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ABSTRACT

Context. Large-scale structures (LSS) in the universe can be traced using the neutral atomic hydrogen HI through its 21 cm emission.
Such a 3D matter distribution map can be used to test the cosmological model and to constrain the dark energy properties or its
equation of state. A novel approach, called intensity mapping, can be used to map the HI distribution, using radio interferometers with
a large instantaneous field of view and waveband.
Aims. We study the sensitivity of different radio interferometer configurations, or multi-beam instruments for observing LSS and
baryon acoustic oscillations (BAO) in 21 cm, and we discuss the problem of foreground removal.
Methods. For each configuration, we determined instrument response by computing the (u, v) or Fourier angular frequency plane
coverage using visibilities. The (u, v) plane response determines the noise power spectrum, hence the instrument sensitivity for LSS
P(k) measurement. We also describe a simple foreground subtraction method of separating LSS 21 cm signal from the foreground
due to the galactic synchrotron and radio source emission.
Results. We have computed the noise power spectrum for different instrument configurations, as well as the extracted LSS power
spectrum, after separating the 21 cm-LSS signal from the foregrounds. We have also obtained the uncertainties on the dark energy
parameters for an optimized 21 cm BAO survey.
Conclusions. We show that a radio instrument with few hundred simultaneous beams and a collecting area of ∼10 000 m2 will be able
to detect BAO signal at redshift z ∼ 1 and will be competitive with optical surveys.

Key words. large-scale structure of Universe – dark energy – instrumentation: interferometers – radio lines: galaxies –
radio continuum: general

1. Introduction

The study of the statistical properties of large-scale struc-
tures (LSS) in the Universe and of their evolution with red-
shift is one of the major tools in observational cosmology.
These structures are usually mapped through optical obser-
vation of galaxies that are used as tracers of the underlying
matter distribution. An alternative and elegant approach for
mapping the matter distribution, which uses neutral atomic hy-
drogen (HI) as a tracer with intensity mapping, has been pro-
posed in recent years (Peterson et al. 2006; Chang et al. 2008).
Mapping the matter distribution using HI 21 cm emission
as a tracer has been extensively discussed in the literature
(Furlanetto et al. 2006; Tegmark & Zaldarriaga 2009) and is be-
ing used in projects such as LOFAR (Rottering et al. 2006) or
MWA (Bowman et al. 2007) to observe reionization at redshifts
z ∼ 10.

Evidence of the acceleration in the expansion of the uni-
verse has accumulated over the past twelve years, thanks to
the observation of distant supernovae and cosmic microwave
background (CMB) anisotropies and to detailed analysis of the
LSS. A cosmological constant (Λ) or new cosmological energy
density called dark energy has been advocated as the origin of
this acceleration. Dark energy is considered as one of the most

intriguing puzzles in physics and cosmology. Several cosmolog-
ical probes can be used to constrain the properties of this new
cosmic fluid, more precisely its equation of state: the Hubble
diagram, or the luminosity distance as a function of redshift of
supernovae as standard candles, galaxy clusters, weak shear ob-
servations, and baryon acoustic oscillations (BAO).

BAO are features imprinted in the distribution of galax-
ies, due to the frozen sound waves that were present in the
photon-baryon plasma prior to recombination at z ∼ 1100.
This scale can be considered as a standard ruler with a co-
moving length of ∼150 Mpc, and these features have been first
observed in the CMB anisotropies and are usually referred
to as acoustic peaks (Mauskopf et al. 2000; Larson et al. 2011).
The BAO modulation has been subsequently observed in the
distribution of galaxies at low redshift (z < 1) in the galaxy-
galaxy correlation function by the SDSS (Eisenstein et al. 2005;
Percival et al. 2007; Percival et al. 2010), 2dGFRS (Cole et al.
2005), as well as WiggleZ (Blake et al. 2011) optical galaxy
surveys.

Ongoing surveys, such as BOSS (Eisenstein et al. 2011)
or future surveys, such as LSST (Abell et al. 2009), plan to
measure the BAO scale precisely in the redshift range 0 � z � 3,
using either optical observation of galaxies or 3D mapping

Article published by EDP Sciences A129, page 1 of 17

http://dx.doi.org/10.1051/0004-6361/201117837
http://www.aanda.org
http://www.edpsciences.org


A&A 540, A129 (2012)

of Lyman α absorption lines toward distant quasars
(McDonald et al. 2006; McDonald & Eisenstein 2007). Radio
observation of the 21 cm emission of neutral hydrogen is a
very promising technique for mapping matter distribution up to
redshift z ∼ 3, and it complements optical surveys, especially in
the optical redshift desert range 1 � z � 2, and possibly up to
the reionization redshift (Wyithe et al. 2008).

In Sect. 2, we discuss the intensity mapping and its poten-
tial for measuring the HI mass-distribution power spectrum. The
method used in this paper to characterize a radio instrument re-
sponse and sensitivity for PHI(k) is presented in Sect. 3. We also
show the results for the 3D noise power spectrum for several in-
strument configurations. The contribution of foreground emis-
sions due to both the galactic synchrotron and radio sources
is described in Sect. 4, as is a simple component separation
method. The performance of this method using two different
sky models is also presented in Sect. 4. The constraints that can
be obtained on the dark energy parameters and DETF figure of
merit for typical 21 cm intensity mapping survey are discussed
in Sect. 5.

2. Intensity mapping and HI power spectrum

2.1. 21 cm intensity mapping

Most of the cosmological information in the LSS is located on
large scales (�1 deg), while the interpretation on the smallest
scales might suffer from the uncertainties on the nonlinear clus-
tering effects. The BAO features in particular are at the degree
angular scale on the sky and thus can be resolved easily with
a rather modest size radio instrument (diameter D � 100 m).
The specific BAO clustering scale (kBAO) can be measured both
in the transverse plane (angular correlation function, k⊥BAO) or

along the longitudinal (line of sight or redshift k
‖
BAO) direction.

A direct measurement of the Hubble parameter H(z) can be ob-
tained by comparing the longitudinal and transverse BAO scales.
A reasonably good redshift resolution δz � 0.01 is needed to
resolve longitudinal BAO clustering, which is a challenge for
photometric optical surveys.

To obtain a measurement of the LSS power spectrum with
small enough statistical uncertainties (sample or cosmic vari-
ance), a large volume of the universe should be observed, typ-
ically a few Gpc3. Moreover, stringent constraint on DE pa-
rameters can only be obtained when comparing the distance or
Hubble parameter measurements with DE models as a function
of redshift, which requires a significant survey depth ∆z � 1.
Radio instruments intended for BAO surveys must thus have
large instantaneous field of view (FOV � 10 deg2) and large
bandwidth (∆ν � 100 MHz) to explore large redshift domains.

Although the application of 21 cm radio survey to cosmol-
ogy, in particular LSS mapping, has been discussed in length
in the framework of large future instruments, such as the SKA
(e.g. Carilli et al. 2004; Abdalla & Rawlings 2005), the method
envisaged has mostly been through the detection of galaxies as
HI compact sources. However, extremely large radio telescopes
are required to detected HI sources at cosmological distances.
The sensitivity (or detection threshold) limit S lim for the total
power from the two polarizations of a radio instrument charac-
terized by an effective collecting area A, and system temperature
Tsys can be written as

S lim =

√
2 kB Tsys

A
√

tintδν
(1)

where tint is the total integration time and δν the detection fre-
quency band. In Table 1 (left) we computed the sensitivity for
six different sets of instrument effective area and system tem-
perature, with a total integration time of 86 400 s (1 day) over a
frequency band of 1 MHz. The width of this frequency band is
well adapted to detecting an HI source with an intrinsic veloc-
ity dispersion of a few 100 km s−1. These detection limits should
be compared with the expected 21 cm brightness S 21 of compact
sources, which can be computed using the expression below (e.g.
Binney & Merrifield 1998):

S 21 ≃ 0.021 µJy
MHI

M⊙
×
(

1 Mpc
dL(z)

)2

× 200 km s−1

σv
(1 + z) (2)

where MHI is the neutral hydrogen mass, dL(z) the luminosity
distance, and σv the source velocity dispersion. The 1 MHz
bandwidth mentioned above is only used for computing the
galaxy detection thresholds and does not determine the to-
tal bandwidth or frequency resolution of an intensity mapping
survey.

In Table 1 (right), we show the 21 cm brightness for compact
objects with a total HI mass of 1010 M⊙ and an intrinsic velocity
dispersion of 200 km s−1. The luminosity distance was computed
for the standard WMAP ΛCDM universe (Komatsu et al. 2011).
From 109 to 1010 M⊙ of neutral gas mass is typical of large
galaxies (Lah et al. 2009). It is clear that detecting HI sources
at cosmological distances would require collecting area in the
range of 106 m2.

Intensity mapping has been suggested as an alterna-
tive and economic method of mapping the 3D distribution
of neutral hydrogen by (Chang et al. 2008; Ansari et al. 2008;
Seo et al. 2010). There have also been attempts to detect the
21 cm LSS signal at GBT (Chang et al. 2010) and at GMRT
(Ghosh et al. 2011). In this approach, a sky brightness map with
angular resolution ∼10−30 arcmin is created for a wide range
of frequencies. Each 3D pixel (2 angles Θ, frequency ν, or
wavelength λ) would correspond to a cell with a volume of
∼103 Mpc3, containing ten to a hundred galaxies and a total
HI mass ∼1012 M⊙. If we neglect local velocities relative to the
Hubble flow, the observed frequency ν would be translated into
the emission redshift z through the well known relation

z(ν) =
ν21 − ν
ν

; ν(z) =
ν21

(1 + z)
with ν21 = 1420.4 MHz (3)

z(λ) =
λ − λ21

λ21
; λ(z) = λ21 × (1 + z) with λ21 = 0.211 m. (4)

The large-scale distribution of the neutral hydrogen, down to
an angular scale of ∼10 arcmin can then be observed without
detecting individual compact HI sources, using the set of sky-
brightness maps as a function of frequency (3D-brightness map)
B21(Θ, λ). The sky brightness B21 (radiation power/unit solid an-
gle/unit surface/unit frequency) can be converted to brightness
temperature using the Rayleigh-Jeans approximation of black
body radiation law:

B(T, λ) =
2kBT

λ2
·

2.2. HI power spectrum and BAO

In the absence of any foreground or background radiation and
assuming a high spin temperature, kBTspin ≫ hν21, the bright-
ness temperature for a given direction and wavelength T21(Θ, λ)
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Table 1. 21 cm source brightness and detection limits.

A(m2) Tsys(K) S lim µJy
5000 50 66
5000 25 33
100 000 50 3.3
100 000 25 1.66
500 000 50 0.66
500 000 25 0.33

z dL(Mpc) S 21(µJy)
0.25 1235 175
0.50 2800 40
1.0 6600 9.6
1.5 10 980 3.5
2.0 15 710 2.5
2.5 20 690 1.7

Notes. Left panel: sensitivity or source detection limit for 1-day inte-
gration time (86 400 s) and 1-MHz frequency band. Right panel: 21 cm
brightness for sources containing 1010 M⊙ of HI at different redshifts.

would be proportional to the local HI number density nHI(Θ, z)
through the relation (Field 1959; Zaldarriaga et al. 2004):

T21(Θ, λ(z)) =
3

32π
h

kB
A21 λ

2
21 ×

c

H(z)
(1 + z)2 × nHI(Θ, z) (5)

where A21 = 2.85 × 10−15 s−1 (Lang 1999) is the spontaneous
21 cm emission coefficient, h the Planck constant, c the speed
of light, kB the Boltzmann constant, and H(z) the Hubble pa-
rameter at the emission redshift. For a ΛCDM universe and ne-
glecting radiation energy density, the Hubble parameter can be
expressed as

H(z) ≃ h100

[

Ωm(1 + z)3 + ΩΛ

]
1
2 × 100 km s−1 Mpc−1. (6)

After introducing the HI mass fraction relative to the total baryon
mass fHI , the neutral hydrogen number density and the corre-
sponding 21 cm emission temperature can be written as a func-
tion of HI relative density fluctuations:

nHI(Θ, z(λ)) = fHI (z) ×ΩB
ρcrit

mH
×
(

δρHI

ρ̄HI

(Θ, z) + 1

)

(7)

T21(Θ, λ(z)) = T̄21(z) ×
(

δρHI

ρ̄HI

(Θ, z) + 1

)

(8)

where ΩB and ρcrit are the present-day mean baryon cosmolog-
ical and critical densities, respectively, mH the hydrogen atom
mass, and

δρHI
ρ̄HI

the HI density fluctuations.

The present-day neutral hydrogen fraction fHI (0) present in
local galaxies has been measured to be ∼1% of the baryon den-
sity (Zwaan et al. 2005)

ΩHI ≃ 3.5 × 10−4 ∼ 0.008 × ΩB.

The neutral hydrogen fraction is expected to increase with
redshift, as gas is used in star formation during galaxy for-
mation and evolution. Study of Lyman-α absorption indicates
a factor 3 increase in the neutral hydrogen fraction at z =
1.5 in the intergalactic medium (Wolf et al. 2005), compared
to its current value fHI (z = 1.5) ∼ 0.025. The 21 cm
brightness temperature and the corresponding power spectrum
can be written as (Madau et al. 1997; Zaldarriaga et al. 2004;
Barkana & Loeb 2007)

PT21(k) =
(

T̄21(z)
)2

P(k) (9)

T̄21(z) ≃ 0.084 mK
(1 + z)2 h100

√

Ωm(1 + z)3 + ΩΛ

ΩB

0.044

fHI (z)

0.01
· (10)

Table 2 shows the mean 21 cm brightness temperature for the
standard ΛCDM cosmology and either a constant HI mass frac-
tion fHI = 0.01, or linearly increasing fHI ≃ 0.008 × (1 + z).

Table 2. 21 cm brightness temperature (mK) at different redshifts.

z 0.25 0.5 1. 1.5 2. 2.5 3.

T̄21
a 0.085 0.107 0.145 0.174 0.195 0.216 0.234

T̄21
b 0.085 0.128 0.232 0.348 0.468 0.605 0.749

Notes. Mean 21 cm brightness temperature in mK for the standard
ΛCDM cosmology as a function of redshift. (a) Constant HI mass
fraction fHI (z) = 0.01. (b) Linearly increasing mass fraction fHI (z) =
0.008(1 + z).
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Fig. 1. HI 21 cm emission power spectrum at redshifts z = 1 (blue) and
z = 2 (red), with neutral gas fraction fHI = 2%.

Figure 1 shows the 21 cm emission power spectrum at several
redshifts, with a constant neutral fraction at 2% ( fHI = 0.02). The
matter power spectrum has been computed using the Eisenstein
& Hu (1998) parametrization. The correspondence with the an-
gular scales is also shown for the standard WMAP ΛCDM cos-
mology, according to the relation

θk =
2π

k dA(z) (1 + z)
, k =

2π
θk dA(z) (1 + z)

, (11)

where k is the comoving wave vector and dA(z) is the angular
diameter distance. The matter power spectrum P(k) has been
measured using galaxy surveys, for example by SDSS and 2dF
at low redshift z � 0.3 (Cole et al. 2005; Tegmark et al. 2004).
The 21 cm brightness power spectra PT21(k) shown here are
comparable to the power spectrum measured from the galaxy
surveys, once the mean 21 cm temperature conversion factor
(T̄21(z))2, redshift evolution, and different bias factors have been
accounted for.

3. Interferometric observations and P(k )

measurement sensitivity

3.1. Instrument response

We briefly introduce here the principles of interferometric ob-
servations and the definition of quantities useful for our calcula-
tions. The interested reader may refer to Thompson et al. (2001)
for a detailed and complete presentation of observation meth-
ods and signal processing in radio astronomy. In astronomy we
are usually interested in measuring the sky emission intensity,
I(Θ, λ) in a given wave band, as a function of the sky direction.
In radio astronomy and interferometry in particular, receivers are
sensitive to the sky emission complex amplitudes. However, for
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most sources, the phases vary randomly with a spatial correla-
tion length significantly smaller than the instrument resolution,

I(Θ, λ) = |A(Θ, λ)|2, I ∈ R, A ∈ C (12)

〈A(Θ, λ)A∗(Θ′, λ)〉time = 0 for Θ � Θ′. (13)

A single receiver can be characterized by its angular complex
amplitude response B(Θ, ν) and its position r in a reference
frame. The waveform complex amplitude s measured by the re-
ceiver, for each frequency can be written as a function of the
electromagnetic wave vector kEM(Θ, λ):

s(λ) =
�

dΘ A(Θ, λ)B(Θ, λ)ei(kEM.r). (14)

We set the electromagnetic (EM) phase origin at the center of
the coordinate frame, and the EM wave vector is related to the
wavelength λ through the usual equation |kEM| = 2π/λ. The re-
ceiver beam or antenna lobe L(Θ, λ) corresponds to the receiver
intensity response:

L(Θ, λ) = B(Θ, λ) B∗(Θ, λ). (15)

The visibility signal of two receivers corresponds to the time-
averaged correlation between signals from two receivers. If we
assume a sky signal with random uncorrelated phase, the visi-
bilityV12 signal from two identical receivers, located at the po-
sitions r1 and r2, can simply be written as a function of their
position difference ∆r = r1 − r2

V12(λ) = 〈s1(λ)s2(λ)∗〉 =
�

dΘ I(Θ, λ)L(Θ, λ)ei(kEM.∆r). (16)

This expression can be simplified if we consider receivers with
a narrow FOV (L(Θ, λ) ≃ 0 for |Θ| � 10 deg), and coplanar with
respect to their common axis. If we introduce two Cartesian-like
angular coordinates (α, β) centered on the common receivers
axis, the visibilty would be written as the 2D Fourier transform
of the product of the sky intensity and the receiver beam, for the
angular frequency (u, v)12 = (∆x

λ
,
∆y

λ
):

V12(λ) ≃
�

dαdβ I(α, β) L(α, β) exp

[

i2π

(

α
∆x

λ
+ β
∆y

λ

)]

(17)

where (∆x,∆y) are the two receiver distances on a plane per-
pendicular to the receiver axis. The x and y axes in the re-
ceiver plane are taken parallel to the two (α, β) angular planes.
Furthermore, we introduce the conjugate Fourier variables (u, v)
and the Fourier transforms of the sky intensity and the receiver
beam:

(α, β) −→ (u, v)

I(α, β, λ) −→ I(u, v, λ)

L(α, β, λ) −→ L(u, v, λ).

The visibility can then be interpreted as the weighted sum of the
sky intensity, in an angular wave number domain located around
(u, v)12 = (∆x

λ
,
∆y

λ
). The weight function is given by the receiver-

beam Fourier transform

V12(λ) ≃
�

dudv I(u, v, λ)L
(

u − ∆x

λ
, v − ∆y

λ
, λ

)

. (18)

A single receiver instrument would measure the total power inte-
grated in a spot centered on the origin in the (u, v) or the angular
wave-mode plane. The shape of the spot depends on the receiver

u

v

Small circular antenna

Large circular antenna

 D/
Pair of receivers 

spatial separation 
( x/ , y/ )

( x/ , 0)

u

v

x/ 0x/ 0x/ 0

( x/ , y/ )

(u,v) plane coverage 

(angular wave modes)

Fig. 2. Schematic view of the (u, v) plane coverage by interferometric
measurement.

beam pattern, but its extent would be ∼2πD/λ, where D is the
receiver physical size.

The correlation signal from a pair of receivers would mea-
sure the integrated signal on a similar spot, located around the
central angular wave-mode (u, v)12, determined by the relative
position of the two receivers (see Fig. 2). In an interferometer
with multiple receivers, the area covered by different receiver
pairs in the (u, v) plane might overlap, and some pairs might
measure the same area (same base lines). Several beams can be
formed using different combinations of the correlations from a
set of antenna pairs.

An instrument can thus be characterized by its (u, v) plane
coverage or response R(u, v, λ). For a single dish with a single
receiver in the focal plane, the instrument response is simply the
Fourier transform of the beam. For a single dish with multiple
receivers, either as a focal plane array (FPA) or a multi-horn
system, each beam (b) will have its own response Rb(u, v, λ).
For an interferometer, we can compute a raw instrument re-
sponse Rraw(u, v, λ), which corresponds to (u, v) plane coverage
by all receiver pairs with uniform weighting. Obviously, differ-
ent weighting schemes can be used, changing the effective beam
shape, hence the response Rw(u, v, λ) and the noise behavior. If
the same Fourier angular frequency mode is measured by several
receiver pairs, the raw instrument response might then be larger
that unity. This non-normalized instrument response is used to
compute the projected noise power spectrum in the following
Sect. (3.3). We can also define a normalized instrument response,
Rnorm(u, v, λ) � 1 as

Rnorm(u, v, λ) = R(u, v, λ)/Max(u,v) [R(u, v, λ)] . (19)

This normalized instrument response is the basic ingredient
for computing the effective instrument beam, in particular in
Sect. 4.2.

Detection of the reionization at 21 cm has been an ac-
tive field in the last decade, and different groups have built
instruments to detect a reionization signal around 100 MHz:
LOFAR (Rottering et al. 2006), MWA (Bowman et al. 2007;
Lonsdale et al. 2009), and PAPER (Parsons et al. 2010). Several
authors have studied the instrumental noise and statisti-
cal uncertainties when measuring the reionization signal
power spectrum, and the methods presented here to compute
the instrument response and sensitivities are similar to the
ones developed in these publications (Morales & Hewitt 2004;
Bowman et al. 2006; McQuinn et al. 2006).
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3.2. Noise power spectrum computation

We consider a total power measurement using a receiver at wave-
length λ, over a frequency bandwidth δν centered on ν0, with an
integration time tint, characterized by a system temperature Tsys.
The uncertainty or fluctuations of this measurement due to the

receiver noise can be written as σ2
noise =

2T 2
sys

tint δν
. This term also

corresponds to the noise for the visibility V12 measured from
two identical receivers, with uncorrelated noise. If the receiver
has an effective area A ≃ πD2/4 or A ≃ DxDy, the measurement
corresponds to the integration of power over a spot in the an-
gular frequency plane with an area ∼A/λ2. The noise’s spectral
density, in the angular frequency plane (per unit area of angular
frequency δu × δv), corresponding to a visibility measurement
from a pair of receivers can be written as

P
pair
noise =

σ2
noise

A/λ2
(20)

P
pair
noise ≃

2 T 2
sys

tint δν

λ2

D2
units: K2 rad2. (21)

We can characterize the sky temperature measurement with a ra-
dio instrument by the noise’s spectral power density in the angu-
lar frequencies plane Pnoise(u, v) in units of Kelvin2 per unit area
of angular frequencies δu × δv. For an interferometer made of
identical receiver elements, several (n) receiver pairs might have
the same baseline. The noise power density in the corresponding
(u, v) plane area is then reduced by a factor 1/n. More generally,
we can write the instrument noise spectral power density using
the instrument response defined in Sect. 3.1 as

Pnoise(u, v) =
P

pair
noise

Rraw(u, v, λ)
· (22)

When the intensity maps are projected in a 3D box in the uni-
verse and the 3D power spectrum P(k) is computed, angles are
translated into comoving transverse distances, and frequencies
or wavelengths into comoving radial distance, using the follow-
ing relations (e.g. Chap. 13 of Peebles 1993; Rich 2001):

α, β → ℓ⊥ = lx, ly = (1 + z) dA(z)α, β (23)

u, v → k⊥ = kx, ky = 2π
u, v

(1 + z) dA(z)
(24)

δν → δℓ‖ = (1 + z)
c

H(z)
δν

ν
= (1 + z)

λ

H(z)
δν (25)

1
δν
→ δk‖ = δkz = 2π

H(z)
c

1
(1 + z)

ν

δν
=

H(z)
c

1
(1 + z)2

ν21

δν
· (26)

A brightness measurement at a point (u, v, λ), covering the 3D
spot (δu, δv, δν), would correspond to a cosmological power
spectrum measurement at a transverse wave mode (kx, ky) de-
fined by Eq. (24), measured at a redshift given by the observa-
tion frequency. The measurement noise spectral density given
by Eq. (21) can then be translated into a 3D noise power spec-
trum, per unit of spatial frequencies δkx × δky × δkz/8π3 (units:
K2Mpc3):

(u, v, λ) → kx(u), ky(v), z(λ) (27)

Pnoise(kx, ky, z) = Pnoise(u, v)
8π3δu × δv
δkx × δky × δkz

(28)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

2
T 2

sys

tint ν21

λ2

D2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

1
Rraw

d2
A(z)

c

H(z)
(1 + z)4. (29)

It is worthwhile to note that the “cosmological” 3D noise power
spectrum does not depend anymore on the individual measure-
ment bandwidth. In the following paragraph, we will first con-
sider an ideal instrument with uniform (u, v) coverage in order to
establish the general noise power spectrum behavior for cosmo-
logical 21 cm surveys. The numerical method used to compute
the 3D noise power spectrum is then presented in Sect. 3.2.2.

3.2.1. Uniform (u, v ) coverage

We consider here an instrument with uniform (u, v) plane cov-
erage (R(u, v) = 1), and measurements at regularly spaced fre-
quencies centered on a central frequency ν0 or redshift z(ν0). The
noise’s spectral power density from Eq. (29) would then be con-
stant, independent of (kx, ky, ℓ‖(ν)). Such a noise power spectrum
thus corresponds to a 3D white noise, with a uniform noise spec-
tral density:

Pnoise(k⊥, l‖(ν)) = Pnoise = 2
T 2

sys

tint ν21

λ2

D2
d2

A(z)
c

H(z)
(1 + z)4 (30)

where Pnoise would be in units of mK2 Mpc3 with Tsys expressed
in mK, tint is the integration time expressed in second, ν21 in Hz,
c in km s−1, dA in Mpc and H(z) in km s−1 Mpc

−1
.

The statistical uncertainties of matter or HI distribution
power spectrum estimate decreases with the number of observed
Fourier modes, a number that is proportional to the volume of
the universe being observed (sample variance). As the observed
volume is proportional to the surveyed solid angle, we consider
the survey of a fixed fraction of the sky, defined by total solid an-
gle Ωtot, performed during a given total observation time tobs. A
single-dish instrument with diameter D would have an instanta-

neous FOV ΩFOV ∼
(

λ
D

)2
, and would require a number of point-

ings Npoint =
Ωtot
ΩFOV

to cover the survey area. Each sky direction or
patch of size ΩFOV will be observed during an integration time
tint = tobs/Npoint. Using Eq. (30) and the previous expression for
the integration time, we can compute a simple expression for
the noise spectral power density by a single-dish instrument of
diameter D:

P
survey
noise (k) = 2

T 2
sysΩtot

tobs ν21
d2

A(z)
c

H(z)
(1 + z)4. (31)

It is important to note that any real instrument does not have
a flat response in the (u, v) plane, and the observations pro-
vide no information above a certain maximum angular frequency
umax, vmax. One has to take into account either a damping of the
observed sky power spectrum or an increase in the noise spectral
density if the observed power spectrum is corrected for damping.
The white-noise expressions given below should thus be consid-
ered as a lower limit or floor of the instrument noise spectral
density.

For a single-dish instrument of diameter D equipped with a
multi-feed or phase-array receiver system, with N independent
beams on sky, the noise spectral density decreases by a factor N,
thanks to the increase in per pointing integration time:

P
survey
noise (k) =

2
N

T 2
sysΩtot

tobs ν21
d2

A(z)
c

H(z)
(1 + z)4. (32)

This expression (Eq. (32)) can also be used for a filled inter-
ferometric array of N identical receivers with a total collection
area ∼D2. Such an array could be made for example of N = q×q
small dishes, each with diameter D/q, arranged as a q×q square.
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Fig. 3. Top: minimal noise level for a 100-beam instrument with
Tsys = 50 K as a function of redshift (top), for a one-year survey of a
quarter of the sky. Bottom: maximum k value for 21 cm LSS power
spectrum measurement by a 100-m diameter primary antenna.

For a single dish of diameter D, or an interferometric in-
strument with maximal extent D, observations provide infor-
mation up to umax, vmax � D/λ. This value of umax, vmax would
be mapped to a maximum transverse cosmological wave num-
ber kmax

⊥ :

kmax
⊥ �

2π
dA (1 + z)2

D

λ21
· (33)

Figure 3 shows the evolution of the noise spectral density
P

survey
noise (k) as a function of redshift, for a radio survey of the sky,

using an instrument with N = 100 beams and a system noise
temperature Tsys = 50 K. The survey is supposed to cover a
quarter of sky Ωtot = π srad, in one year. The maximum comov-
ing wave number kmax is also shown as a function of redshift,
for an instrument with D = 100 m maximum extent. To take the
radial component of k and the increase of the instrument noise
level with k⊥ into account, we have taken the effective kmax as
half of the maximum transverse kmax

⊥ of Eq. (33):

kmax(z) =
π

dA (1 + z)2

D = 100 m
λ21

· (34)

3.2.2. 3D noise power spectrum computation

We describe here the numerical method used to compute the
3D noise power spectrum, for a given instrument response, as
presented in Sect. 3.3. The noise power spectrum is a good indi-
cator to compare sensitivities for different instrument configura-
tions, although the noise realization for a real instrument would
not be isotropic.

– We start by a 3D Fourier coefficient grid, with the two
first coordinates the transverse angular wave modes, and the
third the frequency (kx, ky, ν). The grid is positioned at the
mean redshift z0 for which we want to compute Pnoise(k).
For the results at redshift z0 = 1 discussed in Sect. 3.3, the
grid cell size and dimensions have been chosen to repre-
sent a box in the universe ∼1500 × 1500 × 750 Mpc3, with
3 × 3 × 3 Mpc3 cells. This corresponds to an angular wedge
∼25◦ × 25◦ × (∆z ≃ 0.3). Given the small angular extent, we
have neglected the curvature of redshift shells.

– For each redshift shell z(ν), we compute a Gaussian noise re-
alization. The coordinates (kx, ky) are converted to the (u, v)
angular frequency coordinates using Eq. (24), and the angu-
lar diameter distance dA(z) for ΛCDM model with standard
WMAP parameters (Komatsu et al. 2011). The noise vari-
ance is taken proportional to Pnoise

σ2
re = σ

2
im ∝

1
Rraw(u, v, λ)

d2
A(z)

c

H(z)
(1 + z)4. (35)

– An FFT is then performed in the frequency or redshift
direction to obtain the noise Fourier complex coefficients
Fn(kx, ky, kz) and the power spectrum is estimated as

P̃noise(k) = 〈|Fn(kx, ky, kz)|2〉 for
√

k2
x + k2

y + k2
z = k. (36)

Noise samples corresponding to small instrument response,
typically less than 1% of the maximum instrument response,
are ignored when calculating P̃noise(k). However, we require
a significant fraction, typically 20% to 50% of all possible
modes (kx, ky, kz) measured for a given k value.

– the above steps are repeated ∼50 times to decrease the sta-
tistical fluctuations from random generations. The averaged
computed noise power spectrum is normalized using Eq. (29)
and the instrument and survey parameters: system tempera-
ture Tsys = 50 K, individual receiver size D2 or DxDy and the
integration time tint. This last parameter is obtained through
the relation tint = tobsΩFOV/Ωtot using the total survey dura-

tion tobs = 1year, the instantaneous FOV ΩFOV ∼
(

λ
D

)2
, and

the total sky coverageΩtot = π srad.

It should be noted that it is possible to obtain a good approxima-
tion of the noise power spectrum shape by neglecting the redshift
or frequency dependence of the instrument response function
and dA(z) for a small redshift interval around z0, using a fixed
instrument response R(u, v, λ(z0)) and a constant radial distance
dA(z0) × (1 + z0):

P̃noise(k) = 〈|Fn(kx, ky, kz)|2〉 ≃ 〈Pnoise(u, v, kz)〉. (37)

The approximate power spectrum obtained through this simpli-
fied and much faster method is shown as dashed curves in Fig. 6
for few instrument configurations.

3.3. Instrument configurations and noise power spectrum

We have numerically computed the instrument response
R(u, v, λ) with uniform weights in the (u, v) plane for several
instrument configurations:

a: A packed array of n = 121 Ddish = 5 m dishes, arranged in a
square 11 × 11 configuration (q = 11). This array covers an
area of 55 × 55 m2.
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Fig. 4. Array layout for configurations b) and c) with 128 and 129 D =
5 m diameter dishes.

b: An array of n = 128 Ddish = 5 m dishes, arranged in eight
rows, each with 16 dishes. These 128 dishes are spread over
an area 80× 80 m2. The array layout for this configuration is
shown in Fig. 4.

c: An array of n = 129 Ddish = 5 m dishes, arranged over an
area 80 × 80 m2. This configuration has in particular four
subarrays of packed 16 dishes (4 × 4), located in the four
array corners. This array layout is also shown in Fig. 4.

d: A single-dish instrument, with diameter D = 75 m, equipped
with a 100 beam focal plane receiver array.

e: A packed array of n = 400 Ddish = 5 m dishes, arranged in a
square 20 × 20 configuration (q = 20). This array covers an
area of 100 × 100 m2.

f: A packed array of four cylindrical reflectors, each 85 m long
and 12 m wide. The focal line of each cylinder is equipped
with 100 receivers, each 2λ long, corresponding to ∼0.85 m
at z = 1. This array covers an area of 48 × 85 m2, and have
a total of 400 receivers per polarization, as in the (e) config-
uration. We computed the noise power spectrum for perfect
cylinders, where all receiver pair correlations are used (fp),
or for an imperfect instrument, where only correlations be-
tween receivers from different cylinders are used.

g: A packed array of eight cylindrical reflectors, each 102 m
long and 12 m wide. The focal line of each cylinder is
equipped with 120 receivers, each 2λ long, corresponding
to ∼0.85 m at z = 1. This array covers an area of 96×102 m2

and has a total of 960 receivers per polarization. As for the (f)
configuration, we have computed the noise power spectrum
for perfect cylinders, where all receiver pair correlations are
used (gp), or for an imperfect instrument, where only corre-
lations between receivers from different cylinders are used.

We used simple triangular shaped dish response in the (u, v)
plane; however, we did introduce a filling factor or illumination
efficiency η, relating the effective dish diameter Dill to the me-
chanical dish size Dill = ηDdish. The effective area Ae ∝ η2

scales as η2 or ηxηy,

L◦(u, v, λ) =
∧

[±ηDdish/λ]

(
√

u2 + v2) (38)

L◦(α, β, λ) =

[

sin(π(Dill/λ) sin θ)

π(Dill/λ) sin θ

]2

θ =

√

α2 + β2. (39)

For the multidish configuration studied here, we have taken the
illumination efficiency factor η = 0.9.

For the receivers along the focal line of cylinders, we as-
sumed that the individual receiver response in the (u, v) plane
corresponds to a rectangular antenna. The illumination efficiency

factor was taken equal to ηx = 0.9 in the direction of the cylinder
width, and ηy = 0.8 along the cylinder length. We used a double
triangular response function in the (u, v) plane for each of the
receiver elements along the cylinder:

L�(u, v, λ) =
∧

[±ηxDx/λ]

(u) ×
∧

[±ηyDy/λ]
(v). (40)

It should be noted that the small angle approximation used here
for the expression of visibilities is not valid for the receivers
along the cylinder axis. However, some preliminary numerical
checks indicate that the results for the noise spectral power den-
sity would not change significantly. The instrument responses
shown here correspond to a fixed pointing toward the zenith,
which is the case for a transit type telescope.

Figure 5 shows the instrument response R(u, v, λ) for the
four configurations (a, b, c, d) with ∼100 receivers per polariza-
tion. Using the numerical method sketched in Sect. 3.2.2, we
computed the 3D noise power spectrum for each of the eight
instrument configurations presented here, with a system noise
temperature Tsys = 50 K, for a one year survey of a quarter of
sky Ωtot = π srad at a mean redshift z0 = 1, ν0 = 710 MHz. The
resulting noise spectral power densities are shown in Fig. 6. The
increase of Pnoise(k) at low kcomov

� 0.02 is due to our having
ignored all auto-correlation measurements. It can be seen that an
instrument with 100−200 beams and Tsys = 50 K should have
enough sensitivity to map LSS in 21 cm at redshift z = 1.

4. Foregrounds and component separation

Reaching the required sensitivities is not the only difficulty of
observing the LSS in 21 cm. Indeed, the synchrotron emission
of the Milky Way and the extragalactic radio sources are a thou-
sand times brighter than the emission of the neutral hydrogen
distributed in the universe. Extracting the LSS signal using in-
tensity mapping, without identifying the HI point sources is the
main challenge for this novel observation method. Although this
task might seem impossible at first, it has been suggested that
the smooth frequency dependence of the synchrotron emissions
can be used to separate the faint LSS signal from the Galactic
and radio source emissions. Discussion of contribution of dif-
ferent sources of radio foregrounds for measurement of reion-
ization through redshifted 21 cm, as well as foreground sub-
traction using their smooth frequency dependence, can be found
in (Shaver et al. 1999; Di Matteo et al. 2002; Oh & Mack 2003).
However, any real radio instrument has a beam shape that
changes with frequency, and this instrumental effect signifi-
cantly increases the difficulty and complexity of this component
separation technique. The effect of frequency dependent beam
shape is sometimes referred to as mode mixing, and its impact
on foreground subtraction has been discussed for example in
Morales et al. (2006).

In this section, we present a short description of the fore-
ground emissions and the simple models we used for comput-
ing the sky radio emissions in the GHz frequency range. We
also present a simple component-separation method to extract
the LSS signal and its performance. The analysis presented here
follows a similar path to a detailed foreground subtraction study
carried out for MWA at ∼150 MHz by Bowman et al. (2009).
We computed in particular, the effect of the instrument response
on the recovered power spectrum. The results presented in this
section concern the total sky emission and the LSS 21 cm sig-
nal extraction in the z ∼ 0.6 redshift range, corresponding to the
central frequency ν ∼ 884 MHz.
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Fig. 5. Raw instrument response Rraw(u, v, λ) or the (u, v) plane coverage at 710 MHz (redshift z = 1) for four configurations. a) 121 Ddish = 5-m
diameter dishes arranged in a compact, square array of 11× 11, b) 128 dishes arranged in 8 rows of 16 dishes each (Fig. 4), c) 129 dishes arranged
as shown in Fig. 4, d) single D = 75 meter diameter, with 100 beams. The common color scale (1 . . . 80) is shown on the right.

4.1. Synchrotron and radio sources

We modeled the radio sky in the form of 3D maps (data cubes) of
sky temperature brightness T (α, δ, ν) as a function of two equa-
torial angular coordinates (α, δ) and the frequency ν. Unless oth-
erwise specified, the results presented here are based on sim-
ulations of 90 × 30 ≃ 2500 deg2 of the sky, centered on α =
10h00m, δ = +10 deg, and covering 128 MHz in frequency. We
have selected this particular area of the sky in order to minimize
the Galactic synchrotron foreground. The sky cube characteris-
tics (coordinate range, size, resolution) used in the simulations
are given in Table 3.

Two different methods were used to compute the sky tem-
perature data cubes. We used the global sky model (GSM)
(Oliveira-Costa et al. 2008) tools to generate full sky maps of
the emission temperature at different frequencies, from which
we extracted the brightness temperature cube for the region

defined above (Model-I/GSM Tgsm(α, δ, ν)). Because the GSM
maps have an intrinsic resolution of ∼0.5 degree, it is difficult to
have reliable results for the effect of point sources on the recon-
structed LSS power spectrum.

We have thus also made a simple sky model us-
ing the Haslam Galactic synchrotron map at 408 MHz
(Haslam et al. 1982) and the NRAO VLA Sky Survey (NVSS)
1.4 GHz radio source catalog (Condon et al. 1998). The sky
temperature cube in this model (Model-II/Haslam+NVSS) was
computed through the following steps:

1. The Galactic synchrotron emission is modeled as a power
law with a spatially varying spectral index. We assign a
power law index β = −2.8 ± 0.15 to each sky direction,
where β has a Gaussian distribution centered on –2.8 with
a standard deviation σβ = 0.15. The diffuse radio back-
ground spectral index has been measured, for example, by
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Fig. 6. P(k) 21 cm LSS power spectrum at redshift z = 1 with fHI = 2% and the noise power spectrum for several interferometer configurations
((a), (b), (c), (d), (e), (f), (g)) with 121, 128, 129, 400, and 960 receivers. The noise power spectrum has been computed for all configurations
assuming a survey of a quarter of the sky over one year, with a system temperature Tsys = 50 K.

Table 3. Sky cube characteristics for the simulations described in this
paper.

Range Center
Right ascension 105 < α < 195 deg 150 deg
Declination –5 < δ < 25 deg +10 deg
Frequency 820 < ν < 948 MHz 884 MHz
Wavelength 36.6 < λ < 31.6 cm 33.9 cm
Redshift 0.73 < z < 0.5 0.61

resolution N-cells
Right ascension 3 arcmin 1800
Declination 3 arcmin 600
Frequency 500 kHz (dz ∼ 10−3) 256

Notes. Cube size: 90 deg × 30 deg × 128 MHz; 1800 × 600 × 256 ≃
123 × 106 cells.

Platania et al. (1998) or Rogers & Bowman (2008). The syn-
chrotron contribution to the sky temperature for each cell is
then obtained through the formula:

Tsync(α, δ, ν) = Thaslam ×
(

ν

408 MHz

)β

· (41)

2. A 2D Tnvss(α, δ) sky brightness temperature at 1.4 GHz is
computed by projecting the radio sources in the NVSS cat-
alog to a grid with the same angular resolution as the
sky cubes. The source brightness in Jansky is converted
to temperature taking the pixel angular size into account
(∼21mK/mJy at 1.4 GHz and 3′ × 3′ pixels). A spectral in-
dex βsrc ∈ [−1.5,−2] is also assigned to each sky direction
for the radio source map. We have taken βsrc as a flat random
number in the range [−1.5,−2], and the contribution of the
radiosources to the sky temperature is computed as:

Tradsrc(α, δ, ν) = Tnvss ×
(

ν

1420 MHz

)βsrc

· (42)

3. The sky brightness temperature data cube is obtained
through the sum of the two contributions, Galactic syn-
chrotron and resolved radio sources:

Tfgnd(α, δ, ν) = Tsync(α, δ, ν) + Tradsrc(α, δ, ν). (43)

The 21 cm temperature fluctuations due to neutral hydrogen in
LSS Tlss(α, δ, ν) were computed using the SimLSS1 software
package, where complex normal Gaussian fields were first gen-
erated in Fourier space. The amplitude of each mode was then
multiplied by the square root of the power spectrum P(k) at
z = 0 computed according to the parametrization of Eisentein
& Hu (1998). We used the standard cosmological parameters,
H0 = 71 km s−1 Mpc−1,Ωm = 0.264,Ωb = 0.045,Ωλ = 0.73 and
w = −1 (Komatsu et al. 2011). An inverse FFT was then per-
formed to compute the matter density fluctuations δρ/ρ in the
linear regime, in a box of 3420× 1140× 716 Mpc3, and evolved
to redshift z = 0.6. The size of the box is about 2500 deg2 in the
transverse direction and ∆z ≃ 0.23 in the longitudinal direction.
The size of the cells is 1.9 × 1.9 × 2.8 Mpc3, which correspond
approximately to the sky cube angular and frequency resolution
defined above. We did not take the curvature of redshift shells
into account when converting SimLSS Euclidean coordinates to
angles and frequency coordinates of the sky cubes analyzed here.
This approximate treatment causes distortions visible at large an-
gles �10◦. These angular scales correspond to small wave modes
k � 0.02 h Mpc−1 and are excluded for results presented in this
paper.

The mass fluctuations have been converted into tem-
perature using Eq. (10), and a neutral hydrogen fraction
0.008 × (1 + 0.6), leading to a mean temperature of 0.13 mK.
The total sky brightness temperature is computed as the sum of
foregrounds and the LSS 21 cm emission:

Tsky = Tsync + Tradsrc + Tlss or Tsky = Tgsm + Tlss. (44)

1 SimLSS: http://www.sophya.org/SimLSS
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Table 4. Mean temperature and standard deviation for different sky
cubes.

Mean (K) Std. dev (K)
Haslam 2.17 0.6
NVSS 0.13 7.73
Haslam+NVSS 2.3 7.75
(Haslam+NVSS)*Lobe(35′) 2.3 0.72
GSM 2.1 0.8

Table 4 summarizes the mean and standard deviation of the
sky brightness temperature T (α, δ, ν) for the different compo-
nents computed in this study. It should be noted that the stan-
dard deviation depends on the map resolution, and the values
given in Table 4 correspond to sky cubes computed here, with
∼3 arcmin angular and 500 kHz frequency resolutions (see
Table 3). Figure 8 shows the comparison of the GSM tempera-
ture map at 884 MHz with Haslam+NVSS map, smoothed with a
35 arcmin Gaussian beam. Figure 7 shows the comparison of the
sky cube temperature distribution for Model-I/GSM and Model-
II. There is good agreement between the two models, although
the mean temperature for Model-II is slightly higher (∼10%)
than Model-I.

We computed the power spectrum for the 21 cm-LSS sky
temperature cube, as well as for the radio foreground temper-
ature cubes obtained from the two models. We also computed
the power spectrum on sky brightness temperature cubes, as
measured by a perfect instrument having a 25 arcmin (FWHM)
Gaussian beam. The resulting computed power spectra are
shown in Fig. 9. The GSM model has more large-scale power
compared to our simple Haslam+NVSS model, while it lacks
power at higher spatial frequencies. The mode mixing due to a
frequency-dependent response will thus be stronger in Model-II
(Haslam+NVSS) case. It can also be seen that the radio fore-
ground’s power spectrum is more than ∼106 times higher than
the 21 cm signal from LSS. This corresponds to the factor ∼103

of the sky brightness temperature fluctuations (∼K), compared
to the mK LSS signal.

In contrast to most similar studies, where it is assumed that
bright sources can be nearly perfectly subtracted, our aim was
to compute also their effect in the foreground subtraction pro-
cess. The GSM model lacks the angular resolution needed to
correctly compute the effect of bright compact sources for 21 cm
LSS observations and the mode mixing due to the frequency de-
pendence of the instrumental response, while Model-II provides
a reasonable description of these compact sources. Our simu-
lated sky cubes have an angular resolution 3′ × 3′, well below
the typical 15′ resolution of the instrument configuration con-
sidered here. However, Model-II might lack spatial structures on
large scales, above a degree, compared to Model-I/GSM, and the
frequency variations as a simple power law might not be realistic
enough. The differences for the two sky models can be seen in
their power spectra shown in Fig. 9. The smoothing or convo-
lution with a 25′ beam has negligible effect on the GSM power
spectrum, since it originally lacks structures below 0.5 degree.
By using these two models, we explored some of the systematic
uncertainties related to foreground subtraction.

It should also be noted that in Sect. 3, we presented the
different instrument configuration noise levels after correcting
or deconvolving the instrument response. The LSS power spec-
trum is recovered unaffected in this case, while the noise power
spectrum increases at high k values (small scales). In prac-
tice, clean deconvolution is difficult to implement for real data
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Fig. 7. Comparison of GSM (black) and Model-II (red) sky cube
temperature distribution. The Model-II (Haslam+NVSS), has been
smoothed with a 35 arcmin Gaussian beam.

and the power spectra presented in this section are NOT cor-
rected for the instrumental response. The observed structures
thus have a scale-dependent damping according to the instru-
ment response, while the instrument noise is flat (white noise or
scale-independent).

4.2. Instrument response and LSS signal extraction

The observed data cube is obtained from the sky brightness
temperature 3D map Tsky(α, δ, ν) by applying the frequency or
wavelength dependent instrument response R(u, v, λ). We have
considered the simple case where the instrument response is con-
stant throughout the survey area, or independent of the sky direc-
tion. For each frequency νk or wavelength λk = c/νk:

1. Apply a 2D Fourier transform to compute sky angular
Fourier amplitudes

Tsky(α, δ, λk)→ 2D − FFT→ Tsky(u, v, λk).

2. Apply instrument response in the angular wave mode
plane. We use here the normalized instrument response
R(u, v, λk) � 1

Tsky(u, v, λk) −→ Tsky(u, v, λk) × R(u, v, λk).

3. Apply inverse 2D Fourier transform to compute the mea-
sured sky brightness temperature map without instrumental
(electronic/Tsys) white noise:

Tsky(u, v, λk)×R(u, v, λ)→ Inv − 2D − FFT→ Tmes1(α, δ, λk).

4. Add white noise (Gaussian fluctuations) to the pixel map
temperatures to obtain the measured sky brightness temper-
ature Tmes(α, δ, νk). The white noise hypothesis is reasonable
at this level, since (u, v) dependent instrumental response
has already been applied. We also considered that the sys-
tem temperature, and thus the additive white noise level, was
independent of the frequency or wavelength.

The LSS signal extraction performance obviously depends
on the white noise level. The results shown here corre-
spond to the (a) instrument configuration, a packed array
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Fig. 8. Comparison of GSM (top) and Model-II (bottom) sky maps at 884 MHz. The Model-II (Haslam+NVSS) has been smoothed with a
35 arcmin (FWHM) Gaussian beam.

of 11 × 11 = 121 dishes (5 m diameter), with a white noise level
corresponding to σnoise = 0.25 mK per 3 × 3 arcmin2 × 500 kHz
cell.

The different steps in the simple component separation pro-
cedure that has been applied are briefly described here.

1. The measured sky brightness temperature is first corrected
for the frequency dependent beam effects through a convolu-
tion by a fiducial frequency independent beam R f (u, v) This
correction corresponds to a smearing or degradation of the
angular resolution

Tmes(u, v, λk) → T bcor
mes (u, v, λk)

T bcor
mes (u, v, λk) = Tmes(u, v, λk) ×

√

R f (u, v)

R(u, v, λ)

T bcor
mes (u, v, λk) → 2D − FFT→ T bcor

mes (α, δ, λ).

The virtual target beam R f (u, v) has a lower resolution than
the worst real instrument beam, i.e. at the lowest observed
frequency. No correction has been applied for modes with
R(u, v, λ) � 1%, as a first attempt to represent imperfect
knowledge of the instrument response. We recall that this is
the normalized instrument response, R(u, v, λ) � 1. The cor-
rection factor R f (u, v)/R(u, v, λ) also has a numerical upper
bound ∼100.

2. For each sky direction (α, δ), a power law T = T0

(

ν
ν0

)b

is fitted to the beam-corrected brightness temperature. The
parameters were obtained using a linear χ2 fit in the

log10(T ), log10(ν) plane. We show here the results for a pure
power law (P1), as well as a modified power law (P2):

P1: log10(T bcor
mes (ν)) = a + b log10(ν/ν0)

P2: log10(T bcor
mes (ν)) = a + b log10(ν/ν0) + c log10(ν/ν0)2

where b is the power law index and T0 = 10a the brightness
temperature at the reference frequency ν0.
Interferometers have a poor response at small (u, v) corre-
sponding to baselines smaller than interferometer element
size. The zero-spacing baseline, the (u, v) = (0, 0) mode, rep-
resents the mean temperature for a given frequency plane and
cannot be measured with interferometers. We used a simple
trick to make the power-law fitting procedure applicable, by
setting the mean value of the temperature for each frequency
plane according to a power law with an index close to the
synchrotron index (β ∼ −2.8). And we checked that the re-
sults are not too sensitive to the arbitrarily fixed mean tem-
perature power law parameters.

3. The difference between the beam-corrected sky temperature
and the fitted power law (T0(α, δ), b(α, δ)) is our extracted
21 cm LSS signal.

Figure 10 shows the performance of this procedure at a red-
shift∼0.6, for the two radio sky models used here: GSM/Model-I
and Haslam+NVSS/Model-II. The 21 cm LSS power spectrum,
as seen by a perfect instrument with a 25 arcmin (FWHM)
Gaussian frequency independent beam is shown, as well as the
extracted power spectrum, after beam correction and foreground
separation with second order polynomial fit (P2). We have also
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Fig. 9. Comparison of the 21 cm LSS power spectrum at z = 0.6
with fHI ≃ 1.3% (red, orange) with the radio foreground power spec-
trum. The radio sky power spectrum is shown for the GSM (Model-
I) sky model (dark blue), as well as for our simple model based on
Haslam+NVSS (Model-II, black). The curves with circle markers show
the power spectrum as observed by a perfect instrument with a 25 ar-
cmin (FWHM) Gaussian beam.

represented the obtained power spectrum without applying the
beam correction (step 1 above), or with the first-order polyno-
mial fit (P1).

Figure 11 shows a comparison of the original 21 cm bright-
ness temperature map at 884 MHz with the recovered 21 cm
map, after subtracting the radio continuum component. It can
be seen that structures present in the original map have been
correctly recovered, although the amplitude of the temperature
fluctuations on the recovered map is significantly smaller (factor
∼5) than in the original map. This is mostly due to the damping
of the large-scale power (k � 0.1 h Mpc−1) due to the foreground
subtraction procedure (see Fig. 12).

We have shown that it should be possible to measure the red-
shifted 21 cm emission fluctuations in the presence of the strong
radio continuum signal, provided that the latter has a smooth fre-
quency dependence. However, a rather precise knowledge of the
instrument beam and the beam correction or smearing proce-
dure described here are key ingredients for recovering the 21 cm
LSS power spectrum. It is also important to note that, while it is
enough to correct the beam to the lowest resolution instrument
beam (∼30′ or D ∼ 50 m @ 820 MHz) for the GSM sky model, a
stronger beam correction has to be applied (∼36′ or D ∼ 40 m @
820 MHz) for Model-II to reduce significantly the ripples from
bright radio sources. We have also applied the same procedure
to simulate observations and LSS signal extraction for an in-
strument with a frequency-dependent Gaussian beam shape. The
mode mixing effect is greatly reduced for such a smooth beam,
compared to the more complex instrument response R(u, v, λ)
used for the results shown in Fig. 10.

4.3. P21 (k) measurement transfer function

The recovered red shifted 21 cm emission power spectrum
Prec

21 (k) suffers a number of distortions, mostly damping, com-
pared to the original P21(k) due to the instrument response and
the component separation procedure. We recall that we have ne-
glected the curvature of redshift or frequency shells in this nu-
merical study, which affect our result at large angles �10◦. The
results presented here and our conclusions are thus restricted to
the wave-mode range k � 0.02 h Mpc−1. We expect damping
on small scales, or large k, due to the finite instrument size, but
also on large scales, small k, if total power measurements (auto-
correlations) are not used in the case of interferometers. The
sky reconstruction and the component separation introduce addi-
tional filtering and distortions. The real transverse plane transfer
function might even be anisotropic.

However, within the scope of the present study, we define an
overall transfer function T(k) as the ratio of the recovered 3D
power spectrum Prec

21 (k) to the original P21(k) , similar to the one
defined by Bowman et al. (2009), Eq. (23):

T(k) = Prec
21 (k)/P21(k). (45)

Figure 12 shows this overall transfer function for the simula-
tions and component separation performed here, around z ∼ 0.6,
for the instrumental setup (a), a filled array of 121 Ddish = 5 m
dishes. This transfer function has been obtained after averag-
ing the reconstructed Prec

21 (k) for several realizations (50) of the
LSS temperature field. The black curve shows the ratio T(k) =
Pbeam

21 (k)/P21(k) of the computed to the original power spectrum,
if the original LSS temperature cube is smoothed by the fre-
quency independent target beam FWHM = 30′. This black curve
shows the damping effect due to the finite instrument size at
small scales (k � 0.1 h Mpc−1, θ � 1◦). The transfer function for
the GSM foreground model (Model-I) and the 11×11 filled array
interferometer (setup (a)) is represented, as well as the transfer
function for a D = 55 m diameter dish. The transfer function
for the Model-II/Haslam+NVSS and the setup (a) filled interfer-
ometer array is also shown. The recovered power spectrum also
suffers significant damping on large scales k � 0.05 h Mpc−1,
mostly due to the filtering of radial or longitudinal Fourier modes
along the frequency or redshift direction (k‖) by the component
separation algorithm. We were able to remove the ripples on
the reconstructed power spectrum due to bright sources in the
Model-II by applying a stronger beam correction, ∼36′ target
beam resolution, compared to ∼30′ for the GSM model. This ex-
plains the lower transfer function obtained for Model-II on small
scales (k � 0.1 h Mpc−1).

It should be stressed that the simulations presented in this
section were focused on the study of the radio foreground effects
and have been carried intentionally with a very low instrumental
noise level of 0.25 mK per pixel, corresponding to several years
of continuous observations (∼10 h per 3′×3′ pixel). This transfer
function is well represented by the analytical form:

T(k) =

√

k − kA

kB
× exp

(

− k

kC

)

· (46)

We simulated observations and radio foreground subtraction us-
ing the procedure described here for different redshifts and in-
strument configurations, in particular for the (e) configuration
with 400 five-meter dishes. As the synchrotron and radio source
strength increases quickly with decreasing frequency, we have
seen that recovering the 21 cm LSS signal becomes difficult for
higher redshifts, in particular for z � 2.
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Fig. 10. Recovered power spectrum of the 21 cm LSS temperature fluctuations, separated from the continuum radio emissions at z ∼ 0.6,
fHI ≃ 1.3%, for the instrument configuration (a), 11 × 11 packed array interferometer. Left: GSM/Model-I, right: Haslam+NVSS/Model-II. The
black curve shows the residual after foreground subtraction, corresponding to the 21 cm signal, WITHOUT applying the beam correction. The red
curve shows the recovered 21 cm signal power spectrum, for P2 type fit of the frequency dependence of the radio continuum, and violet curve is
the P1 fit (see text). The orange curve shows the original 21 cm signal power spectrum, smoothed with a perfect, frequency-independent Gaussian
beam.

Table 5. Transfer function parameters.

z 0.5 1.0 1.5 2.0 2.5

kA (Mpc−1) 0.006 0.005 0.004 0.0035 0.003
kB (Mpc−1) 0.038 0.019 0.012 0.0093 0.008
kC (Mpc−1) 0.16 0.08 0.05 0.038 0.032

Notes. The transfer function parameters, (kA, kB, kC) (Eq. (46)) at dif-
ferent redshifts and for instrumental setup (e), 20 × 20 packed array
interferometer, are given in Mpc−1 unit, and not in h Mpc−1.

We have determined the transfer function parameters of
Eq. (46) kA, kB, kC for setup (e) for three redshifts, z = 0.5, 1, 1.5,
and then extrapolated the value of the parameters for redshift
z = 2, 2.5. The value of the parameters are grouped in Table 5,
and the corresponding transfer functions are shown in Fig. 13.

5. Sensitivity to cosmological parameters

The impact of the various telescope configurations on the sen-
sitivity for 21 cm power spectrum measurement has been dis-
cussed in Sect. 3. Figure 6 shows the noise power spectra and
allows us to visually rank the configurations in terms of instru-
ment noise contribution to P(k) measurement. The differences in
Pnoise will translate into differing precisions in the reconstruction
of the BAO peak positions and in the estimation of cosmological
parameters. In addition, we have seen (Sect. 4.2) that subtrac-
tion of continuum radio emissions, Galactic synchrotron, and
radio sources also has an effect on the measured 21 cm power
spectrum. In this paragraph, we present our method and the re-
sults for the precisions on the estimation of dark energy param-
eters through a radio survey of the redshifted 21 cm emission of

LSS, with an instrumental setup similar to the (e) configuration
(Sect. 3.3), 400 five-meter diameter dishes, arranged into a filled
20 × 20 array.

5.1. BAO peak precision

To estimate the precision with which BAO peak positions can
be measured, we used a method similar to the one established
in (Blake & Glazebrook 2003) and (Glazebrook & Blake 2005).
To this end, we generated reconstructed power spectra Prec(k) for
slices of the Universe with a quarter-sky coverage and a redshift
depth, ∆z = 0.5 for 0.25 < z < 2.75. The peaks in the gener-
ated spectra were then determined by a fitting procedure and the
reconstructed peak positions compared with the generated peak
positions. The reconstructed power spectrum used in the simula-
tion is the sum of the expected HI signal term, corresponding to
Eqs. (9) and (10), damped by the transfer function T(k) (Eq. (46),
Table 5) and a white noise component Pnoise calculated accord-
ing to Eq. (32), established in Sect. 3.3 with N = 400:

Prec(k) = P21(k) × T(k) + Pnoise (47)

where the different terms (P21(k),T(k), Pnoise) depend on the
slice redshift. The expected 21 cm power spectrum P21(k) has
been generated according to the formula

P21(k⊥, k‖)

Pref(k⊥, k‖)
=1+A k exp

(−(k/τ)α
)

sin

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

2π

√

√

k2
⊥

k2
BAO⊥
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k2
‖

k2
BAO‖

⎞

⎟
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⎟
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⎟

⎠

(48)

where k =
√

k2
⊥ + k2

‖ , the parameters A, α, and τ are ad-

justed to the formula presented in (Eisenstein & Hu 1998), and
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Fig. 11. Comparison of the original 21 cm LSS temperature map @ 884 MHz (z ∼ 0.6), smoothed with 25 arcmin (FWHM) beam (top), and
the recovered LSS map, after foreground subtraction for Model-I (GSM) (bottom), for the instrument configuration (a), 11 × 11 packed array
interferometer.

Pref(k⊥, k‖) is the envelope curve of the HI power spectrum with-
out baryonic oscillations. The parameters kBAO⊥ and kBAO‖ are
the inverses of the oscillation periods in k-space. The following
values were used for these parameters for the results presented
here: A = 1.0, τ = 0.1 h Mpc−1, α = 1.4, and kBAO⊥ = kBAO‖ =
0.060 h Mpc−1.

Each simulation is performed for a given set of parameters:
the system temperature Tsys, an observation time tobs, an aver-
age redshift, and a redshift depth ∆z = 0.5. Then, each simu-
lated power spectrum is fitted with a 2D normalized function
Ptot(k⊥, k‖)/Pref(k⊥, k‖), which is the sum of the signal power
spectrum damped by the transfer function and the noise power
spectrum multiplied by a linear term, a0 + a1k. The upper limit
kmax in k of the fit corresponds to the approximate position of
the linear/nonlinear transition. This limit is established on the
basis of the criterion discussed in (Blake & Glazebrook 2003).
In practice, we used kmax = 0.145 h Mpc−1, 0.18 h Mpc−1, and
0.23 h Mpc−1 for the redshifts z = 0.5, 1.0, and 1.5, respectively.

Figure 14 shows the result of the fit for one of these simula-
tions. Figure 15 histogram show the recovered values of kBAO⊥
and kBAO‖ for 100 simulations. The widths of the two distribu-
tions give an estimate of the statistical errors.

In addition, in the fitting procedure, both the parameters
modeling the signal A, τ, α, and the parameter correcting the

noise power spectrum (a0, a1) are floated to take the possible ig-
norance of the signal shape and the uncertainties in the compu-
tation of the noise power spectrum into account. In this way, we
can correct possible imperfections, and the systematic uncertain-
ties are directly propagated to statistical errors on the relevant
parameters kBAO⊥ and kBAO‖. By subtracting the fitted noise con-
tribution to each simulation, the baryonic oscillations are clearly
observed, for instance, in Fig. 16.

In our comparison of the various configurations, we have
considered the following cases for ∆z = 0.5 slices with 0.25 <
z < 2.75.

– Simulation without electronics noise: the statistical errors
on the power spectrum are directly related to the number
of modes in the surveyed volume V corresponding to the
∆z = 0.5 slice with the solid angle Ωtot = 1 π sr. The number
of modes Nδk in the wave number interval δk can be writ-
ten as

V =
c

H(z)
∆z × (1 + z)2d2

AΩtot Nδk =
V

4π2
k2δk. (49)

– Noise: we add the instrument noise as a constant term Pnoise
as described in Eq. (32). Table 6 gives the white noise level
for an N = 400 dish interferometer with Tsys = 50 K and one
year total observation time to survey Ωtot = 1 π sr.

A129, page 14 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201117837&pdf_id=11


R. Ansari et al.: 21 cm observation of large-scale structures at z ∼ 1

0.0150.015 0.040.04 0.060.06 0.10.1 0.150.15 0.20.2 0.40.4
0.10.1

0.20.2

0.30.3

0.40.4

0.50.5

0.60.6

0.70.7

0.80.8

0.90.9

11

1.11.1

k_comov  (h Mpc^-1)k_comov  (h Mpc^-1)

R
e

c
_

P
(k

)/
P

(k
)

R
e

c
_

P
(k

)/
P

(k
)

 Ratio Rec_P(k)/P(k) 21cm LSS Ratio Rec_P(k)/P(k) 21cm LSS

GSM: P(k)*Beam(30’)/P(k)

GSM: Rec_P(k)/P(k) F11x11

GSM: Rec_P(k)/P(k) Dish 55m (dashed)

NVSS+HASLAM: Rec_P(k)/P(k) F11x11

Fig. 12. Ratio of the reconstructed or extracted 21 cm power spec-
trum, after foreground removal, to the initial 21 cm power spectrum,
T(k) = Prec

21 (k)/P21(k) (transfer function), at z ∼ 0.6 for the instru-
ment configuration (a), 11 × 11 packed array interferometer. The ef-
fect of a frequency-independent Gaussian beam of ∼30′ is shown in
black. The transfer function T(k) for the instrument configuration (a),
11 × 11 packed array interferometer, for the GSM/Model-I is shown in
red, and in orange for Haslam+NVSS/Model-II. The transfer function
for a D = 55 m diameter dish for the GSM model is also shown as the
dashed red curve.

0.010.01 0.020.02 0.050.05 0.10.1 0.20.2 0.5 115.0
00

0.10.1

0.20.2

0.30.3

0.40.4

0.50.5

0.60.6

0.70.7

0.80.8

0.90.9

11

k_comov  (h Mpc^-1)k_comov  (h Mpc^-1)

T
F

(k
) 

=
 E

x
tr

a
c

te
d

_
P

2
1

(k
)/

P
2

1
(k

) 
T

F
(k

) 
=

 E
x

tr
a

c
te

d
_

P
2

1
(k

)/
P

2
1

(k
) 

 TF(k): Extracted_P21(k)/P21(k) z=0.5,1.0,1.5,2.0,2.5 (blue...brown) TF(k): Extracted_P21(k)/P21(k) z=0.5,1.0,1.5,2.0,2.5 (blue...brown)
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recovered 21 cm power spectrum at different redshifts, z =

0.5, 1.0, 1.5, 2.0, 2.5 for the instrument configuration (e), 20×20 packed
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gives the width of the distribution, which represents the statistical error
expected on these parameters.
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Fig. 16. 1D projection of the power spectrum averaged over 100 sim-
ulations of the packed dish array. The simulations are performed for
the following conditions: a system temperature Tsys = 50 K, an obser-
vation time Tobs = 1 year, a solid angle of 1πsr, an average redshift
z = 1.5, and a redshift depth ∆z = 0.5. The HI power spectrum is di-
vided by an envelop curve P(k)ref corresponding to the power spectrum
without baryonic oscillations, and the background estimated by a fit is
subtracted. The errors are the rms of the 100 distributions for each k bin,
and the dots are the mean of the distribution for each k bin.
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Fig. 17. The two “Hubble diagrams” for BAO experiments. The four
falling curves give the angular size of the acoustic horizon (left scale)
and the four rising curves give the redshift interval of the acoustic hori-
zon (right scale). The solid lines are for (ΩM,ΩΛ, w) = (0.27, 0.73,−1),
the dashed for (1, 0,−1) the dotted for (0.27, 0,−1), and the dash-dotted
for (0.27, 0.73,−0.9), The error bars on the solid curve correspond to
the four-month run (packed array) of Table 7.

Table 6. Noise spectral power.

z 0.5 1.0 1.5 2.0 2.5

Pnoise mK2 (Mpc3/h) 8.5 35 75 120 170

– Noise with transfer function: we consider the interferometer
response and radio foreground subtraction represented as the
measured P(k) transfer function T (k) (Sect. 4.3), as well as
the instrument noise Pnoise.

Table 7 summarizes the result. The errors both on kBAO⊥ and
kBAO‖ decrease as a function of redshift for simulations without
electronic noise because the volume of the universe probed is
larger. Once we apply the electronics noise, each slice in red-
shift gives comparable results. Finally, after applying the full re-
construction of the interferometer, the best accuracy is obtained
for the first slices in redshift around 0.5 and 1.0 for an identical
time of observation. We can optimize the survey by using a dif-
ferent observation time for each slice in redshift. Finally, for a
3-year survey we can split in five observation periods with dura-
tions that are three months, three months, six months, one year
and one year for redshift 0.5, 1.0, 1.5, 2.0, and 2.5, respectively
(Table 7, 4th row).

5.2. Expected sensitivity on w0 and wa

The observations give the HI power spectrum in angle-angle-
redshift space rather than in real space. The inverse of the peak
positions in the observed power spectrum therefore gives the
angular and redshift intervals corresponding to the sonic hori-
zon. The peaks in the angular spectrum are proportional to
dT(z)/as and those in the redshift spectrum to dH(z)/as, where
as ∼ 105 h−1 Mpc is the acoustic horizon comoving size at re-
combination, dT(z) = (1+ z)dA is the comoving angular distance
and dH = c/H(z) the Hubble distance (see Eq. (6)):

dH =
c

H(z)
=

c/H0
√

ΩΛ + Ωm(1 + z)3
dT =

∫ z

0
dH(z)dz. (50)

The quantities dT, dH, and as all depend on the cosmological
parameters. Figure 17 gives the angular and redshift intervals as
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Fig. 18. 1σ and 2σ confidence level contours in the parameter
plane (w0, wa), marginalized over all the other parameters, for two
BAO projects: SDSS-III (LRG) project (blue dotted line), 21 cm project
with HI intensity mapping (black solid line).

a function of redshift for four cosmological models. The error
bars on the lines for (ΩM,ΩΛ) = (0.27, 0.73) correspond to the
expected errors on the peak positions taken from Table 7 for the
four-month runs with the packed array. We see that with these
uncertainties, the data would be able to measure w at better than
the 10% level.

To estimate the sensitivity to parameters describing the dark
energy equation of state, we follow the procedure explained in
(Blake & Glazebrook 2003). We can introduce the equation of
state of dark energy, w(z) = w0 + wa · z/(1 + z), by replacing ΩΛ
in the definition of dT(z) and dH(z), (Eq. (50)) by

ΩΛ → ΩΛ exp

[

3
∫ z

0

1 + w(z′)
1 + z′

dz′
]

(51)

whereΩ0
Λ

is the present-day dark energy fraction with respect to
the critical density. Using the relative errors on kBAO⊥ and kBAO‖
given in Table 7, we can compute the Fisher matrix for five cos-
mological parameter: (Ωm,Ωb, h, w0, wa). Then, the combination
of this BAO Fisher matrix with the Fisher matrix obtained for
Planck mission allows us to compute the errors on dark energy
parameters. We used the Planck Fisher matrix, computed for the
Euclid proposal (Laureijs 2009), for the 8 parameters: Ωm, Ωb,
h, w0, wa, σ8, ns (spectral index of the primordial power spec-
trum) and τ (optical depth to the last-scatter surface), assuming
a flat universe.

For an optimized project over a redshift range, 0.25 < z <
2.75, with a total observation time of three years, the packed
400-dish interferometer array has a precision of 12% on w0 and
48% on wa. The figure of merit (FOM), the inverse of the area
in the 95% confidence level contours, is 38. Finally, Fig. 18
shows a comparison of different BAO projects, with a set of pri-
ors on (Ωm,Ωb, h) corresponding to the expected precision on
these parameters in early 2010s. The confidence contour level in
the plane (w0, wa) were obtained by marginalizing over all the
other parameters. This BAO project based on HI intensity map-
ping is clearly competitive with the current generation of optical
surveys such as SDSS-III (Eisenstein et al. 2011).
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Table 7. Sensitivity on kBAO measurement.

z 0.5 1.0 1.5 2.0 2.5
No noise, pure cosmic variance σ(kBAO⊥)/kBAO⊥ (%) 1.8 0.8 0.6 0.5 0.5

σ(kBAO‖)/kBAO‖ (%) 3.0 1.3 0.9 0.8 0.8
Noise without transfer function (a) σ(kBAO⊥)/kBAO⊥ (%) 2.3 1.8 2.2 2.4 2.8
(3-months/redshift bin) σ(kBAO‖)/kBAO‖ (%) 4.1 3.1 3.6 4.3 4.4
Noise with transfer function (a) σ(kBAO⊥)/kBAO⊥ (%) 3.0 2.5 3.5 5.2 6.5
(3-months/redshift bin) σ(kBAO‖)/kBAO‖ (%) 4.8 4.0 6.2 9.3 10.3
Optimized survey (b) σ(kBAO⊥)/kBAO⊥ (%) 3.0 2.5 2.3 2.0 2.7
(Observation time: 3 years) σ(kBAO‖)/kBAO‖ (%) 4.8 4.0 4.1 3.6 4.3

Notes. Relative errors on kBAO⊥ and kBAO‖ measurements are given as a function of the redshift z for various simulation configurations: (a) simu-
lations with electronics noise, without (2nd row) and with (3rd row) the transfer function; (b) optimized survey, simulations with electronic noise
and the transfer function.

6. Conclusions

The 3D mapping of redshifted 21 cm emission through inten-
sity mapping is a novel and complementary approach to opti-
cal surveys for studying the statistical properties of the LSS in
the universe up to redshifts z � 3. A radio instrument with a
large, instantaneous FOV (10–100 deg2) and large bandwidth
(�100 MHz) with ∼10 arcmin resolution is needed to perform
a cosmological neutral hydrogen survey over a significant frac-
tion of the sky. We have shown that a nearly packed interfer-
ometer array with a few hundred receiver elements spread over
an hectare or a hundred beam focal plane array with a ∼100 m
primary reflector will have the required sensitivity to measure
the 21 cm power spectrum. A method of computing the instru-
ment response for interferometers was developed, and we com-
puted the noise power spectrum for various telescope configura-
tions. The Galactic synchrotron and radio sources are a thousand
times brighter than the redshifted 21 cm signal, making the mea-
surement of the latter signal a major scientific and technical
challenge. We also studied the performance of a simple fore-
ground subtraction method through realistic models of the sky
emissions in the GHz domain and simulation of interferomet-
ric observations. We were able to show that the cosmological
21 cm signal from the LSS should be observable, but requires
a very good knowledge of the instrument response. Our method
allowed us to define and compute the overall transfer function
or response function for the measurement of the 21 cm power
spectrum. Finally, we used the computed noise power spectrum
and P(k) measurement response function to estimate the preci-
sion on the determination of dark energy parameters, for a 21 cm
BAO survey. This radio survey could be carried out using the
current technology and would be competitive with the ongoing
or planned optical surveys for dark energy, with a fraction of
their cost.
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