales with K 

according to 

      i i
K r

u f
E

                  (7) 

as given by [20,21] for an orthotropic plate; the lengthy but explicit formulae for the non-dimensional 

functions  if   are not repeated here.  They additionally depend upon   for the diamond lattice 

since the degree of anisotropy is dependent on relative density (recall that the ratio of direct modulus 
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to shear modulus scales as 2  for this lattice).  The cell wall material is described by (6).  Finite 

element (FE) calculations are performed using the commercial FE code ABAQUS (version 6.12).  A 2D 

FE mesh is generated, with 500 struts along each edge of the domain and each strut around the crack 

tip represented by 70 Euler–Bernoulli beam elements for small strain calculations and 150 Timoshenko 

beam elements for finite strain calculations1.  Both elements are two-noded and account for both bar 

stretching and bending deformations.  The Ramberg-Osgood description (6) of J2 deformation theory 

is used to describe the material response.  Note that loading is close to proportional for the mode I 

crack tip field and so deformation theory and flow theory predictions almost coincide.  (This was 

confirmed in the present study by performing selected calculations using J2 flow theory).  A previous 

study on predicting the fracture toughness of brittle lattices [13] concluded that the difference in 

fracture toughness is negligible when the peripheral nodes of the mesh are subjected to the material 

rotation associated with the asymptotic K-field or are unconstrained in rotation.  Thus, it suffices to 

apply only translational displacements on the boundary nodes and to allow boundary nodes to have 

free rotation.  

As the applied K is increased via the peripheral nodal displacements, a plastic zone develops at the 

crack tip and envelopes an increasing number of units cells.  In order to define the plastic zone 

boundary, we make the choice that the cell wall material yields when the von Mises measure of total 

strain exceeds a value of 02 S . Since the plastic zone is not circular in shape, write Pr  as the maximum 

extent of plastic zone from the crack tip, at an inclination   to the cracking plane.  Thus, ( Pr , ) are 

the polar co-ordinates of the maximum radial extent of the plastic zone.  Recall that the plane strain 

plastic zone size for a fully dense elastic, ideally plastic solid of yield strength YS  is given by 

     
2

P
1

3 YS

K
r

 
 

  
 

                 (8) 

and we anticipate a similar scaling for the lattices, provided that we replace YS  by the effective yield 

strength of the lattice Y , as defined in Table 1.  Consider the case of an elastic, ideally plastic lattice 

with n   in (6), such that 0S YS   and. 0 /S YS SE  .  Finite element simulations have been 

performed to determine the plastic zone shape and size as a function of K, and a regression analysis 

confirms that 

2

P 1
Y

K
r 


 

  
 

                 (9) 

                                                           

1 Euler-Bernoulli beam elements are appropriate only for large rotations and small strains as the cross-

sectional thickness change is ignored. Timoshenko beam elements use a fully nonlinear formulation so 

that the strains and rotations can be arbitrarily large. 
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for each of the triangular, hexagonal and kagome lattices.  (A different scaling applies to the diamond 

lattice, see below.)  The best fit values of 1  and are given in Table 2 as a function of n for each lattice; 

the inclination   to the cracking plane, associated with the maximum radial extent of plastic zone, is 

almost independent of n and is included in Table 2 as a single entry for each lattice.  We can compare 

the predictions of 1  for the hexagonal lattice with the previous estimate by [17] for a lattice made 

from a solid of bilinear stress-strain law.  The numerical simulations as given in Fig. 5 of [17] agree 

with their analytical estimate (14), and they obtain 1 0.32   at o
71  ; this is in good agreement 

with the value of 1  as reported here of 0.17 to 0.36 depending upon the choice of n. 

The diamond lattice does not obey the scaling (9):  a regression analysis (not plotted here for the sake 

of brevity) reveals that  

     
2

P 1
Y

K
r  


 

  
 

          (10) 

This is a consequence of the fact that its shear strength is much less than its axial strength (in axes 

aligned with the lattice).  The redefined values of 1  are included in Table 2.   

A plot of the plastic zone for each lattice (with n  ) is given in Fig. 2 for the converged case where 

the plastic zone envelopes many unit cells (so that the lattice behaves as an effective medium).  The 

axes 1 2( , )x x  have been normalised with regard to the value of Pr  for each lattice.  The orientation   

along which the plastic zone has maximum extent is indicated in Fig. 2 by a solid line emanating from 

the crack tip to the plastic zone boundary.  There is marked difference in plastic zone shape from 

lattice to lattice, with the triangular lattice closest to that of a fully dense solid (see for example Fig. 

2.36 of [22]).  The plastic zone of each lattice has two lobes, a primary one pointing forwards and a 

smaller one pointing backwards.  The difference between the triangular and kagome lattice is striking 

since both are isotropic, stretching lattices in the elastic state.  We note that the orientation   along 

which the plastic zone has maximum extent is close to the strut orientation for all lattices.  The plastic 

zone extends only a small distance directly ahead of the crack tip for the diamond and hexagonal 

lattices (see Fig. 2(c) and (d), respectively) and this can be traced to the fact that the stress state directly 

ahead of the crack tip is close to hydrostatic, and these lattices have a much greater hydrostatic 

strength than shear strength.  Further, the extreme anisotropy of the diamond lattice, with a low shear 

strength along the strut directions leads to two elongated lobes at o
45   .  There is only a minor 

effect of strain hardening index n upon the shape and size of the plastic zone, consistent with the case 

of a fully dense solid, see for example Fig. 2.36 of [22].  To give direct evidence for this, the plastic zones 

for n =3 and 10 are included in Fig. 2, with axes still normalised by the value of Pr  for .n    For each 

lattice the plastic zone shrinks slightly with decreasing n.   
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2.2 Scaling relations for crack opening displacement 

Consider the crack opening profile  r  as a function of distance r from the crack tip for each lattice.  

A typical crack opening profile for the elasto-plastic lattices, with 10n  , is given in Fig. 3.  The 

dependence of   upon  , , ,r K n  has already been given in [13] for the linear case, 1n  .  Similar 

scaling arguments apply to the non-linear case, as follows.  Recall from [13] that the crack tip opening 

profiles for linear elastic, hexagonal and triangular lattices are adequately approximated by the crack tip 

solution for an elastic continuum down to r on the order of .  Consequently, we anticipate that the 

crack opening profile for the elasto-plastic hexagonal and triangular lattices can be represented by 

the opening profile for a dilatant elasto-plastic solid.  Now, Pan and co-workers [23] have shown that 

the asymptotic form of the Hutchinson-Rice-Rosengren (HRR) solution for the crack opening profile 

( )r  is maintained in the compressible case, such that  

     
2

1

2 0
0

n

nK
r r

r
  


 

   
 

                (11) 

where 2  is dependent upon n.  We have explored the ability of (11) to describe the crack tip opening 

of the lattice as a function of  , , ,r K n .  Note that the formula (11) makes use of the effective 

properties of each lattice 0 Y  , E, and  0 /Y Y E    , and these are related to the cell wall 

properties by making use of formulae (1-3) along with the coefficients listed in Table 2.  A good fit is 

obtained but is not shown here for the sake of space.  The reader is referred to [13] for a full discussion 

for the linear case;  non-linearity does not change the conclusions but does modify the best fitting 

values for 2  for the hexagonal and triangular lattices, as given in Table 2. 

Next, consider the kagome lattice.  For the linear case, 1n  , it was observed in [13] that an elastic 

blunting phenomenon occurs and the crack opening profile of the kagome lattice exceeds that of the 

continuum solution for an isotropic elastic solid for / 20r  .  Now limit attention to the crack tip 

opening   at one joint back from the crack tip.  Consequently, some modification to the formula (11) 

is needed for the kagome lattice.  Numerical simulations reveal that 

    

2
1

1
1

2 0
0

n

n nK   


     
   

 
              (12) 

to a good approximation (not shown).  A similar phenomenon of crack tip blunting is observed for the 

diamond lattice, as discussed in [11] for the linear case. The crack tip opening one joint back from the 

crack tip is given by 
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2

1

2 0
0

n

nK   


 
   

 
               (13) 

for the diamond lattice.  The values of 2  are summarised in Table 2 for the kagome and diamond 

lattices, for n in the range of 1 to  2.  We will account for the differences in behaviour (11)-(13) in a 

subsequent section of this paper. 

3.  The predicted fracture toughness 

The numerical simulations of the crack tip field in each lattice are used to estimate the initiation value 

of fracture toughness, ICK .  We emphasise that there is choice in the local fracture criterion.  Fleck 

and co-workers previously analysed an elastic-brittle lattice and used a local maximum tensile stress 

criterion.  Here, we focus on ductile lattices, and we make use of a local strain criterion.  Beam elements 

are adopted, with a linear distribution of strain across the thickness, with an average value A  and a 

maximum tensile value T  on the outermost fibre.  Two criteria are considered:   

(i) the maximum local tensile strain T  anywhere in the lattice attains the failure strain termed 

the Local Tensile Strain (LTS) criterion, or  

(ii) the mean tensile strain A  across the cell wall attains the failure strain (which can be identified 

with the Considere necking strain or a smaller strain if some form of damage intervenes), termed the 

Average Tensile Strain (ATS) criterion. 

We shall employ both criteria for completeness.  The ATS criterion is most pertinent to highly ductile 

solids that fail by necking in the presence of some bending, as discussed by [24].  In contrast, brittle 

alloys such as high strength aluminium alloys can develop cracks (for example by shear localisation) 

when a maximum tensile strain is achieved, and the LTS criterion applies, see for example [25–27].  We 

anticipate that the hexagonal lattice is bending-dominated such that A T  whereas the other three 

lattices are stretching-dominated with the feature that A T  .   

(i)  Predictions according to the LTS criterion 

Predictions for the maximum value of T  versus K  in the crack tip plastic zone are plotted in Fig.4 

(a)-(d) for the four lattices.  Both small strain and finite strain analyses are considered, and results are 

presented for the choice 10n   and 0 0.001S  , and for selected values of /t .  (Additional 

                                                           

2 We note in passing that the formula (12) is slightly different from the expression reported in [13] for 

the case 1n   and we ascribe the slight difference to the more refined numerical simulations 

performed herein. 
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simulations were performed for 3n  and n  , and results are listed in Table 3 for fracture toughness 

predictions, but are omitted from the plots for the sake of brevity.)  For each topology, the response is 

elastic and T  scales linearly with K in the regime 0T S  .  At larger values of T  a crack tip plastic 

zone is present, and the magnitude of T  increases with K  in a power law manner.  Since the singular 

field for a compressible power-law plastic solid is of HRR type, we deduce that  

      

2

1

n

n
T K                  (14) 

for the small strain solution.  Numerical checks (not shown here) have been performed to confirm this 

for n in the range 1 to 500 (which we treat as the elastic, ideally-plastic limit).  We note from Fig. 4 that 

the finite strain solution for T  exceeds the small strain solution by upon to a factor of 2 at large 

values of K.  A regression fit to the curves of Fig. 4 for the small strain and finite strain simulations has 

been performed beyond yield, and gives for each lattice 

    

1

2

0
0

n

nd T
S

S

K D
 



 

  
 

                (15) 

upon making use of (5).  The deduced values for ( ,D d ) are listed in Table 3 for both the small and 

finite strain assumptions.  We note in passing that D  is remarkably insensitive to the value of n except 

for the hexagonal lattice – the only bending-dominated lattice under consideration. 

The sensitivity of the K versus T  relation to the lattice topology at 5%   is given in Fig. 5(a), for 

both the small and finite strain cases.  Upon assuming the LTS criterion of crack extension the kagome 

lattice has the highest toughness, followed by the triangular, diamond and hexagonal lattice.   

 

(ii)  Predictions according to the ATS criterion 

In order to assess whether this ranking as given in Fig. 5(a) for the LTS criterion also applies for the 

ATS criterion, we plot in Fig. 5(b) the K versus A  relation for the four lattices at 5%  .  The ranking 

is maintained in the finite strain simulations.  Further, the choice of small versus finite strain 

assumption has only a minor effect upon the K versus A  relation for the kagome, triangular and 

diamond lattices.  In contrast, the K versus A  response of the hexagonal lattice is sensitive to the 

choice of small versus finite strain:  the small strain assumption does not capture the stretching that 

develops with finite rotation of the struts near the crack tip.  The progressive alignment in the 

direction of loading leads to a switch from bending to stretching, and this is captured by the finite 
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strain simulations but not the small strain simulations, see the deformed meshes for both types of 

simulation in the insert of Fig. 5(b).   

It is instructive to compare the LTS and ATS criteria for finite strain of the four lattices in Fig. 5(c), 

again for 5%  .  There is small effect of choice of failure criterion upon the predicted toughness for 

the kagome, triangular and diamond lattice, with a slightly tougher behaviour upon assuming the ATS 

criterion.  In contrast, the toughness of the hexagonal lattice is highly sensitive to the choice of ATS 

versus LTS criterion.  The ATS criterion implies a fracture toughness which increases only slightly 

with increasing value of A  whereas the LTS criterion implies a lower fracture toughness that 

increases more rapidly with increasing value of T .  A power law fit of K versus A  for the hexagonal 

lattice has been conducted for   in the range of 1% to 10% and n=3, 10 and .  The curves are not 

shown for the full range of assumed   and n (for the sake of brevity), but are similar to the one given 

in Fig. 5(b) for the ATS criterion.  The correlation is given by 

    

1

2
0

0

14
nA

S
S

K
 


 
  

 
               (16) 

in contrast to (15) for the LTS criterion.  We further note from Fig. 5(c) that, with increasing magnitude 

of failure strain (from the yield value of 0.001 to the necking strain of 0.1), the values of K by the two 

criteria converge for the hexagonal lattice.  The sensitivity of toughness of the hexagonal lattice to 

the failure criterion is striking, but awaits experimental validation. 

 

4.  Analytical models for the fracture toughness of each lattice 

Assume that the fracture toughness of an elasto-plastic lattice is dictated by the failure of the most 

highly strained cell wall at the crack tip.  In the approximate treatment of the present section, we 

assume that stretching-dominated lattice such as the triangular lattice fail when the average value of 

axial strain over the cross-section A  achieves a failure value f , whereas a bending-dominated 

lattice such as the hexagonal lattice fails when the bending strain at the outer fibre B  achieves a 

failure value f .  This approach extends that of [4,11,13] who considered elastic-brittle lattices and 

assumes that the toughness is dictated by a local maximum tensile stress criterion. 

Consider the case of a semi-infinite crack in each lattice, with cell-wall properties given by (6), and 

loaded by a mode I K-field.  In a Cartesian reference frame centred at the crack tip, as shown in Fig. 1, 

the crack is aligned with the 1x  axis, and lies normal to the 2x  axis.  A plastic zone exists near the 

crack tip, and as the crack tip is approached the effective, macroscopic stress ij  and macroscopic 
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strain ij  will approach that of J-field for a dilatant plastic solid.  This asymptotic field is a variant of 

the well-known HRR field for an isotropic von Mises solid with strain hardening.  In particular, the 

tensile macroscopic stress 22   at a distance 1x  ahead of the crack tip, and the tensile macroscopic 

strain 22   scale with the J-integral according to  

     22 22 1J x                   (17) 

as discussed by [28,29].  The relationship between macroscopic stress and cell-wall stress (and likewise 

between macroscopic strain and cell-wall strain) is dependent upon the lattice topology.  Consider 

each case in turn. 

4.1 Triangular lattice and diamond lattice 

The triangular lattice is stretching-dominated, and so the cell wall at any location is subjected to an 

axial tensile stress S  and to tensile strain S .  Directly ahead of the crack tip, the normal traction 

22  is related to S  via 22 / 3S    (recall the relationship (3) between the macroscopic stress and 

cell wall stress as given in Table 1) whereas the macroscopic and cell wall strains scale as 22 S  , see 

for example [8].  Near the crack tip, the power law term in (6) dominates the linear term, and (17) gives 

    

1

0 0 1
0

1

3

n

nS
S S

S

J x


  



 

  
 

               (18) 

Now invoke a fracture criterion:  assume that the toughness 
 
J

IC
 is obtained by equating S  to the 

tensile ductility f  within a cell wall at a critical distance  1x   ahead of the crack tip, giving  

    

1

0 0 1
0

1

3

n

nf
IC S S

S

J x


  



 

  
 

              (19) 

The fracture toughness ICK  is related to ICJ  in the usual manner, IC ICK EJ  where the 

macroscopic modulus 0 0/ 3 / (3 )S S SE E       has already been given in (2) and Table 1.  

Consequently, the fracture toughness ICK  is given by (15) where 1d   (as for the elastic-brittle 

lattice) and 1/ 3D   for all n.  A regression fit to the predicted toughness is in good agreement, with 

1d   and 0.45 0.52D   , see Table 3.  FE simulations of the crack tip elasto-plastic field reveal that 

the diamond lattice also behaves in a stretching manner.  The relation (15) again holds, but FE 

simulations give 1d   and 0.14 0.22D   . 
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4.2 Hexagonal lattice 

The hexagonal lattice is bending-dominated, and so we shall assume that crack advance initiates when 

the bending strain at the outer fibre of the cell wall B  attains the failure value f .  The toughness is 

again given by (17), but we need new relations for the relationship between macroscopic stress (and 

strain) and cell wall values.  To proceed, recall that the relationship between macroscopic yield 

strength and cell wall yield strength is given by (3), with the geometric constants as summarised in 

Table 1.  This same relationship provides the connection between 22  and the tensile stress on the 

outermost fibre of the cell wall S , 

     2
22

1

2
S                   (20) 

Likewise, the relationship between 22   and B  for the most highly strained section of the hexagonal 

lattice under remote tension reads  

      22
1

B 


                 (21) 

Now substitute (20) and (21) into (17), and make use of (6) to obtain a relation of the form (15) where 

3 / 2 0.87D    and 2d  .  The FE analysis gives 2d   and D in the range of 0.24 to 0.90, recall Table 

3. 

4.3 Kagome lattice 

The kagome lattice is also stretching-dominated, but has an anomalously high toughness due to the 

presence of shear bands at the crack tip.  These shear bands involve cell wall bending and this reduces 

the level of tensile strain within the cell walls, as follows.  Write   as the crack tip opening 

displacement.  The cell walls within a shear band of thickness ℓ  undergo bending, such that the 

bending strain at the outermost fibre is of order 

     
2f B

t                    (22) 

following the argument of [4], based on Fig. 2 of that paper.  The toughness is related to the traction 

at the crack tip 22 and to the crack tip opening displacement   according to  

     22J                   (23) 

To proceed, note that the 22  is related to the cell wall strength S  in the same manner that the 

macroscopic yield strength is related to the cell wall strength, relation (3), giving  
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     22
1

2
S                   (24) 

Near the crack tip, the power law term in (6) dominates the linear term, and upon substitution of (22) 

and (24) into (23) we obtain 

    

1

0 0 1
0

3

2

n

nf
IC S S

S

J x


  



 

  
 

              (25) 

Now make use of the Irwin relation IC ICK EJ  and of (2) to obtain (15) where 1/ 2d   and 

1/4
12D

   0.54.  We emphasise the remarkable result that the fracture toughness scales with 1/2 .  

The FE regression gives 1/ 2d   and 0.13 0.21D    (see Table 3), in support of the above simple 

model.  

5.  The role of imperfections 

In practice, lattice materials contain defects such as missing cell walls, cell walls of variable thickness 

(such as Plateau borders in foams), and spatial variations in relative density.  Here, we consider 

randomly located nodes, as shown in Fig. 6 for each lattice.  Assume that all nodes are radially 

displaced by a value R but in random directions from node to node, in the initial unstressed 

configuration.  What is the knock-down in fracture toughness as a function of /R ?  We build upon 

the previous study [11] wherein an elastic-brittle lattice was considered for the same topologies as 

that addressed here.  It was demonstrated in [11] that random movement of nodes gave a knockdown 

in fracture toughness with increasing sensitivity from hexagonal lattice, to triangular, diamond and 

kagome.   

A series of up to 10 structural realisations has been generated for each ductile lattice, with 10n   and 

020f S  .  We assume small strain behaviour, with fracture dictated by the maximum local tensile 

strain achieved at any location within the imperfect lattice.  Write ICK  as the mean value of fracture 

toughness of the imperfect lattice over the 10 realisations, normalised by the fracture toughness for 

the perfect lattice of equal relative density.  Then, we plot ICK  versus imperfection /R  in Fig. 7 for 

the four lattices of relative density 0.025  , and include the elastic-brittle result for comparison3.  

We note that the imperfection sensitivity of the ductile triangular lattice is comparable to that of the 

elastic-brittle triangular lattice; for the other three lattices the elastic-brittle case is the more 

imperfection-sensitive.  The kagome lattice is the most imperfection-sensitive topology:  the random 

                                                           

3 In agreement with [11], we find some scatter in predicted toughness from realisation to realisation, 

but the overall sensitivity of toughness to imperfection is reduced in the non-linear, ductile case 

compared to the elastic, brittle case, and the scatter is not shown in Fig. 7. 



 

JAM-15-1220 Fleck 14 

movement of nodes converts the lattice from stretching-dominated to bending dominated.  Direct 

evidence of this behaviour is presented in Fig. 8:  the power-law dependence of ICK  upon   switches 

from 1/2  for the perfect lattice to 3/2  for the imperfect case.   

6.  The realisation of tough lattices:  filling gaps in material property space 

We draw on the inspiration of [30] to explore the potential of the ductile lattices at low density. It is 

instructive to plot the predictions of macroscopic fracture toughness for the four lattices in material 

property space.  Choose as axes ICK  and the density  , and add to this plot the wide range of 

engineering materials that currently exist, see Fig. 9(a).  Now add the prediction (15) for a lattice of 

dimension  10mm, made from Ti-6Al-4V alloy of properties 0 600 MPaS  , 0 0.006S  , 

050f S  , and 10n  .  These predictions make use of the local total strain (LTS) criterion, and for 

all lattices but the hexagonal case, it is recalled that the predictions are hardly changed if the 

alternative ATS criterion were employed.  Additionally, predictions are shown for the hexagonal 

lattice failing by the ATS criterion (16).  The predicted fracture toughness of the kagome, triangular 

and diamond lattices fill gaps in material property space in the range for which the titanium lattices 

can be treated as a framework of beams:  for   less than 500 kg m-3.  In contrast, the hexagonal lattice 

(by both failure criteria) offers limited advantage over existing 3D foams.  It remains to manufacture 

and test these lattices to confirm these predictions.  We emphasise that the fracture toughness of the 

lattices scales with  on dimensional grounds.  Consequently, it is anticipated that lattices on the 

micron and nano scales are more brittle than the case considered here, =10 mm.  In contrast, the 

pertinent length scale for fully dense metallic alloys is on the order of microns, as set by the inclusion 

spacing in ductile fracture, for example. 

It is also instructive to compare the predicted toughness ICJ  of the lattices with other engineering 

materials.  Upon recalling that 2
/IC ICJ K E  for isotropic materials, with the role of the Poisson 

ratio taken to be negligible, we make use of relations (2) and (15) to give  

   

1

0 0
0

n

nfh
IC S S

S

J H


  



 

  
 

              (26) 

upon invoking the LTS criterion, T f  .  The parameters 2
/H D B  and 2h d b   are listed in 

Table 4, for convenience.  For the hexagonal lattice, the toughness by the ATS criterion is significantly 

different from that by the LTS criterion and (2) with (16) combine to give 
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J


  


 
  

 
              (27) 
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Expressions (26) and (27) are used to plot the predicted toughness of the three isotropic cases : 

triangular, kagome, and diamond lattice in Fig. 9(b), along with the typical values for other 

engineering materials.  It is striking that the toughness of these lattices lay significantly above those 

of 3D foams and natural materials, with the kagome lattice the toughest at low density. 

7.  Concluding remarks 

Our study reveals that the fracture toughness of ductile lattices is sensitive to the length scale of lattice 

in addition to relative density and choice of topology.  The predicted fracture toughness is only mildly 

sensitive to the details of the failure criterion (maximum local tensile strain versus average tensile 

strain across the cell wall) for the triangular, kagome, and diamond lattice.  In contrast, the hexagonal 

lattice has extreme sensitivity to the choice of local failure criterion:  when the local maximum strain 

dictates the toughness, the lattice has a relatively low toughness (and is sensitive to its relative 

density), whereas the hexagonal lattice has high toughness when the average tensile strain dictates 

failure.  We have also demonstrated that ductile lattices are less imperfection-sensitive than their 

elastic-brittle counterparts.  We predict that gaps in material property space can be filled by the 

kagome lattice made from ductile alloys such as titanium alloys. 

The current study is a detailed analysis of four lattices in a particular orientation.  It is recognised that 

a rotation of the lattices will change the quantitative predictions of fracture toughness.  The 

qualitative trends for the triangular, hexagonal and kagome lattices are insensitive to the lattice 

orientation, as the triangular and kagome lattices are stretching-governed in all orientations, while 

the hexagonal lattice is bending-governed in all orientations.  These three lattices are elastically 

isotropic but have plastic anisotropy and this will perturb the shape and size of the plastic zone, and 

the associated toughness.  Deshpande and Fleck [31] have shown that a 30o rotation of the triangular 

lattice leads to a 50% change in uniaxial tensile strength, while Hutchinson et al [32] find a factor of 2 

difference in strength for the kagome lattice, and Gibson and Ashby [10] report an invariant response 

for the hexagonal lattice.  These factors are independent of relative density.  A full characterisation of 

the orientation-dependence of toughness for these lattices is beyond the scope of the present study.  

We emphasise that random imperfections as analysed in this study will make the lattices more 

isotropic in both plastic and toughness responses.  The effect of orientation of the perfect diamond 

lattice upon strength and toughness is more pronounced than for the other lattices, as the lattice is 

stretching-dominated when the loading direction is aligned with the struts and is bending-dominated 

otherwise; this has been analysed by Romijn and Fleck [11] for the elastic case, and we expect similar 

trends for the non-linear solid (not analysed here). 

Additionally, it remains to determine the tearing response of a ductile lattice material and the 

associated R-curve, both experimentally and theoretically.  It is known from early studies on crack 

advance in metallic foams [17,33,34] that a steeply rising R-curve exists and this is associated with a 
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combination of crack bridging behind the advancing crack tip, and plastic dissipation within the 

plastic zone due to non-proportional loading effects.  Open-cell metallic foams are 3D bending-

dominated random lattices and behave in a similar manner to 2D hexagonal lattices.  The dependence 

of R-curve behaviour upon lattice topology is an open research topic. 
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Table captions   

Table 1.  Coefficients for relative density, elastic modulus, and yield strength 

Table 2.  Coefficients for plastic zone size and crack tip opening 

Table 3.  Coefficients for fracture toughness 

Table 4.  Coefficients for toughness of isotropic lattices that fail by LTS criterion 

Figure captions   

Fig 1.  Crack geometry and lattice topologies. (a) Coordinate reference frame for the lattice 

with crack, (b) triangular lattice, (c) kagome lattice, (d) diamond lattice, (e) hexagonal lattice 

Fig 2.  Mode I plastic zone for (a) triangular lattice, (b) kagome lattice, (c) diamond lattice, (d) 

hexagonal lattice. 

Fig 3.  Crack tip opening profile for (a) triangular lattice, (b) kagome lattice, (c) diamond lattice, 

(d) hexagonal lattice. 

Fig 4.  Maximum value of strain in the lattice cell wall for (a) triangular lattice, (b) kagome 

lattice, (c) diamond lattice, (d) hexagonal lattice. 

Fig 5.  Mode I fracture toughness of the four topologies for 0.05   and 10n   according to 

(a) local tensile strain (LTS) criterion, (b) average tensile strain (ATS) criterion.  (c) A 

comparison of predictions by the LTS and ATS criteria for the finite strain case. 

Fig 6.  Imperfect lattice topologies ( / 0.5R  ) for (a) triangular lattice, (b) kagome lattice, (c) 

diamond lattice, (d) hexagonal lattice. 

Fig 7.  The normalised fracture toughness versus /R  of imperfect lattices, for the choice 

0.025   and 10n  . 

Fig 8.  Dependence of fracture toughness of kagome lattice upon relative density   for the 

/R =0, 0.3 and 0.5. 

Fig 9.  Material property charts (Material Property CES Selector software by Granta Design) for 

(a) fracture toughness versus density, (b) toughness versus density.  Predictions are included 

for Ti-6Al-4V lattices of cell length  = 10mm   
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Table 1.  Coefficients for relative density, elastic modulus, and yield strength 

 A   B  b  C  c  
Triangular 2 3  1 / 3 1 1 / 3 1 

Kagome 3  1 / 3 1 1 / 2 1 

Diamond 2 1 / 4 3 1 / 4 2 

Hexagonal 2 / 3  3 / 2 3 1 / 2 2 

 

Table 2.  Coefficients for plastic zone size and crack tip opening 

 
1

                         
2

  

 3n     10n     n     1n        3n          10n      n   
Triangular 0.16 0.19 0.29 o

37  2.73 1.46 0.97 0.6 

Kagome 0.97 1.08 1.55 o
61  2.73 2.07 1.73 1.73 

Diamond 0.10 0.13 0.23 o
45  0.67 0.25 0.07 0.04 

Hexagonal 0.17 0.19 0.36 o
71  13.2 2.54 0.76 0.52 

 

Table 3.  Coefficients for fracture toughness 

 D  d   
 1n           3n          10n         n    

  small  

strain 

finite 

strain 

small  

strain 

finite 

strain 

small  

strain 

finite 

strain 

Triangular 0.52 0.51 0.43 0.50 0.42 0.45 0.38 1 

Kagome 0.21 0.21 0.17 0.20 0.16 0.13 0.09 0.5 

Diamond 0.22 0.21 0.20 0.19 0.17 0.14 0.11 1 

Hexagonal 0.90 0.76 0.73 0.52 0.50 0.24 0.22 2 

 

Table 4.  Coefficients for toughness of isotropic lattices that fail by LTS criterion 

 H  h   
 1n           3n          10n         n    

  small  

strain 

finite 

strain 

small  

strain 

finite 

strain 

small  

strain 

finite 

strain 

Triangular 2.43 2.34 1.66 2.25 1.58 1.82 1.29 1 

Kagome 0.39 0.39 0.26 0.36 0.23 0.15 0.07 0 

Hexagonal 0.54 0.39 0.35 0.18 0.17 0.04 0.03 1 
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Fig 1.  Crack geometry and lattice topologies. (a) Coordinate reference frame for the lattice 

with crack, (b) triangular lattice, (c) kagome lattice, (d) diamond lattice, (e) hexagonal lattice 
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Fig 2.  Mode I plastic zone for (a) triangular lattice, (b) kagome lattice, (c) diamond lattice, (d) 

hexagonal lattice. 

  



 

JAM-15-1220 Fleck 24 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.  Crack tip opening profile for (a) triangular lattice, (b) kagome lattice, (c) diamond lattice, 

(d) hexagonal lattice. 
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Fig 4.  Maximum value of strain in the lattice cell wall for (a) triangular lattice, (b) kagome 

lattice, (c) diamond lattice, (d) hexagonal lattice. 
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Fig 5.  Mode I fracture toughness of the four topologies for 0.05   and 10n   according to 

(a) local tensile strain (LTS) criterion, (b) average tensile strain (ATS) criterion.  (c) A 

comparison of predictions by the LTS and ATS criteria for the finite strain case. 
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Fig 6.  Imperfect lattice topologies ( / 0.5R  ) for (a) triangular lattice, (b) kagome lattice, (c) 

diamond lattice, (d) hexagonal lattice. 
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Fig 7.  The normalised fracture toughness versus /R  of imperfect lattices, for the choice 

0.025   and 10n  . 
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Fig 8.  Dependence of fracture toughness of kagome lattice upon relative density   for the 

/R =0, 0.3 and 0.5. 
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Fig 9.  Material property charts (Material Property CES Selector software by Granta Design) for 

(a) fracture toughness versus density, (b) toughness versus density.  Predictions are included 

for Ti-6Al-4V lattices of cell length  = 10mm   


