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Abstract
Orthopair fuzzy sets are fuzzy sets in which every element is represented by a pair of values in the unit interval, one of
which refers to membership and the other refers to non-membership. The different types of orthopair fuzzy sets given in
the literature are distinguished according to the proposed constrain for membership and non-membership grades. The aim
of writing this manuscript is to familiarize a new class of orthopair fuzzy sets called “(2,1)-Fuzzy sets” which are good
enough to control some real-life situations. We compare (2,1)-Fuzzy sets with IFSs and some of their celebrated extensions.
Then, we put forward the fundamental set of operations for (2,1)-Fuzzy sets and investigate main properties. Also, we define
score and accuracy functions which we apply to rank (2,1)-Fuzzy sets. Moreover, we reformulate aggregation operators to
be used with (2,1)-Fuzzy sets. Finally, we develop the successful technique “aggregation operators” to handle multi-criteria
decision-making (MCDM) problems in the environment of (2,1)-Fuzzy sets. To show the effectiveness and usability of the
proposed technique in MCDM problems, an illustrative example is provided.
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Introduction

In the real world, we deal with ideas that are loaded with
uncertainties and imprecision in several territories such
as engineering, medicinal science, economics, and natural
science. To handle this scenario Zadeh [34], in 1965, famil-
iarized the concept of fuzzy set that extensively applied
in many areas of multi-criteria decision-making (MCDM).
Zadeh allotted a membership degree for each element in the
domain; however, there are various real-life cases, the non-
membership degree is not come from themembership degree.
To overcome this shortcoming, Atanassov [5] proposed an
extension of fuzzy sets called an intuitionistic fuzzy set (IFS)
which was successfully applied in various areas like medical
diagnosis and decision-making [1,8].

Then, for sake of enlarging the domain ofmembership and
non-membership degrees, Yager [28] defined a Pythagorean
fuzzy set (PFS) as a generalization of intuitionistic fuzzy
set. It efficiently deals with the situations which the sum of
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theirmembership andnon-membership degrees of a specified
attribute is greater than one. To made a general umbrella of
the generalization class of intuitionistic fuzzy set, Yager [29]
presented the idea of q-rung orthopair fuzzy set (q-ROFS). In
2019, Senapati and Yager [22] discussed a Fermatean fuzzy
sets (FFS) as a special case of q-rung orthopair fuzzy sets
obtained by putting q = 3. Recently, Ibrahim et al. [9] have
brought a newclass of fuzzy setswhich lies between the grade
spaces of Pythagorean and Fermatean fuzzy sets called (3,2)-
Fuzzy sets. They applied to establish new kinds of weighted
aggregation operators and address more uncertainty situa-
tions than Pythagorean fuzzy sets. Then, Al-shami et al. [3]
have investigated the concept of SR-fuzzy sets as a newexten-
sion of fuzzy sets and applied to generate new aggregated
operators.

Since vagueness is a noteworthy issue in numerous ter-
ritories and its complexity increases day by day, some
improvements for fuzzy theory become necessary to keep up
with these developments. In this regard, study fuzziness with
bipolarity view was investigated in some published litera-
ture like [18,19]. Also, hybridization of fuzzy sets with some
uncertainty tools such as rough and fuzzy soft was the goal
of some articles such as [2,6,7,31,32]. Other classes of fuzzy
sets were established and investigated in many manuscripts
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such as [10,11]. Besides all of these, abstract structures like
topologies and their main properties were studied in fuzzy
settings; see, for example, [4,20].

Decision-making, as a widely used concept of human
daily life, gets more complicated with the progression of
communication and technology. One of the major issues
for decision-makers is how to obtain a unique result from
the collective information given by different sources. To
do this, different types of aggregation operators have been
introduced which reduce the set of finite values in the
decision-making process into a single value. Under intu-
itionistic fuzzy environment Xu [24] initiated a weighted
averaging aggregation operator, and Xu and Yager [27]
studied a weighted geometric aggregation operator. Lately,
several types of aggregation operators have been explored in
the environment of intuitionistic fuzzy sets in the published
literature; see, [13,16,25,26,33]. Also, these operations have
been investigated in the frame of Pythagorean fuzzy sets as
given byKhan et al. [12], Peng andYuan [15], Shahzadi et al.
[23], Rahman et al. [17], and Yager and Abbasov [30]. Inves-
tigation of aggregation operators in the frame of Fermatean
fuzzy sets was conducted in [21].

Multi-attribute decision-making (MADM) problems are
constructed of a finite set of options/alternatives and a finite
set of criteria/attributes. In this type of problems, it is impor-
tant to evaluate the quality of the input data. But it’s not
only about selecting the environment (FS,IFS,PFS,FFS,etc.),
it’s also about how you are modeling the problem. In other
words, which one of these environments frames the phenom-
ena or problem under study? That is, it is not possible to use
some types of fuzzy sets to model some actual problems
because the information form (with respect to their member-
ship and non-membership grades) in this problem does not
satisfy these types of fuzzy sets (with respect to their con-
straints); hence, the comparison between the effectiveness or
who is the best of these types of fuzzy sets is meaningless.

The motivation of doing this research is, first, to define
a new generalization of intuitionistic fuzzy set, namely,
(2,1)-Fuzzy sets. This generalization enlarges the space of
membership and non-membership degrees more than intu-
itionistic fuzzy sets. Aswe see this class does not obtain from
the class of q-rung orthopair fuzzy sets since the difference
of the values q of membership and non-membership grades.
Second, to establish a new kind of weighted aggregation
operators which can be employed to handle some practical
problems; especially, those that are evaluated with differ-
ent importance of their membership and non-membership
grades. Finally, to display a multi-criteria decision-making
methods based on the introduced operators for choosing the
optimal alternative. It worthily noting that the grades space
of our class is smaller than the grades space of all types of q-
rung orthopair fuzzy sets; however, it provides another frame

more convenient to represent the input data for some real-life
issues.

The rest of this manuscript is arranged as follows:

(1) In “Preliminaries”, we recall some definitions to make
this article self-contained.

(2) We devote “(2,1)-Fuzzy sets” to introduce a new family
of generalized IFSs called (2,1)-Fuzzy sets. We display a
set of operations for (2,1)-Fuzzy sets and scrutinize main
properties.

(3) In “Aggregation of (2,1)-fuzzy sets with applications”,
the concepts of weighted aggregated operators via (2,1)-
Fuzzy sets are investigated and characterized.

(4) In “Application of (2,1)-FSs to MCDM problems”, we
describe an MCDM method under these operators and
present a practical example to show how it carries out.

(5) Ultimately, we outline the main achievements of the
paper and propose some upcoming works in “Conclu-
sions”.

Preliminaries

To make this study self-sufficient, we briefly present a few
concepts engaged in the remaining parts of this study. We
also present some interpretations for the beyond motivations
to initiating the extensions of fuzzy sets.

Definition 1 [5] The intuitionistic fuzzy set (IFS) is defined
over a universal set B as follows.

Ω = {〈ν, δΩ(ν), λΩ(ν)〉 : ν ∈ B}, where the functions δΩ

and λΩ from B into [0, 1] respectively represent the
membership and non-membership degrees of every ν ∈ B

to Ω under the constraint 0 ≤ δΩ(ν) + λΩ(ν) ≤ 1.

The indeterminacy degree of each ν ∈ B with respect to an
IFS is given by

ζΩ(ν) = 1 − (δΩ(ν) + λΩ(ν)).

Remember that if δΩ(ν) = 1 − λΩ(ν) for every element
ν ∈ B, then an intuitionistic fuzzy set Ω becomes a fuzzy
set.

The natural question that puts itself is why the non-
membership degree is not the complement of membership
degree in all cases? To our best knowledge, the membership
and non-membership degrees are calculated with respect to
independent criteria, or sometimes they are evaluated by two
independent groups of experts, one specifies the membership
and the other specifies the non-membership. That is, the stan-
dards of a membership degree need not be the complement
of the standards of a non-membership degree. To explain this
matter, the example below is provided.
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Example 1 Consider B is a group of students is examined
in Mathematics. They are evaluated by 50 questions. Every
student has two options, answer (correctly or incorrectly)
the question or does not answer the question. The followed
technique of evaluating the students’ performance is given
as an IFS Ω = {〈ν, δΩ(ν), λΩ(ν)〉 : ν ∈ B} such that
δΩ(ν) = c

50 and λΩ(ν) = d
50 , where c and d denote the num-

ber of correct answers and the number of incorrect answers,
respectively. Assume that Mustafa is a student of this group,
and his performance in the exam is as follows, he correctly
answered 30 questions, incorrectly answered 15 questions,
and did not answer five questions. The corresponding IFS of
his performance is Ω = 〈

Musta f a, 3
5 ,

3
10

〉
. It is clear that

δΩ(Musta f a) �= 1 − λΩ(Musta f a).

Definition 2 [28] The Pythagorean fuzzy set (PFS) is defined
over a universal set B as follows.

Ω = {〈ν, δΩ(ν), λΩ(ν)〉 : ν ∈ B}, where the functions δΩ

and λΩ from B into [0, 1] respectively represent the
membership and non-membership degrees of every ν ∈ B
to Ω under the constraint 0 ≤ (δΩ(ν))2 + (λΩ(ν))2 ≤ 1.

The indeterminacy degree of each ν ∈ B with respect to a
PFS is given by

ζΩ(ν) =
√
1 − ((δΩ(ν))2 + (λΩ(ν))2).

It can be seen that any Pythagorean fuzzy set is an intu-
itionistic fuzzy set, but the converse fails as the next example
shows.

Example 2 Let Ω = {〈ν, 0.8, 0.5〉 , 〈μ, 0.6, 0.3〉} be defined
over B = {ν, μ}. Then, Ω is not an intuitionistic fuzzy set
because δΩ(ν) + λΩ(ν) = 1.3 � 1. On the other hand, Ω

is a Pythagorean fuzzy set because (δΩ(ν))2 + (λΩ(ν))2 =
0.89 ≤ 1 and (δΩ(μ))2 + (λΩ(μ))2 = 0.45 ≤ 1.

To enlarge the grades space of membership and non-
membership degrees, Senapati and Yager [22] defined the
concept of Fermatean fuzzy set as follows.

Definition 3 [22] The Fermatean fuzzy set (FFS) is defined
over a universal set B as follows.

Ω = {〈ν, δΩ(ν), λΩ(ν)〉 : ν ∈ B}, where the functions δΩ

and λΩ from B into [0, 1] respectively represent the
membership and non-membership degrees of every ν ∈ B
to Ω under the constraint 0 ≤ (δΩ(ν))3 + (λΩ(ν))3 ≤ 1.

The indeterminacy degree of each ν ∈ B with respect to a
FFS is given by

ζΩ(ν) = 3
√
1 − ((δΩ(ν))3 + (λΩ(ν))3).

With the aid of example below, we demonstrate that some
Fermatean fuzzy sets fail to be Pythagorean fuzzy sets.

Example 3 Let Ω = {〈ν, 0.9, 0.5〉 , 〈μ, 0.6, 0.7〉} be defined
over B = {ν, μ}. Then, Ω is not a Pythagorean fuzzy set
because (δΩ(ν))2+(λΩ(ν))2 = 1.06 � 1.On theother hand,
Ω is a Fermatean fuzzy set because (δΩ(ν))3 + (λΩ(ν))3 =
0.854 ≤ 1 and (δΩ(μ))3 + (λΩ(μ))3 = 0.559 ≤ 1.

(2,1)-Fuzzy Sets

The core concept of thismanuscript called “(2,1)-FuzzySets”
is introduced herein. The aim of presenting this concept are
to extend the grade space of intuitionistic fuzzy sets and cre-
ate a suitable environment to model some real-life issues.We
elucidate that this concept lies between the classes of intu-
itionistic fuzzy sets and Pythagorean fuzzy sets. Then, We
define the main set of operations for (2,1)-Fuzzy sets and
find out their master features.

Definition 4 The (2,1)-Fuzzy set (briefly, (2,1)-FS) Ω over
the universal set B is defined as follows.

Ω = {〈ν, δΩ(ν), λΩ(ν)〉 : ν ∈ B}, where the functions δΩ

and λΩ from B into [0, 1] respectively represent the
membership and non-membership degrees of every ν ∈ B
to Ω under the constraint 0 ≤ (δΩ(ν))2 + λΩ(ν) ≤ 1.

The indeterminacy degree with respect to a (2,1)-FS Ω is a
function ζΩ : B → [0, 1] given by

ζΩ(ν) = (1 − ((δΩ(ν))2 + λΩ(ν)))
2
3 for each ν ∈ B.

It is obvious that (δΩ(ν))2+λΩ(ν)+(ζΩ(ν))
3
2 = 1. Note

that ζΩ(ν) = 0 whenever (δΩ(ν))2 + λΩ(ν) = 1.
For the sake of simplicity, we denote the (2,1)-FS Ω =

{〈ν, δΩ(ν), λΩ(ν)〉 : ν ∈ B} by the symbol Ω = (δΩ, λΩ).
The family of all (2,1)-FSs defined over B is denoted by
I (2,1)−FS .

In Fig. 1, we display the grades space of (2,1)-Fuzzymem-
bership and (2,1)-Fuzzy non-membership.

In what follows, we compare (2,1)-FS with IFS and PFS.

Proposition 1 1. Every IFS is a (2,1)-FS.
2. Every (2,1)-FS is a PFS.

Proof Let Ω = (δΩ, λΩ) be an IFS over B. Then, for each
ν ∈ B, we have the following implement.

0 ≤ δΩ(ν) + λΩ(ν) ≤ 1 ⇒ 0 ≤ (δΩ(ν))2 + λΩ(ν) ≤ 1

⇒ 0 ≤ (δΩ(ν))2 + (λΩ(ν))2 ≤ 1

Hence, the proof is completed. 	

The converses of the assertions furnished in Proposition

1 fail as the next example illustrates.
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x2+y=1

1

Fig. 1 The grades space of (2,1)-FSs

1

1

x3+y2=1

x+y=1

x3+y3=1

x2+y=1

Fig. 2 The relationships among the grades spaces of IFS, (2,1)-FS, PFS
and FFS

Example 4 LetΩ = (0.7, 0.5) andΓ = (0.9, 0.2)bedefined
over B = {ν}. Then, Ω is a (2,1)-FS because (0.7)2 + 0.5 =
0.99 ≤ 1, but it is not an IFS because 0.7 + 0.5 = 1.2 > 1.
Also, Γ is a PFS because (0.9)3 + (0.2)3 = 0.737 ≤ 1, but
it is not a (2,1)-FS because (0.9)2 + 0.2 = 1.01 > 1.

Note that ζΩ(ν) ≈ 0.04641589.

Remark 1 From Proposition 1, we summarize the relation-
ships among the IFS, (2,1)-FS, PFS and FFS in Fig. 2 which
illustrates that

1. the grades space of intuitionistic membership is smaller
than the space of (2,1)-Fuzzy membership.

2. the grades space of (2,1)-Fuzzy membership is smaller
than the space of Pythagorean membership.

Definition 5 Let Ω1 = (δΩ1, λΩ1) and Ω2 = (δΩ2 , λΩ2) be
(2,1)-Fuzzy sets on B. Then

1. Ω1 ∪ Ω2 = (max{δΩ1 , δΩ2},min{λΩ1, λΩ2}).

2. Ω1 ∩ Ω2 = (min{δΩ1, δΩ2},max{λΩ1, λΩ2}).

3. Ωc
1 = (

√
λΩ1, (δΩ1)

2).

Note that (
√

λΩ1)
2 + (δΩ1)

2 = λΩ1 + (δΩ1)
2 ≤ 1,

so Ωc
1 is a (2,1)-Fuzzy set. It is obvious that (Ωc)c =

(
√

λΩ, (δΩ)2)c = (δΩ, λΩ).

Remark 2 The family of (2,1)-Fuzzy sets is closed under the
operators of ∪ and ∩.

The next example shows how these operators are calcu-
lated.

Example 5 Assume that Ω1 = (0.75, 0.25) and Ω2 =
(0.8, 0.36) are both (2,1)-FSs on B. Then

1. Ω1 ∪ Ω2 = (max{δΩ1, δΩ2},min{λΩ1, λΩ2})
= (max{0.75, 0.8},min{0.25, 0.36})
= (0.8, 0.25).

2. Ω1 ∩ Ω2 = (min{δΩ1, δΩ2},max{λΩ1, λΩ2})
= (min{0.75, 0.8},max{0.25, 0.36})
= (0.75, 0.36).

3. Ωc
1 = (0.5, 0.5625) andΩc

2 = (0.6, 0.64).

Proposition 2 Let Ω1 = (δΩ1 , λΩ1) and Ω2 = (δΩ2 , λΩ2)

be (2,1)-FSs on B. Then

1. Ω1 ∪ Ω2 = Ω2 ∪ Ω1.

2. Ω1 ∩ Ω2 = Ω2 ∩ Ω1.

Proof Straightforward. 	

Proposition 3 Let Ω1 = (δΩ1, λΩ1), Ω2 = (δΩ2 , λΩ2) and
Ω3 = (δΩ3, λΩ3) be (2,1)-FSs on B. Then

1. Ω1 ∪ (Ω2 ∪ Ω3) = (Ω1 ∪ Ω2) ∪ Ω3.

2. Ω1 ∩ (Ω2 ∩ Ω3) = (Ω1 ∩ Ω2) ∩ Ω3.

Proof Consider Ω1,Ω2 and Ω3 as (2,1)-FSs on B. Then,
according to Definition 5, we obtain,

1. Ω1 ∪ (Ω2 ∪ Ω3) = (δΩ1 , λΩ1)

∪(max{δΩ2 , δΩ3},min{λΩ2 , λΩ3})
= (max{δΩ1 ,max{δΩ2 , δΩ3}},min{λΩ1 ,min{λΩ2 , λΩ3}})
= (max{max{δΩ1 , δΩ2}, δΩ3},min{min{λΩ1 , λΩ2}, λΩ3})
= (max{δΩ1 , δΩ2},min{λΩ1 , λΩ2}) ∪ (δΩ3 , λΩ3)

= (Ω1 ∩ Ω2) ∪ Ω3.
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2. Similar to 1 above. 	

Theorem 1 Let Ω1 = (δΩ1, λΩ1), Ω2 = (δΩ2 , λΩ2) and
Ω3 = (δΩ3 , λΩ3) be (m, n)-FSs. Then

1. (Ω1 ∪ Ω2) ∩ Ω3 = (Ω1 ∩ Ω3) ∪ (Ω2 ∩ Ω3).

2. (Ω1 ∩ Ω2) ∪ Ω3 = (Ω1 ∪ Ω3) ∩ (Ω2 ∪ Ω3).

Proof Consider Ω1,Ω2 and Ω3 as (2,1)-FSs on B. Then,
according to Definition 5, we obtain,

1. (Ω1 ∪ Ω2) ∩ Ω3 = (max{λΩ1, δΩ2},
min{λΩ1, λΩ2}) ∩ (δΩ3 , λΩ3)

= (min{max{δΩ1, δΩ2}, δΩ3},
max{min{λΩ1, λΩ2}, λΩ3}).And,

(Ω1 ∩ Ω3) ∪ (Ω2 ∩ Ω3) = (min{δΩ1, δΩ3},
max{λΩ1, λΩ3}) ∪ (min{δΩ2 , δΩ3},max{λΩ2 , λΩ3})

= (max{min{δΩ1, δΩ3},min{δΩ2 , δΩ3}},
min{max{λΩ1, λΩ3},max{λΩ2 , λΩ3}}).

Then,

min{max{δΩ1, δΩ2}, δΩ3}

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δΩ2 if δΩ1 ≤ δΩ2 ≤ δΩ3,

δΩ1 if δΩ2 ≤ δΩ1 ≤ δΩ3,

δΩ3 if δΩ1 ≤ δΩ3 ≤ δΩ2 ,

δΩ3 if δΩ3 ≤ δΩ1 ≤ δΩ2 ,

δΩ3 if δΩ2 ≤ δΩ3 ≤ δΩ1,

δΩ3 if δΩ3 ≤ δΩ2 ≤ δΩ1,

max{min{λΩ1, λΩ2}, λΩ3}

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λΩ3 if λΩ1 ≤ λΩ2 ≤ λΩ3,

λΩ3 if λΩ2 ≤ λΩ1 ≤ λΩ3,

λΩ3 if λΩ1 ≤ λΩ3 ≤ λΩ2 ,

λΩ1 if λΩ3 ≤ λΩ1 ≤ λΩ2 ,

λΩ3 if λΩ2 ≤ λΩ3 ≤ λΩ1,

λΩ2 if λΩ3 ≤ λΩ2 ≤ λΩ1,

max{min{δΩ1, δΩ3},min{δΩ2 , δΩ3}}

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δΩ2 if δΩ1 ≤ δΩ2 ≤ δΩ3,

δΩ1 if δΩ2 ≤ δΩ1 ≤ δΩ3,

δΩ3 if δΩ1 ≤ δΩ3 ≤ δΩ2 ,

δΩ3 if δΩ3 ≤ δΩ1 ≤ δΩ2 ,

δΩ3 if δΩ2 ≤ δΩ3 ≤ δΩ1,

δΩ3 if δΩ3 ≤ δΩ2 ≤ δΩ1,

min{max{λΩ1, λΩ3},max{λΩ2 , λΩ3}}

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λΩ3 if λΩ1 ≤ λΩ2 ≤ λΩ3,

λΩ3 if λΩ2 ≤ λΩ1 ≤ λΩ3,

λΩ3 if λΩ1 ≤ λΩ3 ≤ λΩ2 ,

λΩ1 if λΩ3 ≤ λΩ1 ≤ λΩ2 ,

λΩ3 if λΩ2 ≤ λΩ3 ≤ λΩ1,

λΩ2 if λΩ3 ≤ λΩ2 ≤ λΩ1 .

Thus, min{max{δΩ1, δΩ2}, δΩ3} = max{min{δΩ1, δΩ3},
min{δΩ2 , δΩ3}} and max{min{λΩ1, λΩ2}, λΩ3} = min
{max{λΩ1, λΩ3},max{λΩ2 , λΩ3}}. Hence, (Ω1 ∪ Ω2) ∩
Ω3 = (Ω1 ∩ Ω3) ∪ (Ω2 ∩ Ω3).

2. (Ω1 ∩ Ω2) ∪ Ω3 = (min{δΩ1, δΩ2},
max{λΩ1, λΩ2}) ∪ (δΩ3, λΩ3)

= (max{min{δΩ1, δΩ2},
δΩ3},min{max{λΩ1, λΩ2}, λΩ3}).And,
(Ω1 ∪ Ω3) ∩ (Ω2 ∪ Ω3) = (max{δΩ1, δΩ3},
min{λΩ1, λΩ3}) ∩ (max{δΩ2 , δΩ3},min{λΩ2 , λΩ3})

= (min{max{δΩ1, δΩ3},max{δΩ2 , δΩ3}},
max{min{λΩ1, λΩ3},min{λΩ2 , λΩ3}}).

Then,

max{min{δΩ1, δΩ2}, δΩ3}

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δΩ3 if δΩ1 ≤ δΩ2 ≤ δΩ3 ,

δΩ3 if δΩ2 ≤ δΩ1 ≤ δΩ3 ,

δΩ3 if δΩ1 ≤ δΩ3 ≤ δΩ2 ,

δΩ1 if δΩ3 ≤ δΩ1 ≤ δΩ2 ,

δΩ3 if δΩ2 ≤ δΩ3 ≤ δΩ1 ,

δΩ2 if δΩ3 ≤ δΩ2 ≤ δΩ1 ,

min{max{λΩ1, λΩ2}, λΩ3}

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λΩ2 if λΩ1 ≤ λΩ2 ≤ λΩ3,

λΩ1 if λΩ2 ≤ λΩ1 ≤ λΩ3,

λΩ3 if λΩ1 ≤ λΩ3 ≤ λΩ2 ,

λΩ3 if λΩ3 ≤ λΩ1 ≤ λΩ2 ,

λΩ3 if λΩ2 ≤ λΩ3 ≤ λΩ1,

λΩ3 if λΩ3 ≤ λΩ2 ≤ λΩ1,

min{max{δΩ1, δΩ3},max{δΩ2 , δΩ3}}

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

δΩ3 if δΩ1 ≤ δΩ2 ≤ δΩ3 ,

δΩ3 if δΩ2 ≤ δΩ1 ≤ δΩ3 ,

δΩ3 if δΩ1 ≤ δΩ3 ≤ δΩ2 ,

δΩ1 if δΩ3 ≤ δΩ1 ≤ δΩ2 ,

δΩ3 if δΩ2 ≤ δΩ3 ≤ δΩ1 ,

δΩ2 if δΩ3 ≤ δΩ2 ≤ δΩ1 ,

max{min{λΩ1, λΩ3},min{λΩ2 , λΩ3}}

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λΩ2 if λΩ1 ≤ λΩ2 ≤ λΩ3,

λΩ1 if λΩ2 ≤ λΩ1 ≤ λΩ3,

λΩ3 if λΩ1 ≤ λΩ3 ≤ λΩ2 ,

λΩ3 if λΩ3 ≤ λΩ1 ≤ λΩ2 ,

λΩ3 if λΩ2 ≤ λΩ3 ≤ λΩ1,

λΩ3 if λΩ3 ≤ λΩ2 ≤ λΩ1 .

Thus, max{min{δΩ1, δΩ2}, δΩ3} = min{max{δΩ1, δΩ3},
max{δΩ2 , δΩ3}} and min{max{λΩ1, λΩ2}, λΩ3} = max
{min{λΩ1, λΩ3},min{λΩ2 , λΩ3}}. Hence, (Ω1 ∩ Ω2) ∪
Ω3 = (Ω1 ∪ Ω3) ∩ (Ω2 ∪ Ω3). 	
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Theorem 2 Let Ω1 = (δΩ1, λΩ1) and Ω2 = (δΩ2 , λΩ2) be
(2,1)-FSs on B. Then

1. (Ω1 ∪ Ω2)
c = Ωc

1 ∩ Ωc
2 .

2. (Ω1 ∩ Ω2)
c = Ωc

1 ∪ Ωc
2 .

Proof 1. Take Ω1 and Ω2 as (2,1)-FSs. Then, according to
Definition 5, we obtain

(Ω1 ∪ Ω2)
c = (max{δΩ1, δΩ2},min{λΩ1, λΩ2})c

= (min{√λΩ1,
√

λΩ2},max{(δΩ1)
2, (δΩ2)

2})
= (

√
λΩ1, (δΩ1)

2) ∩ (
√

λΩ2 , (δΩ2)
2)

= Ωc
1 ∩ Ωc

2 .

2. Similar to 1.
	


The operators of ∪ and ∩, given in Definition 5, are gen-
eralized for arbitrary numbers of (2,1)-FSs as follows.

Definition 6 Let {Ωi = (δΩi , λΩi ) : i ∈ I } be a family of
(2,1)-FSs on B. Then

1. ∪i∈IΩi = (sup{δΩi : i ∈ I }, inf{λΩi : i ∈ I }).

2. ∩i∈IΩi = (inf{λΩi : i ∈ I },max{λΩ1, sup{δΩi : i ∈ I }).

We close this section by defining the score and accuracy
functions of (2,1)-FSs which will be helpful later to rank
(2,1)-FSs.

Proposition 4 For any (2,1)-FS Ω = (δΩ, λΩ) on B, the
value of δ2Ω − λΩ lies in the closed interval [−1, 1].
Proof For any (2,1)-FS Ω , we have δ2Ω + λΩ ≤ 1. This
implies that δ2Ω −λΩ ≤ δ2Ω ≤ 1 and δ2Ω −λΩ ≥ −λΩ ≥ −1.
Hence, −1 ≤ δ2Ω − λΩ ≤ 1, as required. 	

Definition 7 The score function score : I (2,1)−FS →
[−1, 1] is given by the formula score(Ω) = δ2Ω − λΩ for
every (2,1)-FS Ω = (δΩ, λΩ).

Definition 8 Let Ω1 = (δΩ1, λΩ1) and Ω2 = (δΩ2 , λΩ2) be
(2,1)-FSs. We say that

(i) If score(Ω1) > score(Ω2), then Ω1 � Ω2.
(ii) If score(Ω1) < score(Ω2), then Ω1 ≺ Ω2.
(iii) If score(Ω1) = score(Ω2), then Ω1 � Ω2.

Example 6 Let Ω1 = (0.76, 0.42) and Ω2 = (0.8, 0.25) be
(2,1)-FSs. We obtain score(Ω1) = 0.1576 and acc(Ω2) =
0.39. Hence,

In some cases, the score function is not a sufficient tool
to determine which better (2,1)-FSs can be chosen. This
occurs, in particular, for every two (2,1)-FSs satisfy that non-
membership degree equals to the root of membership degree,
i.e. δΩ = √

λΩ . But we know that these (2,1)-FSs may not
match with each other. So that, comparison depending on the
score function is not acceptable (or appropriate) to address
these cases.

To efficiently make a comparison of (2,1)-FSs, we intro-
duce the concept of accuracy function for (2,1)-FSs as
follows.

Definition 9 The accuracy function acc : I (2,1)−FS →
[0, 1] is given by the formula acc(Ω) = δ2Ω + λΩ for every
(2,1)-FS Ω = (δΩ, λΩ).

We make use of the score and accuracy functions to com-
pare between (2,1)-FSs.

Definition 10 Let Ω1 = (δΩ1 , λΩ1) and Ω2 = (δΩ2 , λΩ2)

be (2,1)-FSs, where score(Ωk) and acc(Ωk) (k = 1, 2) are
respectively their score functions and accuracy functions.We
say that

(i) If score(Ω1) > score(Ω2), then Ω1 � Ω2.
(ii) If score(Ω1) < score(Ω2), then Ω1 ≺ Ω2.
(iii) If score(Ω1) = score(Ω2), then

1. If acc(Ω1) > acc(Ω2), then Ω1 � Ω2.
2. If acc(Ω1) < acc(Ω2), then Ω1 ≺ Ω2.
3. If acc(Ω1) = acc(Ω2), then Ω1 = Ω2.

Example 7 ConsiderΩ1 = (
√
0.45, 0.45),Ω2 = (0.5, 0.25),

Ω3 = (0.6, 0.35) and Ω4 = (0.7, 0.48) are (2,1)-FSs on
B = {ν}. Obviously, score(Ω1) = score(Ω2) = 0 and
score(Ω3) = score(Ω4) = 0.01. Then, according to the
above definition, we find that

1. Ω1 � Ω2 because δ2Ω1
+ λΩ1 = 0.9 > δ2Ω2

+ λΩ2 = 0.5.

2. Ω4 � Ω3 because δ2Ω4
+ λΩ4 = 0.97 > δ2Ω3

+ λΩ3 =
0.71.

Definition 11 Let Ω1 = (δΩ1 , λΩ1) and Ω2 = (δΩ2 , λΩ2)

be (2,1)-FSs on B. A natural quasi-ordering on the (2,1)-FSs
is defined as follows.

Ω1 ≥ Ω2 iff δΩ1 ≥ δΩ2 and λΩ1 ≤ λΩ2 .

Aggregation of (2,1)-fuzzy sets with
applications

In this section, we first introduce some new operations on
(2,1)-Fuzzy sets and explore their main properties. Then,
we initiate novel types of aggregation operators with respect
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to (2,1)-Fuzzy sets and scrutinize the interrelations between
them. We display some elucidative examples.

Some operations on (2,1)-FSs

Herein, we define some operations over the family of (2,1)-
Fuzzy sets, and explore the interrelations between them.

Definition 12 Let Ω1 = (δΩ1, λΩ1) and Ω2 = (δΩ2 , λΩ2)

be (2,1)-FSs on B, and ξ be a positive real number (ξ > 0).
We define the following operations.

1. Ω1 ⊕ Ω2 =
(√

δ2Ω1
+ δ2Ω2

− δ2Ω1
δ2Ω2

, λΩ1λΩ2

)
.

2. Ω1 ⊗ Ω2 = (
δΩ1δΩ2 , λΩ1 + λΩ2 − λΩ1λΩ2

)
.

3. ξΩ1 =
(√

1 − (1 − δ2Ω1
)ξ , λ

ξ
Ω1

)
.

4. Ω
ξ
1 =

(
δ
ξ
Ω1

, 1 − (1 − λΩ1)
ξ
)

.

Example 8 Suppose that Ω1 = (0.35, 0.85) and Ω2 =
(0.5, 0.7) are (2,1)-FSs on B = {ν}, and ξ = 3. Then

1. Ω1 ⊕ Ω2 =
(√

δ2Ω1
+ δ2Ω2

− δ2Ω1
δ2Ω2

, λΩ1λΩ2

)

=
(√

0.352 + 0.52 − (0.35)2(0.5)2, (0.85)(0.7)
)

≈ (0.5847, 0.595).

2. Ω1 ⊗ Ω2 = (
δΩ1δΩ2 , λΩ1 + λΩ2 − λΩ1λΩ2

)

= ((0.35)(0.5), 0.85 + 0.7 − (0.85 × 0.7))

= (0.175, 0.955).

3. 3Ω1 =
(√

1 − (1 − δ2Ω1
)3, λ3Ω1

)

=
(√

1 − (1 − 0.352)3, 0.853
)

≈ (0.32432, 0.614125).

4. Ω3
1 =

(
δ3Ω1

, 1 − (1 − λΩ1)
3
)

=
(
0.353, 1 − (1 − 0.85)3

)

= (0.0042875, 0.996625).

Theorem 3 If Ω1 = (δΩ1, λΩ1) and Ω2 = (δΩ2 , λΩ2) are
(2,1)-FSs on B, then Ω1 ⊕ Ω2 and Ω1 ⊗ Ω2 are (2,1)-FSs.

Proof For (2,1)-FSsΩ1 = (δΩ1, λΩ1) andΩ2 = (δΩ2 , λΩ2),
we obtain

0 ≤ (δΩ1)
2 + λΩ1 ≤ 1 and 0 ≤ (δΩ2)

2 + λΩ2 ≤ 1.

Then, we have

δ2Ω1
≥ δ2Ω1

δ2Ω2
, δ2Ω2

≥ δ2Ω1
δ2Ω2

, 0 ≤ δ2Ω1
δ2Ω2

≤ 1

and

λΩ1 ≥ λΩ1λΩ2 , λΩ2 ≥ λΩ1λΩ2 , 0 ≤ λΩ1λΩ2 ≤ 1.

This implies that

√
δ2Ω1

+ δ2Ω2
− δ2Ω1

δ2Ω2
≥ 0, and λΩ1 + λΩ2 − λΩ1λΩ2 ≥ 0.

Since δ2Ω2
≤ 1 and 0 ≤ 1 − δ2Ω1

, δ2Ω2
(1 − δ2Ω1

) ≤ (1 −
δ2Ω1

) which means that δ2Ω1
+ δ2Ω2

− δ2Ω1
δ2Ω2

≤ 1. Hence,
√

δ2Ω1
+ δ2Ω2

− δ2Ω1
δ2Ω2

≤ 1.
Following similar arguments, we obtain

λΩ1 + λΩ2 − λΩ1λΩ2 ≤ 1.

It is clear that 0 ≤ λΩ1 ≤ 1−δ2Ω1
and 0 ≤ λΩ2 ≤ 1−δ2Ω2

.

Now,
(√

δ2Ω1
+ δ2Ω2

− δ2Ω1
δ2Ω2

)2+λΩ1λΩ2 ≤ δ2Ω1
+δ2Ω2

−
δ2Ω1

δ2Ω2
+ (1 − δ2Ω1

)(1 − δ2Ω2
) = 1.

Thus, 0 ≤
(√

δ2Ω1
+ δ2Ω2

− δ2Ω1
δ2Ω2

)2 + λΩ1λΩ2 ≤ 1

which means that Ω1 ⊕ Ω2 is a (2,1)-FS.
Following similar arguments, we obtain

0 ≤ δΩ1δΩ2 ≤ 1, 0 ≤ λΩ1 + λΩ2 − λΩ1λΩ2 ≤ 1 and

0 ≤ (δΩ1δΩ2)
2 + λΩ1 + λΩ2 − λΩ1λΩ2 ≤ 1.

Hence, Ω1 ⊗ Ω2 is a (2,1)-FS. 	


Theorem 4 Let Ω = (δΩ, λΩ) be a (2,1)-FS on B and ξ be
a positive real number. Then, ξΩ and Ωξ are (2,1)-FSs.

Proof Since 0 ≤ δ2Ω ≤ 1, 0 ≤ λΩ ≤ 1 and 0 ≤ (δΩ)2 +
λΩ ≤ 1, we find

0 ≤ λΩ ≤ 1 − δ2Ω

⇒ 0 ≤ (1 − δ2Ω)ξ

⇒ 1 − (1 − δ2Ω)ξ ≤ 1

⇒ 0 ≤
√
1 − (1 − δ2Ω)ξ ≤ √

1 = 1.

It is clear that 0 ≤ λ
ξ
Ω ≤ 1, then we get

0 ≤
(√

1 − (1 − δ2Ω)ξ
)2

+ λ
ξ
Ω ≤ 1

−(1 − δ2Ω)ξ + (1 − δ2Ω)ξ = 1.
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Following similar arguments, we obtain

0 ≤ (δ
ξ
Ω)2 + (1 − (1 − λΩ)ξ )2 ≤ 1.

Hence, ξΩ and Ωξ are (2,1)-FSs. 	

Theorem 5 Let Ω1 = (δΩ1, λΩ1) and Ω2 = (δΩ2 , λΩ2) be
(2,1)-FSs on B. Then

1. Ω1 ⊕ Ω2 = Ω2 ⊕ Ω1.

2. Ω1 ⊗ Ω2 = Ω2 ⊗ Ω1.

Proof From Definition 12, we obtain:

1. Ω1 ⊕ Ω2 =
(√

δ2Ω1
+ δ2Ω2

− δ2Ω1
δ2Ω2

, λΩ1λΩ2

)

(√
δ2Ω2

+ δ2Ω1
− δ2Ω2

δ2Ω1
, λΩ2λΩ1

)
= Ω2 ⊕ Ω1.

2.
Ω1 ⊗ Ω2 = (

δΩ1δΩ2 , λΩ1 + λΩ2 − λΩ1λΩ2

)

= (
δΩ2δΩ1 , λΩ2 + λΩ1 − λΩ2λΩ1

) = Ω2 ⊗ Ω1.

	

Theorem 6 Let Ω = (δΩ, λΩ), Ω1 = (δΩ1, λΩ1) and Ω2 =
(δΩ2 , λΩ2) be (2,1)-FSs on B. Then

1. ξ(Ω1 ⊕ Ω2) = ξΩ1 ⊕ ξΩ2 for ξ > 0.
2. (ξ1 + ξ2)Ω = ξ1Ω ⊕ ξ2Ω for ξ1, ξ2 > 0.
3. (Ω1 ⊗ Ω2)

ξ = Ω
ξ
1 ⊗ Ω

ξ
2 for ξ > 0.

4. Ω(ξ1+ξ2) = Ωξ1 ⊗ Ωξ2 for ξ1, ξ2 > 0.

Proof 1.

ξ(Ω1 ⊕ Ω2) = ξ

(√
δ2Ω1

+ δ2Ω2
− δ2Ω1

δ2Ω2
, λΩ1λΩ2

)

=
(√

1 − (1 − δ2Ω1
− δ2Ω2

+ δ2Ω1
δ2Ω2

)ξ , (λΩ1λΩ2)
ξ

)

=
(√

1 − (1 − δ2Ω1
)ξ (1 − δ2Ω2

)ξ , λ
ξ
Ω1

λ
ξ
Ω2

)
.

And

ξΩ1 ⊕ ξΩ2 =
(√

1 − (1 − δ2Ω1
)ξ , λ

ξ
Ω1

)
⊕

(√
1 − (1 − δ2Ω2

)ξ , λ
ξ
Ω2

)

=
(√

1 − (1 − δ2Ω1
)ξ + 1 − (1 − δ2Ω2

)ξ − (1 − (1 − δ2Ω1
)ξ )(1 − (1 − δ2Ω2

)ξ ), λ
ξ
Ω1

λ
ξ
Ω2

)

=
(√

1 − (1 − δ2Ω1
)ξ (1 − δ2Ω2

)ξ , λ
ξ
Ω1

λ
ξ
Ω2

)
= ξ(Ω1 ⊕ Ω2).

2.

(ξ1 + ξ2)Ω = (ξ1 + ξ2)(δΩ, λΩ) =
(√

1 − (1 − δ2Ω)ξ1+ξ2 , λ
ξ1+ξ2
Ω

)

=
(√

1 − (1 − δ2Ω)ξ1(1 − δ2Ω)ξ2 , λ
ξ1+ξ2
Ω

)

=
(√

1 − (1 − δ2Ω)ξ1 + 1 − (1 − δ2Ω)ξ2 − (1 − (1 − δ2Ω)ξ1)(1 − (1 − δ2Ω)ξ2), λ
ξ1
Ωλ

ξ2
Ω

)

=
(√

1 − (1 − δ2Ω)ξ1 , λ
ξ1
Ω

)
⊕

(√
1 − (1 − δ2Ω)ξ2 , λ

ξ2
Ω

)
= ξ1Ω ⊕ ξ2Ω.

3. (Ω1 ⊗ Ω2)
ξ = (

δΩ1δΩ2 , λΩ1 + λΩ2 − λΩ1λΩ2

)ξ

= (
(δΩ1δΩ2)

ξ , 1 − (1 − λΩ1 − λΩ2 + λΩ1λΩ2)
ξ
)

=
(
δ
ξ
Ω1

δ
ξ
Ω2

, 1 − (1 − λΩ1)
ξ (1 − λΩ2)

ξ
)

=
(
δ
ξ
Ω1

, 1 − (1 − λΩ1)
ξ
)

⊗
(
δ
ξ
Ω2

, 1 − (1 − λΩ2)
ξ
)

= Ω
ξ
1 ⊗ Ω

ξ
2 .

4. Ωξ1 ⊗ Ωξ2 =
(
δ
ξ1
Ω, 1 − (1 − λΩ)ξ1

)

⊗
(
δ
ξ2
Ω, 1 − (1 − λΩ)ξ2

)

=
(
δ
ξ1+ξ2
Ω , 1 − (1 − λΩ)ξ1 + 1 − (1 − λΩ)ξ2

−(1 − (1 − λΩ)ξ1)(1 − (1 − λΩ)ξ2)
)

=
(
δ
ξ1+ξ2
Ω , 1 − (1 − λΩ)ξ1+ξ2

)

= Ω(ξ1+ξ2).

	

Theorem 7 Let Ω1 = (δΩ1 , λΩ1) and Ω2 = (δΩ2 , λΩ2) be
(2,1)-FSs on B, and ξ > 0. Then
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1. ξ(Ω1 ∪ Ω2) = ξΩ1 ∪ ξΩ2.

2. (Ω1 ∪ Ω2)
ξ = Ω

ξ
1 ∪ Ω

ξ
2 .

Proof For the two (2,1)-FSs Ω1 and Ω2, and ξ > 0, accord-
ing to Definitions 5 and 12, we obtain

1. ξ(Ω1 ∪ Ω2) = ξ(max{δΩ1, δΩ2},min{λΩ1, λΩ2})
=

(√
1 − (1 − max{δ2Ω1

, δ2Ω2
})ξ ,min{λξ

Ω1
, λ

ξ
Ω2

}
)

.

And

ξΩ1 ∪ ξΩ2 =
(√

1 − (1 − δ2Ω1
)ξ , λ

ξ
Ω1

)

∪
(√

1 − (1 − δ2Ω2
)ξ , λ

ξ
Ω2

)

=
(
max{

√
1 − (1 − δ2Ω1

)ξ ,

√
1 − (1 − δ2Ω2

)ξ },

min{λξ
Ω1

, λ
ξ
Ω2

}
)

=
(√

1 − (1 − max{δ2Ω1
, δ2Ω2

})ξ ,min{λξ
Ω1

, λ
ξ
Ω2

}
)

= ξ(Ω1 ∪ Ω2).

2. Similar to 1. 	


Theorem 8 Let Ω = (δΩ, λΩ), Ω1 = (δΩ1, λΩ1) and Ω2 =
(δΩ2 , λΩ2) be (2,1)-FSs on B, and ξ > 0. Then

1. (Ω1 ⊕ Ω2)
c = Ωc

1 ⊗ Ωc
2 .

2. (Ω1 ⊗ Ω2)
c = Ωc

1 ⊕ Ωc
2 .

3. (Ωc)ξ = (ξΩ)c.

4. ξ(Ω)c = (Ωξ )c.

Proof 1.

(Ω1 ⊕ Ω2)
c =

(√
δ2Ω1

+ δ2Ω2
− δ2Ω1

δ2Ω2
, λΩ1λΩ2

)c

=
(

√
λΩ1λΩ2 ,

(√
δ2Ω1

+ δ2Ω2
− δ2Ω1

δ2Ω2

)2
)

=
(√

λΩ1

√
λΩ2 , δ

2
Ω1

+ δ2Ω2
− δ2Ω1

δ2Ω2

)

= (
√

λΩ1, (δΩ1)
2) ⊗ (

√
λΩ2 , (δΩ2)

2)

= Ωc
1 ⊗ Ωc

2 .

2. (Ω1 ⊗ Ω2)
c = (

δΩ1δΩ2 , λΩ1 + λΩ2 − λΩ1λΩ2

)c

=
(√

λΩ1 + λΩ2 − λΩ1λΩ2 , (δΩ1δΩ2)
2
)

=
(√

λΩ1 + λΩ2 − λΩ1λΩ2 , (δΩ1)
2(δΩ2)

2
)

= (
√

λΩ1 , (δΩ1)
2) ⊕ (

√
λΩ2 , (δΩ2)

2)

= Ωc
1 ⊕ Ωc

2 .

3. (Ωc)ξ = (
√

λΩ, (δΩ)2)ξ

=
(
(
√

λΩ)ξ , 1 − (1 − δ2Ω)ξ
)

=
(√

1 − (1 − δ2Ω)ξ , λ
ξ
Ω

)c

= (ξΩ)c.

4. ξ(Ω)c = ξ(
√

λΩ, (δΩ)2)

=
(√

1 − (1 − λΩ)ξ , ((δΩ)2)ξ
)

=
(
δ
ξ
Ω, 1 − (1 − λΩ)ξ

)c

= (Ωξ )c.

	

Theorem 9 Let Ω1 = (δΩ1 , λΩ1), Ω2 = (δΩ2 , λΩ2) and
Ω3 = (δΩ3, λΩ3) be (2,1)-FSs on B. Then

1. (Ω1 ∩ Ω2) ⊕ Ω3 = (Ω1 ⊕ Ω3) ∩ (Ω2 ⊕ Ω3).

2. (Ω1 ∪ Ω2) ⊕ Ω3 = (Ω1 ⊕ Ω3) ∪ (Ω2 ⊕ Ω3).

3. (Ω1 ∩ Ω2) ⊗ Ω3 = (Ω1 ⊗ Ω3) ∩ (Ω2 ⊗ Ω3).

4. (Ω1 ∪ Ω2) ⊗ Ω3 = (Ω1 ⊗ Ω3) ∪ (Ω2 ⊗ Ω3).

Proof 1.

(Ω1 ∩ Ω2) ⊕ Ω3 = (min{δΩ1 , δΩ2 },
max{λΩ1 , λΩ2 }) ⊕ (δΩ3 , λΩ3)

=
(√

min{δ2Ω1
, δ2Ω2

} + δ2Ω3
− δ2Ω3

min{δ2Ω1
, δ2Ω2

},
max{λΩ1 , λΩ2 }λΩ3

)

=
(√

(1 − δ2Ω3
)min{δ2Ω1

, δ2Ω2
} + δ2Ω3

,

max{λΩ1λΩ3 , λΩ2λΩ3}
)
.

And (Ω1 ⊕ Ω3) ∩ (Ω2 ⊕ Ω3)

=
(√

δ2Ω1
+ δ2Ω3

− δ2Ω1
δ2Ω3

, λΩ1λΩ3

)

∩
(√

δ2Ω2
+ δ2Ω3

− δ2Ω2
δ2Ω3

, λΩ2λΩ3

)

=
(
min

{√
δ2Ω1

+ δ2Ω3
− δ2Ω1

δ2Ω3
,

√
δ2Ω2

+ δ2Ω3
− δ2Ω2

δ2Ω3

}
,

max{λΩ1λΩ3 , λΩ2λΩ3}
)
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=
(
min

{√
(1 − δ2Ω3

)δ2Ω1
+ δ2Ω3

,

√
(1 − δ2Ω3

)δ2Ω2
+ δ2Ω3

}
,

max{λΩ1λΩ3 , λΩ2λΩ3}
)

=
(√

(1 − δ2Ω3
)min{δ2Ω1

, δ2Ω2
} + δ2Ω3

,

max{λΩ1λΩ3 , λΩ2λΩ3}
)
.

Hence, (Ω1 ∩ Ω2) ⊕ Ω3 = (Ω1 ⊕ Ω3) ∩ (Ω2 ⊕ Ω3).
2. Similar to 1.

3.

(Ω1 ∩ Ω2) ⊗ Ω3 = (min{δΩ1, δΩ2},
max{λΩ1, λΩ2}) ⊗ Ω3

= (
min{δΩ1, δΩ2}δΩ3,max{λΩ1, λΩ2}

+λΩ3 − λΩ3 max{λΩ1, λΩ2}
)

= (
min{δΩ1δΩ3 , δΩ2δΩ3}, (1 − λΩ3)

max{λΩ1, λΩ2} + λΩ3

)
.

And (Ω1 ⊗ Ω3) ∩ (Ω2 ⊗ Ω3)

= (
δΩ1δΩ3 , λΩ1 + λΩ3 − λΩ1λΩ3

)

∩ (
δΩ2δΩ3 , λΩ2 + λΩ3 − λΩ2λΩ3

)

= (
δΩ1δΩ3, (1 − λΩ3)λΩ1 + λΩ3

)

∩ (
δΩ2δΩ3, (1 − λΩ3)λΩ2 + λΩ3

)

= (
min{δΩ1δΩ3 , δΩ2δΩ3},

max
{
(1 − λΩ3)λΩ1 + λΩ3, (1 − λΩ3)λΩ2 + λΩ3

})

= (
min{δΩ1δΩ3 , δΩ2δΩ3}, (1 − λΩ3)

max{λΩ1, λΩ2} + λΩ3

)
.

Hence, (Ω1 ∩ Ω2) ⊗ Ω3 = (Ω1 ⊗ Ω3) ∩ (Ω2 ⊗ Ω3).
4. Similar to 3. 	

Theorem 10 Let Ω1 = (δΩ1 , λΩ1), Ω2 = (δΩ2 , λΩ2) and
Ω3 = (δΩ3 , λΩ3) be (2,1)-FSs on B. Then

1.
Ω1 ⊕ Ω2 ⊕ Ω3 = Ω1 ⊕ Ω3 ⊕ Ω2.

2.
Ω1 ⊗ Ω2 ⊗ Ω3 = Ω1 ⊗ Ω3 ⊗ Ω2.

Proof

1.

Ω1 ⊕ Ω2 ⊕ Ω3

= (δΩ1, λΩ1) ⊕ (δΩ2 , λΩ2) ⊕ (δΩ3 , λΩ3)

=
(√

δ2Ω1
+ δ2Ω2

− δ2Ω1
δ2Ω2

, λΩ1λΩ2

)
⊕ (δΩ3, λΩ3)

=
(√

δ2Ω1
+ δ2Ω2

− δ2Ω1
δ2Ω2

+ δ2Ω3
− δ2Ω3

(δ2Ω1
+ δ2Ω2

− δ2Ω1
δ2Ω2

), λΩ1λΩ2λΩ3

)

=
(√

δ2Ω1
+ δ2Ω2

+ δ2Ω3
− δ2Ω1

δ2Ω2
− δ2Ω1

δ2Ω3
− δ2Ω2

δ2Ω3
+ δ2Ω1

δ2Ω2
δ2Ω3

, λΩ1λΩ2λΩ3

)

=
(√

δ2Ω1
+ δ2Ω3

− δ2Ω1
δ2Ω3

+ δ2Ω2
− δ2Ω2

(δ2Ω1
+ δ2Ω3

− δ2Ω1
δ2Ω3

), λΩ1λΩ2λΩ3

)

=
(√

δ2Ω1
+ δ2Ω3

− δ2Ω1
δ2Ω3

, λΩ1λΩ3

)
⊕ (δΩ2 , λΩ2)

= Ω1 ⊕ Ω3 ⊕ Ω2.

2. Similar to 1. 	


Aggregation of (2,1)-fuzzy sets

Herein, we generalize some aggregation operators to the
environment of (2,1)-Fuzzy sets, and display some formu-
las which show the relationships between them.

Definition 13 Let Ω j = (δΩ j , λΩ j ) ( j = 1, 2, . . . ,m) be a
family of (2,1)-FNs on B, and w = (w1, w2, . . . , wm)T be a
weight vector of Ω j with w j > 0 and

∑m
j=1 w j = 1. Then

1. a (2,1)-Fuzzy weighted average ((2,1)-FWA) operator is
given by

(2, 1)-FW A(Ω1,Ω2, . . . ,Ωm)

=
⎛

⎝
m∑

j=1

w jδΩ j ,

m∑

j=1

w jλΩ j

⎞

⎠ .

2. a (2,1)-Fuzzy weighted geometric ((2,1)-FWG) operator
is given by

(2, 1)-FWG(Ω1,Ω2, . . . ,Ωm) =
⎛

⎝
m∏

j=1

δ
w j
Ω j

,

m∏

j=1

λ
w j
Ω j

⎞

⎠ .
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3. a (2,1)-Fuzzy weighted power average ((2,1)-FWPA)
operator is given by

(2, 1)-FW PA(Ω1,Ω2, . . . , Ωm)

=
⎛

⎜
⎝

⎛

⎝
m∑

j=1

w jδ
2
Ω j

⎞

⎠

1
2

,

m∑

j=1

w jλΩ j

⎞

⎟
⎠ .

4. a (2,1)-Fuzzy weighted power geometric ((2,1)-FWPG)
operator is given by

(2, 1)-FW PG(Ω1, Ω2, . . . , Ωm)

=
⎛

⎜
⎝

⎛

⎝1 −
m∏

j=1

(1 − δ2Ω j
)w j

⎞

⎠

1
2

, 1 −
m∏

j=1

(1 − λΩ j )
w j

⎞

⎟
⎠ .

The next example presents the way of calculating the
aggregations operators given above.

Example 9 For the followingfive (2,1)-FNsΩ1 = (0.52, 0.7)
,Ω2 = (0.2, 0.9),Ω3 = (0.8, 0.3),Ω4 = (0.6, 0.6) and
Ω5 = (0.7, 0.4) on B = {ν}, let w = (0.3, 0.15, 0.25, 0.2,
0.1)T be a weight vector of Ω j ( j = 1, 2, . . . , 5). Then

1. (2, 1)-FW A(Ω1,Ω2, . . . ,Ω5)

= (0.52 × 0.3 + 0.2 × 0.15 + 0.8 × 0.25

+0.6 × 0.2 + 0.7 × 0.1, 0.7 × 0.3 + 0.9 × 0.15

+0.3 × 0.25 + 0.6 × 0.2 + 0.4 × 0.1)

= (0.576, 0.58).

2. (2, 1)-FWG(Ω1,Ω2, . . . ,Ω5)

= (0.520.3 × 0.20.15 × 0.80.25 × 0.60.2

×0.70.1, 0.70.3 × 0.90.15 × 0.30.25

×0.60.2 × 0.40.1) ≈ (053195, 0.53924).

3. (2, 1)-FW PA(Ω1,Ω2, . . . , Ω5)

= ((0.522 × 0.3 + 0.22 × 0.15 + 0.82 × 0.25 + 0.62

×0.2 + 0.72 × 0.1)
1
2 , 0.7 × 0.3 + 0.9 ×

0.15 + 0.3 × 0.25 + 0.6 × 0.2 + 0.4 × 0.1)

≈ (0.60673, 0.58).

4. (2, 1)-FW PG(Ω1,Ω2, . . . ,Ω5)

= ((1 − (1 − 0.522)0.3 × (1 − 0.22)0.15

×(1 − 0.82)0.25 × (1 − 0.62)0.2

×(1 − 0.72)0.1)
1
2 , 1 − (1 − 0.7)0.3 × (1 − 0.9)0.15

×(1 − 0.3)0.25 × (1 − 0.6)0.2 × (1 − 0.4)0.1)

≈ (0.633346, 0.643025).

Remark 3 Note that the values obtained from the operators
presented in the above definition need not be a (2,1)-FS. To
illustrate that, take the ordered values (0.633346, 0.643025)
given in 4 of the above example. By calculating, we find that
(0.633346)2 + 0.643025 = 1.044 > 1 which means that
(2, 1)-FW PG(Ω1,Ω2, . . . ,Ω5) is not a (2,1)-FS.

Theorem 11 Let Ω j = (δΩ j , λΩ j )(i = 1, 2, . . . ,m) be a
family of (2,1)-FNs on B, Ω = (δΩ, λΩ) be a (2,1)-FN
and w = (w1, w2, . . . , wm)T be a weight vector of Ω j with∑m

j=1 w j = 1. Then

1. (2, 1)-

FW A(Ω1 ⊕ Ω,Ω2 ⊕ Ω, . . . , Ωm ⊕ Ω) ≥ (2, 1) −
FW A(Ω1 ⊗ Ω,Ω2 ⊗ Ω, . . . , Ωm ⊗ Ω).

2. (2, 1)-

FWG(Ω1 ⊕ Ω,Ω2 ⊕ Ω, . . . ,Ωm ⊕ Ω) ≥ (2, 1) −
FWG(Ω1 ⊗ Ω,Ω2 ⊗ Ω, . . . ,Ωm ⊗ Ω).

3. (2, 1)-

FW PA(Ω1 ⊕ Ω,Ω2 ⊕ Ω, . . . , Ωm ⊕ Ω) ≥ (2, 1) −
FW PA(Ω1 ⊗ Ω,Ω2 ⊗ Ω, . . . , Ωm ⊗ Ω).

4. (2, 1)-

FW PG(Ω1 ⊕ Ω,Ω2 ⊕ Ω, . . . ,Ωm ⊕ Ω) ≥ (2, 1) −
FW PG(Ω1 ⊗ Ω,Ω2 ⊗ Ω, . . . ,Ωm ⊗ Ω).

Proof We shall give the proofs of 1 and 4. Following similar
technique, one can prove the other affirmations.
(1) For any Ω j = (δΩ j , λΩ j ) ( j = 1, 2, . . . ,m)

and Ω = (δΩ, λΩ), we obtain

√
δ2Ω j

+ δ2Ω − δ2Ω j
δ2Ω ≥

√
2δ2Ω j

δ2Ω − δ2Ω j
δ2Ω = δΩ j δΩ, and

λΩ j + λΩ − λΩ jλΩ ≥ 2λΩ j λΩ − λΩ jλΩ = λΩ j λΩ.

That is,

m∑

j=1

w j

√
δ2Ω j

+ δ2Ω − δ2Ω j
δ2Ω ≥

m∑

j=1

w jδΩ j δΩ (1)

and

m∑

j=1

w j (λΩ j + λΩ − λΩ j λΩ) ≥
m∑

j=1

w jλΩ jλΩ. (2)

According to item 1 of Definition 13 and items 1 and 2 of
Definition 12, we have

(2, 1)-FW A(Ω1 ⊕ Ω,Ω2 ⊕ Ω, . . . ,Ωm ⊕ Ω)
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=
⎛

⎝
m∑

j=1

w j

√
δ2Ω j

+ δ2Ω − δ2Ω j
δ2Ω,

m∑

j=1

w jλΩ j λΩ

⎞

⎠

and

(2, 1)-FW A(Ω1 ⊗ Ω,Ω2 ⊗ Ω, . . . , Ωm ⊗ Ω)

=
⎛

⎝
m∑

j=1

w jδΩ j δΩ,

m∑

j=1

w j (λΩ j + λΩ − λΩ j λΩ)

⎞

⎠ .

Hence, from (1) and (2), we complete the proof.
(4) For any Ω j = (δΩ j , λΩ j )( j = 1, 2, . . . ,m) and Ω =
(δΩ, λΩ), we obtain

δ2Ω j
+ δ2Ω − δ2Ω j

δ2Ω ≥ 2δ2Ω j
δ2Ω − δ2Ω j

δ2Ω = δ2Ω j
δ2Ω

⇒ 1 − (δ2Ω j
+ δ2Ω − δ2Ω j

δ2Ω) ≤ 1 − δ2Ω j
δ2Ω

⇒ (1 − (δ2Ω j
+ δ2Ω − δ2Ω j

δ2Ω))w j ≤ (1 − δ2Ω j
δ2Ω)w j

⇒
m∏

j=1

(1 − (δ2Ω j
+ δ2Ω − δ2Ω j

δ2Ω))w j

≤
m∏

j=1

(1 − δ2Ω j
δ2Ω)w j

⇒ 1 −
m∏

j=1

(1 − (δ2Ω j
+ δ2Ω − δ2Ω j

δ2Ω))w j

≥ 1 −
m∏

j=1

(1 − δ2Ω j
δ2Ω)w j .

Similarly,

⇒ 1 −
m∏

j=1

(1 − (λΩ j + λΩ − λΩ j λΩ))w j

≥ 1 −
m∏

j=1

(1 − λΩ j λΩ)w j .

According to items 1 and 2 of Definition 12, we have

(2, 1)-FW PG(Ω1 ⊕ Ω,Ω2 ⊕ Ω, . . . ,Ωm ⊕ Ω)

=
⎛

⎜
⎝

⎛

⎝1 −
m∏

j=1

(1 − (δ2Ω j
+ δ2Ω − δ2Ω j

δ2Ω))w j

⎞

⎠

1
2

,

1 −
m∏

j=1

(1 − λΩ jλΩ)w j

⎞

⎠ , and

(2, 1)-FW PG(Ω1 ⊗ Ω,Ω2 ⊗ Ω, . . . ,Ωm ⊗ Ω) =

⎛

⎜
⎝

⎛

⎝1 −
m∏

j=1

(1 − δ2Ω j
δ2Ω)w j

⎞

⎠

1
2

,

1 −
m∏

j=1

(1 − (λΩ j + λΩ − λΩ j λΩ))w j

⎞

⎠ .

Hence, (2, 1)-FW PG(Ω1⊕Ω,Ω2⊕Ω, . . . ,Ωm⊕Ω) ≥
(2, 1)-FW PG(Ω1 ⊗ Ω,Ω2 ⊗ Ω, . . . , Ωm ⊗ Ω). 	

Theorem 12 LetΩ j = (δΩ j , λΩ j ) andΓ j = (δΓ j , λΓ j )( j =
1, 2, . . . ,m) be two families of (2,1)-FSs on B, and w =
(w1, w2, . . . , wm)T beaweight vector of themwith

∑m
j=1 w j

= 1. Then

1.
(2, 1)-FW A(Ω1 ⊕ Γ1,Ω2 ⊕ Γ2, . . . , Ωm ⊕ Γm)

≥ (2, 1) − FW A(Ω1 ⊗ Γ1,Ω2 ⊗ Γ2, . . . ,Ωm ⊗ Γm).

2.
(2, 1)-FWG(Ω1 ⊕ Γ1,Ω2 ⊕ Γ2, . . . , Ωm ⊕ Γm)

≥ (2, 1) − FWG(Ω1 ⊗ Γ1,Ω2 ⊗ Γ2, . . . , Ωm ⊗ Γm).

3.
(2, 1)-FW PA(Ω1 ⊕ Γ1,Ω2 ⊕ Γ2, . . . ,Ωm ⊕ Γm)

≥ (2, 1) − FW PA(Ω1 ⊗ Γ1,Ω2 ⊗ Γ2, . . . , Ωm ⊗ Γm).

4.
(2, 1)-x FW PG(Ω1 ⊕ Γ1,Ω2 ⊕ Γ2, . . . , Ωm ⊕ Γm)

≥ (2, 1) − FW PG(Ω1 ⊗ Γ1,Ω2 ⊗ Γ2, . . . ,Ωm ⊗ Γm).

Proof We shall give the proof for 1. Following similar tech-
nique, one can prove the other affirmations.
(1) For any Ω j = (δΩ j , λΩ j ) and Γ j = (δΓ j , λΓ j ) ( j =
1, 2, . . . ,m) , we can get

√
δ2Ω j

+ δ2Γ j
− δ2Ω j

δ2Γ j
≥

√
2δ2Ω j

δ2Γ j
− δ2Ω j

δ2Γ j
= δΩ j δΓ j .

That is,

m∑

j=1

w j

√
δ2Ω j

+ δ2Γ j
− δ2Ω j

δ2Γ j
≥

m∑

j=1

w jδΩ j δΓ j .

Similarly,

m∑

j=1

w j (λΩ j + λΓ j − λΩ j λΓ j ) ≥
m∑

j=1

w jλΩ jλΓ j .

By items 1 and 2 of Definition 12, we have

(2, 1)-FW A(Ω1 ⊕ Γ1,Ω2 ⊕ Γ2, . . . ,Ωm ⊕ Γm)

=
⎛

⎝
m∑

j=1

w j

√
δ2Ω j

+ δ2Γ j
− δ2Ω j

δ2Γ j
,

m∑

j=1

w jλΩ j λΓ j

⎞

⎠
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and

(2, 1)-FW A(Ω1 ⊗ Γ1,Ω2 ⊗ Γ2, . . . ,Ωm ⊗ Γm)

=
⎛

⎝
m∑

j=1

w jδΩ j δΓ j ,

m∑

j=1

w j (λΩ j + λΓ j − λΩ j λΓ j )

⎞

⎠ .

Hence, (2, 1)-FW A(Ω1⊕Γ1,Ω2⊕Γ2, . . . ,Ωm⊕Γm) ≥
(2, 1)-FW A(Ω1 ⊗ Γ1,Ω2 ⊗ Γ2, . . . ,Ωm ⊗ Γm). 	

Theorem 13 Let Ω j = (δΩ j , λΩ j )( j = 1, 2, . . . ,m) be a
family of (2,1)-FNs on B, and w = (w1, w2, . . . , wm)T be a
weight vector of Ω j with

∑m
j=1 w j = 1 and ξ ≥ 1. Then

1. (2, 1)-FW A(ξΩ1, ξΩ2, . . . , ξΩm) ≥ (2, 1) −
FW A(Ω

ξ
1 ,Ω

ξ
2 , . . . ,Ωξ

m).

2. (2, 1)-FWG(ξΩ1, ξΩ2, . . . , ξΩm) ≥ (2, 1) −
FWG(Ω

ξ
1 ,Ω

ξ
2 , . . . ,Ωξ

m).

3. (2, 1)-FW PA(ξΩ1, ξΩ2, . . . , ξΩm) ≥ (2, 1)-

FW PA(Ω
ξ
1 ,Ω

ξ
2 , . . . ,Ωξ

m).

4. (2, 1)-FW PG(ξΩ1, ξΩ2, . . . , ξΩm) ≥ (2, 1)-

FW PG(Ω
ξ
1 ,Ω

ξ
2 , . . . ,Ωξ

m).

Proof We shall give the proof for 1. Following similar tech-
nique, one can prove the other affirmations.
(1) For any Ω j = (δΩ j , λΩ j ) ( j = 1, 2, . . . ,m), we have

(2, 1)-FW A(ξΩ1, ξΩ2, . . . , ξΩm)

=
⎛

⎝
m∑

j=1

w j

√
1 − (1 − δ2Ω j

)ξ ,

m∑

j=1

w jλ
ξ
Ω j

⎞

⎠ , and

(2, 1)-FW A(Ω
ξ
1 ,Ω

ξ
2 , . . . ,Ωξ

m)

=
⎛

⎝
m∑

j=1

w jδ
ξ
Ω j

,

m∑

j=1

w j (1 − (1 − λΩ j )
ξ )

⎞

⎠ .

Let f (δΩ j ) = 1 − (1 − δ2Ω j
)ξ − (δ2Ω j

)ξ . We demonstrate
that f (δΩ j ) ≥ 0. It follows from the Newton generalized
binomial theorem that

(1 − δ2Ω j
)ξ + (δ2Ω j

)ξ ≤ (1 − δ2Ω j
+ δ2Ω j

)ξ = 1.

This means that f (δΩ j ) ≥ 0. Now,

1 − (1 − δ2Ω j
)ξ − (δ2Ω j

)ξ ≥ 0

⇒ 1 − (1 − δ2Ω j
)ξ ≥ (δ2Ω j

)ξ

⇒
√
1 − (1 − δ2Ω j

)ξ ≥ δ
ξ
Ω j

⇒
m∑

j=1

w j

√
1 − (1 − δ2Ω j

)ξ ≥
m∑

j=1

w jδ
ξ
Ω j

.

Similarly,

m∑

j=1

w j (1 − (1 − λΩ j )
ξ ) ≥

m∑

j=1

w jλ
ξ
Ω j

.

Hence, (2, 1)-FW A(ξΩ1, ξΩ2, . . . , ξΩm) ≥ (2, 1)-

FW A(Ω
ξ
1 ,Ω

ξ
2 , . . . ,Ωξ

m).

	

Theorem 14 Let Ω j = (δΩ j , λΩ j ) ( j = 1, 2, . . . ,m) be a
family of (2,1)-FNs on B,Ω = (δΩ, λΩ) be a (2,1)-FN on B
and w = (w1, w2, . . . , wm)T be a weight vector of Ω j with∑m

j=1 w j = 1 and ξ ≥ 1. Then

1.
(2, 1)-FW A(ξΩ1 ⊕ Ω, ξΩ2 ⊕ Ω, . . . , ξΩm ⊕ Ω)

≥ (2, 1)-FW A(Ω
ξ
1 ⊗ Ω,Ω

ξ
2 ⊗ Ω, . . . ,Ωξ

m ⊗ Ω).

2.
(2, 1)-FWG(ξΩ1 ⊕ Ω, ξΩ2 ⊕ Ω, . . . , ξΩm ⊕ Ω)

≥ (2, 1)-FWG(Ω
ξ
1 ⊗ Ω,Ω

ξ
2 ⊗ Ω, . . . , Ωξ

m ⊗ Ω).

3.
(2, 1)-FW PA(ξΩ1 ⊕ Ω, ξΩ2 ⊕ Ω, . . . , ξΩm ⊕ Ω)

≥ (2, 1)-FW PA(Ω
ξ
1 ⊗ Ω,Ω

ξ
2 ⊗ Ω, . . . ,Ωξ

m ⊗ Ω).

4.
(2, 1)-FW PG(ξΩ1 ⊕ Ω, ξΩ2 ⊕ Ω, . . . , ξΩm ⊕ Ω)

≥ (2, 1)-FW PG(Ω
ξ
1 ⊗ Ω,Ω

ξ
2 ⊗ Ω, . . . ,Ωξ

m ⊗ Ω).

Proof We shall give the proof for 1. Following similar tech-
nique, one can prove the other affirmations.
(1) For any Ω j = (δΩ j , λΩ j ) ( j = 1, 2, . . . ,m) and Ω =
(δΩ, λΩ), we have

(2, 1)-FW A(ξΩ1 ⊕ Ω, ξΩ2 ⊕ Ω, . . . , ξΩm ⊕ Ω)

=
⎛

⎝
m∑

j=1

w j

√
1 − (1 − δ2Ω j

)ξ (1 − δ2Ω),

m∑

j=1

w jλ
ξ
Ω j

λΩ

⎞

⎠ ,

and(2, 1)-FW A(Ω
ξ
1 ⊗ Ω,Ω

ξ
2 ⊗ Ω, . . . ,Ωξ

m ⊗ Ω)

=
⎛

⎝
m∑

j=1

w jδ
ξ
Ω j

δΩ,

m∑

j=1

w j (1 − (1 − λΩ j )
ξ (1 − λΩ))

⎞

⎠ .

Let f (δΩ j ) = 1 − (1 − δ2Ω j
)ξ (1 − δ2Ω) − (δ2Ω j

)ξ δ2Ω . We
demonstrate that f (δΩ j ) ≥ 0. To do this, let g(δΩ j ) = (1 −
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δ2Ω j
)ξ + (δ2Ω j

)ξ . Then

g
′
(δΩ j ) = −2ξδΩ j (1 − δ2Ω j

)ξ−1 + 2ξδΩ j (δ
2
Ω j

)ξ−1

= 2ξδΩ j ((δ
2
Ω j

)ξ−1 − (1 − δ2Ω j
)ξ−1).

Now, if δΩ j > 1√
2
, then g(δΩ j ) is monotonic increas-

ing and if δΩ j < 1√
2
, then g(δΩ j ) is monotonic decreasing.

Therefore, g(δΩ j ) ≤ g(δΩ j )max = max{g(0), g(1)} = 1.
Note that (1 − δ2Ω j

)ξ (1 − δ2Ω) + (δ2Ω j
)ξ δ2Ω ≤ 1. This auto-

matically means that

f (δΩ j ) = 1 − (1 − δ2Ω j
)ξ (1 − δ2Ω) − (δ2Ω j

)ξ δ2Ω ≥ 0

⇒
m∑

j=1

w j

√
1 − (1 − δ2Ω j

)ξ (1 − δ2Ω) ≥
m∑

j=1

w jδ
ξ
Ω j

δΩ.

Similarly,

m∑

j=1

w j (1 − (1 − λΩ j )
ξ (1 − λΩ)) ≥

m∑

j=1

w jλ
ξ
Ω j

λΩ.

Hence, (2, 1)-FW A(ξΩ1⊕Ω, ξΩ2⊕Ω, . . . , ξΩm ⊕Ω) ≥
(2, 1)-FW A(Ω

ξ
1 ⊗ Ω,Ω

ξ
2 ⊗ Ω, . . . ,Ω

ξ
m ⊗ Ω). 	


According to Remark 3, we need to impose a further con-
dition to prove the following three results; this condition is
that the values obtained from the operators presented in Def-
inition 13 is a (2,1)-FS.

Theorem 15 Let Ω j = (δΩ j , λΩ j )( j = 1, 2, . . . ,m) be a
family of (2,1)-FNs on B,Ω = (δΩ, λΩ) be a (2,1)-FN on B
and w = (w1, w2, . . . , wm)T be a weight vector of Ω j with∑m

j=1 w j = 1. Then

1. (2, 1)-

FW A(Ω1 ⊕ Ω,Ω2 ⊕ Ω, . . . ,Ωm ⊕ Ω)

≥ (2, 1) − FW A(Ω1,Ω2, . . . , Ωm) ⊗ Ω.

2. (2, 1)-

FW A(Ω1,Ω2, . . . ,Ωm) ⊕ Ω

≥ (2, 1) − FW A(Ω1,Ω2, . . . , Ωm) ⊗ Ω.

3. (2, 1)-

FWG(Ω1 ⊕ Ω,Ω2 ⊕ Ω, . . . , Ωm ⊕ Ω)

≥ (2, 1) − FWG(Ω1,Ω2, . . . ,Ωm) ⊗ Ω.

4. (2, 1)-

FWG(Ω1,Ω2, . . . ,Ωm) ⊕ Ω

≥ (2, 1) − FWG(Ω1,Ω2, . . . ,Ωm) ⊗ Ω.

5. (2, 1)-

FW PA(Ω1 ⊕ Ω,Ω2 ⊕ Ω, . . . , Ωm ⊕ Ω)

≥ (2, 1) − FW PA(Ω1,Ω2, . . . ,Ωm) ⊗ Ω.

6. (2, 1)-

FW PA(Ω1,Ω2, . . . , Ωm) ⊕ Ω

≥ (2, 1) − FW PA(Ω1,Ω2, . . . ,Ωm) ⊗ Ω.

7. (2, 1)-

FW PG(Ω1 ⊕ Ω,Ω2 ⊕ Ω, . . . ,Ωm ⊕ Ω)

≥ (2, 1) − FW PG(Ω1,Ω2, . . . ,Ωm) ⊗ Ω.

8. (2, 1)-

FW PG(Ω1,Ω2, . . . ,Ωm) ⊕ Ω

≥ (2, 1) − FW PG(Ω1,Ω2, . . . ,Ωm) ⊗ Ω.

Proof Similar to the proof of Theorem 11. 	

Theorem 16 LetΩ j = (δΩ j , λΩ j ) andΓ j = (δΓ j , λΓ j )( j =
1, 2, . . . ,m) be two families of (2,1)-FSs on B, and w =
(w1, w2, . . . , wm)T beaweight vector of themwith

∑m
j=1 w j

= 1. Then

1. (2, 1)-FW A(Ω1,Ω2, . . . ,Ωm)

⊕(2, 1) − FW A(Γ1, Γ2, . . . , Γm)

≥ (2, 1) − FW A(Ω1,Ω2, . . . ,Ωm)

⊗(2, 1) − FW A(Γ1, Γ2, . . . , Γm).

2. (2, 1)-FWG(Ω1,Ω2, . . . ,Ωm)

⊕(2, 1) − FWG(Γ1, Γ2, . . . , Γm)

≥ (2, 1) − FWG(Ω1,Ω2, . . . ,Ωm)

⊗(2, 1) − FWG(Γ1, Γ2, . . . , Γm).

3. (2, 1)-FW PA(Ω1,Ω2, . . . ,Ωm)

⊕(2, 1) − FW PA(Γ1, Γ2, . . . , Γm)

≥ (2, 1) − FW PA(Ω1,Ω2, . . . ,Ωm)

⊗(2, 1) − FW PA(Γ1, Γ2, . . . , Γm).

4. (2, 1)-FW PG(Ω1,Ω2, . . . , Ωm) ⊕ (2, 1)

−FW PG(Γ1, Γ2, . . . , Γm) ≥ (2, 1)

−FW PG(Ω1,Ω2, . . . , Ωm) ⊗ (2, 1)

−FW PG(Γ1, Γ2, . . . , Γm).

Proof Similar to the proof of Theorem 12. 	
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Theorem 17 Let Ω j = (δΩ j , λΩ j )( j = 1, 2, . . . ,m) be a
family of (2,1)-FNs on B, and w = (w1, w2, . . . , wm)T be a
weight vector of Ω j with

∑m
j=1 w j = 1 and ξ ≥ 1. Then

1. ξ(2, 1)-FW A(Ω1,Ω2, . . . ,Ωm)

≥ ((2, 1) − FW A(Ω1,Ω2, . . . ,Ωm))ξ .

2. ξ(2, 1)-FWG(Ω1,Ω2, . . . ,Ωm)

≥ ((2, 1) − FWG(Ω1,Ω2, . . . ,Ωm))ξ .

3. ξ(2, 1)-FW PA(Ω1,Ω2, . . . ,Ωm)

≥ ((2, 1) − FW PA(Ω1,Ω2, . . . ,Ωm))ξ .

4. ξ(2, 1)-FW PG(Ω1,Ω2, . . . ,Ωm)

≥ ((2, 1) − FW PG(Ω1,Ω2, . . . ,Ωm))ξ .

Proof Similar to the proof of Theorem 17. 	


Application of (2,1)-FSs to MCDMproblems

We dedicated this section to investigating a MCDM problem
using the four types of aggregations operators given in the
foregoing section. We propose some algorithms that show
how this type of problem is handled, and provide an illustra-
tive example.

Representation of MCDM problems and their
algorithms under the environment of (2,1)-FSs

MCDM problems are one of the challenging and fast tech-
niques for all decision makers for getting the best alterna-
tive(s) among the set of possible ones according to multiple
criteria. To illustrate that, assume B = {bi : i = 1, 2, . . . , n}
as a set of n different alternatives that have been evalu-
ated (by the decision maker) under a set of m different
criteria C = {c j : j = 1, 2, . . . ,m}. Presume that the
decision maker estimates the preferences in terms of (2,1)-
FNs: θi j = 〈

δi j , λi j
〉
i× j , where 0 ≤ δ2i j + λi j ≤ 1 and

δi j , λi j ∈ [0, 1] for all i = 1, 2, . . . , n and j = 1, 2, . . . ,m
such that δi j and λi j respectively represent the degree that
the alternative bi fulfills and doesn’t fulfill the attribute c j
provided by the decision maker. Thus, MCDM problems
can be concisely expressed in a (2,1)-Fuzzy decision matrix
A = (θi j )n×m = 〈

δi j , λi j
〉
n×m .

In what follows , we explain the steps used in the proposed
methodology for MCDM:

Step 1 : formulate the (2,1)-Fuzzy decision matrix θ =
(θi j )n×m for a MCDM problem under study.

Step 2 : Convert (2,1)-Fuzzy decision matrix θ = (θi j )n×m

into the normalized (2,1)-Fuzzydecisionmatrix τ =
(τi j )n×m . In this step, if there are different kinds of
criteria, namely benefit X and cost Y then the rating
values of X and Y can be transformed using the

belownormalization formula: τi j =
{

θi j j ∈ X
(θi j )

c j ∈ Y
Step 3 : Assessment of the alternatives’ aggregations based

on the normalized (2,1)-Fuzzy decision matrix
given in Step 2. That is, for each alternative
bi (i = 1, 2, . . . , n), compute all types of (2,1)-
Fuzzy weighted operators given in Definition 13
(i.e., (2,1)-FWA, (2,1)-FWG, (2,1)-FWPAand (2,1)-
FWPG operators).

Step 4 : Compute the scores and accuracy functions for each
(2,1)-FNs provided in Step 3. According Remark 3
the ordered values obtained from these operators
need not be a (2,1)-FS; however, we extend the for-
mulas of scores and accuracy functions given in
Definition 10 for those ordered values.

Step 5 : Compare the given alternatives based on the scores
and accuracy.

Step 6 : Determine the optimal ranking order of the alterna-
tives and recognize the optimal alternative(s) using
Definition 10

Herein, we provide an algorithm for each aggregation
operator: Algorithm 1 for (2,1)-FWA operator, Algorithm 2
for (2,1)-FWG operator, Algorithm 3 for (2,1)-FWPA oper-
ator, and Algorithm 4 for (2,1)-FWPG operator.

Input : The set of alternatives B and the set of multi criteria C .
Output: select the most desirable alternative(s).

1 Initiate (2,1)-Fuzzy decision matrix θ = (θi j )n×m for a MCDM
problem under study;

2 Convert (2,1)-Fuzzy decision matrix θ = (θi j )n×m into the
normalized (2,1)-Fuzzy decision matrix τ = (τi j )n×m ;

3 Compute (2,1)-FWA operator (using the formula given in
Definition 13) for each alternative bi (i = 1, 2, . . . , n);

4 foreach i ≤ n do
5 Compute score function induced from (2,1)-FWA operator

for bi .
6 end
7 Let D = {bi : score(bi ) = max{score(bi ) : i = 1, 2, . . . , n}};
8 if D is a singleton set, say, bk then
9 return bk is the desirable (optimal) alternative.

10 else
11 Compute accuracy function induced from (2,1)-FWA

operator for bi ∈ D;
12 Let E = {bi : acc(bi ) = max{acc(bi ) : bi ∈ D}};
13 return each bk ∈ E represents a desirable (an optimal)

alternative;
14 end

Algorithm 1: The algorithm of selection the optimal
alternative(s) with respect to (2,1)-FWA operator
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Input : The set of alternatives B, and the set of multi criteria C .
Output: select the most desirable (optimal) alternative.

1 Initiate (2,1)-Fuzzy decision matrix θ = (θi j )n×m for a MCDM
problem under study;

2 Convert (2,1)-Fuzzy decision matrix θ = (θi j )n×m into the
normalized (2,1)-Fuzzy decision matrix τ = (τi j )n×m ;

3 Compute (2,1)-FWG operator (using the formula given in
Definition 13) for each alternative bi (i = 1, 2, . . . , n);

4 foreach i ≤ n do
5 Compute score function induced from (2,1)-FWG operator

for bi .
6 end
7 Let D = {bi : score(bi ) = max{score(bi ) : i = 1, 2, . . . , n}};
8 if D is a singleton set, say, bk then
9 return bk is the desirable (optimal) alternative.

10 else
11 Compute accuracy function induced from (2,1)-FWG

operator for bi ∈ D;
12 Let E = {bi : acc(bi ) = max{acc(bi ) : bi ∈ D}};
13 return each bk ∈ E represents a desirable (an optimal)

alternative;
14 end

Algorithm 2: The algorithm of selection the optimal
alternative(s) with respect to (2,1)-FWG operator

Input : The set of alternatives B, and the set of multi criteria C .
Output: select the most desirable alternative(s).

1 Initiate (2,1)-Fuzzy decision matrix θ = (θi j )n×m for a MCDM
problem under study;

2 Convert (2,1)-Fuzzy decision matrix θ = (θi j )n×m into the
normalized (2,1)-Fuzzy decision matrix τ = (τi j )n×m ;

3 Compute (2,1)-FWPA operator (using the formula given in
Definition 13) for each alternative bi (i = 1, 2, . . . , n);

4 foreach i ≤ n do
5 Compute score function induced from (2,1)-FWPA operator

for bi .
6 end
7 Let D = {bi : score(bi ) = max{score(bi ) : i = 1, 2, . . . , n}};
8 if D is a singleton set, say, bk then
9 return bk is the desirable (optimal) alternative.

10 else
11 Compute accuracy function induced from (2,1)-FWPA

operator for bi ∈ D;
12 Let E = {bi : acc(bi ) = max{acc(bi ) : bi ∈ D}};
13 return each bk ∈ E represents a desirable (an optimal)

alternative;
14 end

Algorithm 3: The algorithm of selection the optimal
alternative(s) with respect to (2,1)-FWPA operator

In Fig. 3, we display the flow chart of selection the optimal
alternative(s) with respect to (2,1)-FWA operator. Similarly,
the flow charts induced from the other operators are dis-
played.

Input : The set of alternatives B, and the set of multi criteria C .
Output: select the most desirable alternative(s).

1 Initiate (2,1)-Fuzzy decision matrix θ = (θi j )n×m for a MCDM
problem under study;

2 Convert (2,1)-Fuzzy decision matrix θ = (θi j )n×m into the
normalized (2,1)-Fuzzy decision matrix τ = (τi j )n×m ;

3 Compute (2,1)-FWPG operator (using the formula given in
Definition 13) for each alternative bi (i = 1, 2, . . . , n);

4 foreach i ≤ n do
5 Compute score function induced from (2,1)-FWPG operator

for bi
6 end
7 Let D = {bi : score(bi ) = max{score(bi ) : i = 1, 2, . . . , n}};
8 if D is a singleton set, say, bk then
9 return bk is the desirable (optimal) alternative.

10 else
11 Compute accuracy function induced from (2,1)-FWPG

operators for bi ∈ D;
12 Let E = {bi : acc(bi ) = max{acc(bi ) : bi ∈ D}};
13 return each bk ∈ E represents a desirable (an optimal)

alternative;
14 end

Algorithm 4: The algorithm of selection the optimal
alternative(s) with respect to (2,1)-FWPG operator

Illustrative examples

In this subsection, we explain the above-mentioned
approaches by the following example which investigated a
multiple criteria decision-making problem.

Example 10 Assume that a certain university wants to assign
a permanent faculty member from the set of candidatesU =
{Redhwan, Al-Harith, Mustafa, Bushra, Sarah}. For this, the
university authorities consider the following five criteriaC =
{ci : i = 1, 2, 3, 4, 5}, where:

– c1 represents the number of research publications,
– c2 represents the teaching experience,
– c3 represents the regularity and punctuality,
– c4 represents the number of conferences participated, and
– c5 represents the behaviorwith students through the class.

After a deep discussion, a committee (forms by the uni-
versity authorities) proposed a weight vector corresponding
to every criteria ω = (0.25, 0.35, 0.1, 0.1, 0.2)T . A commit-
tee assesses the performance of these candidates under the
(2,1)-FSs environment as given in Table 1. Every ordered
pair (δ, λ) given in Table 1 represents the membership and
non-membership degrees of a candidate to fulfill and dis-
satisfy the corresponding criteria (or attribute) such that
0 ≤ (δ)2 + λ ≤ 1 and δ, λ lie in [0, 1].

Assume that the proposed approach for accessing the best
candidate with appreciation to every criterion provided using
the committee is furnished according to the different types
of (2,1)-FS operators introduced in Definition 13. Then, we
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Start

Input the sets of
alternatives B and
multi criteria C

Initiate (2,1)-Fuzzy
decision matrix θ =

(θij)n×m for a MCDM
problem under study

Convert (2,1)-Fuzzy deci-
sion matrix θ = (θij)n×m

into the normalized
(2,1)-Fuzzy decision
matrix τ = (τij)n×m

Compute (2,1)-FWA
operator (using the for-
mula given in Definition
13) for each alterna-
tive bi (i = 1, 2, ..., n)

Compute score function
induced from (2,1)-
FWA operator for bi.

Let D = {bi : score(bi) =
max{score(bi) :
i = 1, 2, ..., n}}

Is D a singleton?

D represents the
desirable (optimal)

alternative

Stop

Compute accuracy func-
tion induced from (2,1)-
FWG operator for bi ∈ D

Let E = {bi : acc(bi) =
max{acc(bi) : bi ∈ D}}

E represents a set of
desirable (optimal)

alternative(s)

No

Yes

Fig. 3 Flow chart of selection the optimal alternative(s) with respect to
(2,1)-FWA operator

compute the score function for each candidate. If there are
some candidates who have the same score function, then we
compute their accuracy function to decide who is the optimal
candidate(s); see, Table 2.

According to the computations induced from the four
operators of aggregation, we find that the optimal ranking
order of thefive candidates induced froma (2, 1)-FW A oper-
ator is Sarah. It should be noted that the candidates Redhwan
and Sarah are equal with respect to the score function; so that,
we complete comparison by computing their accuracy func-
tions which show that Sarah is the best candidates to get this
job. The rank of the candidates induced from a (2, 1)-FW A
operator is

Sarah � Redhwan � Bushra � Mustafa � Al-Harith.

On the other hand, note that the values of score functions
induced from the other aggregation operators are distinct
for all candidates, so there is no need to compute the
accuracy function. Thus, the rank of the five candidates
respectively induced from (2, 1)-FWG, (2, 1)-FW PA and
(2, 1)-FW PG operators are

Redhwan � Sarah � Mustafa � Bushra � Al-Harith.

Sarah � Bushra � Redhwan � Mustafa � Al-Harith.

Bushra � Redhwan � Sarah � Mustafa � Al-Harith.

It can be noted from the above discussion that the selec-
tion of the optimal permanent facultymember is based on two
factors, first one is the type of generalizations of IFSs, which
is herein a (2,1)-FS. The second one is the aggregation oper-
ator provided by the committee to evaluate the performance
of the candidates.

Conclusions

In this paper, we have established a new class of orthopair
fuzzy sets, namely (2,1)-Fuzzy sets. Two of the merits of
this class are to, first, enlarge the space of membership and
non-membership more than IFSs, which means overcoming
some limitations of IFS in handling some situations that have
the sum of membership and nonmembership grades exceed
one. Second, to offer a convenient frame to model some real-
life problems that are evaluated with different importance of
their membership and non-membership grades. On the other
hand, the limitation of the proposed class is that its grades
space is smaller than the grades space of q-rung orthopair
fuzzy sets.

Our contributions through the manuscript are as follows.
We have defined some operations for (2,1)-Fuzzy sets and
presented main characterizations. In addition, we have intro-
duced four types of aggregation operators in the environment
of (2,1)-Fuzzy sets and reveled the relationships among them.
Ultimately,wehave exploited the proposed aggregation oper-
ators to address the decision-making issues and provided the
algorithms used in the evaluationwith a flowchart. A numeri-
cal example has been given to showhow the followedmethod
assisted us with being effective in decision problems.

In future works, we intend to display a novel class of
orthopair fuzzy sets that forms an umbral for all the gen-
eralizations of IFSs. Theoretically, we shall benefit from
(2,1)-Fuzzy sets to construct a new type of fuzzy topologies.
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Table 1 (2,1)-Fuzzy numbers Candidates c1 c2 c3 c4 c5

Redhwan (0.7, 0.4) (0.5, 0.35) (0.6, 0.45) (0.4, 0.4) (0.7, 0.3)

Al−Harith (0.3, 0.8) (0.7, 0.5) (0.75, 0.35) (0.25, 0.85) (0.7, 0.35)

Mustafa (0.75, 0.2) (0.6, 0.6) (0.2, 0.8) (0.5, 0.4) (0.8, 0.35)

Bushra (0.8, 0.35) (0.75, 0.42) (0.55, 0.65) (0.1, 0.75) (0.6, 0.45)

Sarah (0.7, 0.476625) (0.65, 0.55) (0.15, 0.9) (0.85, 0.2) (0.85, 0.25)

Table 2 Evaluation of scores with (2,1)-Fuzzy aggregation operators

Redhwan Al-Harith Mustafa Bushra Sarah

(2, 1)-FW A (0.59, 0.3675) (0.56, 0.565) (0.6275, 0.45) (0.6475, 0.4645) (0.6725, 0.47165625)

Score −0.0194 −0.2514 −0.05624375 −0.04524375 −0.0194

Accuracy 0.7156 0.8786 0.83376 0.88376 0.92391

(2, 1)-FWG (0.579368, 0.364662) (0.514499, 0.532812) (0.591202, 0.404519) (0.577711, 0.450396) (0.619768, 0.430315)

Score −0.028995 −0.268103 −0.054999 −0.116646 −0.046203

(2, 1)-FW PA (
√
0.36, 0.3675) (

√
0.3545, 0.565) (

√
0.423625, 0.45) (

√
0.460125, 0.4645) (

√
0.489375, 0.471656)

Score −0.0075 −0.2105 −0.026375 −0.004375 0.017719

(2, 1)-FW PG (
√
0.372341, 0.369147) (

√
0.383094, 0.6186) (

√
0.451216, 0.490676) (

√
0.488822, 0.483938) (

√
0.526384, 0.528318)

Score 0.003194 −0.235506 −0.03946 0.004884 −0.001934
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