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ABSTRACT

We introduce a powerful seminumeric modelling tool, 21CMFAST, designed to efficiently sim-

ulate the cosmological 21-cm signal. Our code generates 3D realizations of evolved density,

ionization, peculiar velocity and spin temperature fields, which it then combines to compute the

21-cm brightness temperature. Although the physical processes are treated with approximate

methods, we compare our results to a state-of-the-art large-scale hydrodynamic simulation, and

find good agreement on scales pertinent to the upcoming observations (�1 Mpc). The power

spectra from 21CMFAST agree with those generated from the numerical simulation to within

10s of per cent, down to the Nyquist frequency. We show results from a 1-Gpc simulation

which tracks the cosmic 21-cm signal down from z = 250, highlighting the various interesting

epochs. Depending on the desired resolution, 21CMFAST can compute a redshift realization on

a single processor in just a few minutes. Our code is fast, efficient, customizable and publicly

available, making it a useful tool for 21-cm parameter studies.

Key words: methods: numerical – galaxies: high redshift – dark ages, reionization, first

stars – diffuse radiation – early Universe – large-scale structure of Universe.

1 IN T RO D U C T I O N

Through challenging observational efforts, the high-redshift fron-

tier has been incrementally pushed back in recent years. Glimpses

of the z ∼ 6–8 Universe were provided by quasars (e.g. Fan et al.

2006), candidate Lyman break galaxies (e.g. Bouwens et al. 2008,

2009; McLure et al. 2009; Ouchi et al. 2009), Lyman alpha emit-

ters (LAEs; e.g. Kashikawa et al. 2006; Shimasaku et al. 2006) and

GRBs (e.g. Cusumano et al. 2006; Greiner et al. 2009; Salvaterra

et al. 2009). Unfortunately, these precious observations currently

provide only a limited set of relatively bright objects. Luckily, we

will soon be inundated with observations probing this and even ear-

lier epochs. These observations should include infrared spectra from

the James Webb Space Telescope (JWST), the Thirty Meter Tele-

scope (TMT), the Giant Magellan Telescope (GMT), the European

Extremely Large Telescope (E-ELT), wide-field LAE surveys from

the Subaru HyperSupremeCam, as well as the E-mode CMB po-

larization power spectrum measured by the Planck satellite. Some

of the most important information will come in the form of the

redshifted 21-cm line of neutral hydrogen. Several interferometers

will attempt to observe the cosmological 21-cm signal, including

the Mileura Wide Field Array (MWA; Bowman, Morales & Hewitt

⋆E-mail: mesinger@astro.princeton.edu

†Hubble Fellow.

2005),1 the Low Frequency Array (LOFAR; Harker et al. 2010),2

the Giant Metrewave Radio Telescope (GMRT; Pen et al. 2008),

the Precision Array to Probe the Epoch of Reionization (PAPER;

Parsons et al. 2009) and eventually the Square Kilometer Array

(SKA).3 The first generation of these instruments, most notably

LOFAR and MWA, are not only scheduled to become operational

within a year, but should also yield insight into the 3D distribution

of HI, provided the systematics can be overcome (see the recent re-

views of Furlanetto, Oh & Briggs 2006a; Morales & Wyithe 2009).

However, interpreting this data will be quite challenging and no

doubt controversial, as foreshadowed by the confusion surround-

ing the scant, currently available observations. There are two main

challenges to overcome: (1) an extremely large parameter space,

due to our poor understanding of the high-redshift Universe; (2) an

enormous dynamic range (i.e. range of relevant scales).

Theoretically, the dawn of the first astrophysical objects and

reionization could be modelled from first principles using numerical

simulations, which include the complex interplay of many physical

processes. In practice however, simulating these epochs requires

enormous simulation boxes. Gigaparsec scales are necessary to sta-

tistically model ionized regions and absorption systems or create

accurate mock spectra from the very rare high-redshift quasars.

1 http://web.haystack.mit.edu/arrays/MWA/
2 http://www.lofar.org
3 http://www.skatelescope.org/
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956 A. Mesinger, S. Furlanetto and R. Cen

However, the simulations also require high enough resolution to re-

solve the underlying sources and sinks of ionizing photons and the

complex small-scale feedback mechanisms which regulate them.

Thus one is forced to make compromises: deciding which physical

processes can be ignored, and how the others can be parametrized

and efficiently folded into large-scale models. Furthermore, large-

scale simulations are computationally costly (even when they sacri-

fice completeness for speed by ignoring hydrodynamic processes)

and thus are inefficient in large parameter studies.

On the other hand, analytic models, while more approximate, are

fast and can provide physical insight into the import of various pro-

cesses. However, analytical models are hard-pressed to go beyond

the linear regime, and beyond making fairly simple predictions such

as the mean 21-cm signal (Furlanetto 2006), the probability den-

sity function (PDF; Furlanetto, Zaldarriaga & Hernquist 2004a) and

power spectrum (Pritchard & Furlanetto 2007; Barkana 2009). The

21-cm tomographic signal should be rich in information, accom-

modating many additional, higher-order statistical probes, such as

the bispectrum (Pritchard et al., in preparation), the difference PDF

(Barkana & Loeb 2008), etc.

In this paper, we follow a path of compromise, attempting

to preserve the most useful elements of both analytic and nu-

meric approaches. We introduce a self-consistent, seminumeri-

cal4 simulation, specifically optimized to predict the high-redshift

21-cm signal. Through a combination of the excursion-set for-

malism and perturbation theory, our code can generate full 3D

realizations of the density, ionization, velocity, spin temperature

and ultimately 21-cm brightness temperature fields. Although the

physical processes are treated with approximate methods, our re-

sults agree well with a state-of-the-art hydrodynamic simulation

of reionization. However, unlike numerical simulations, realiza-

tions are computationally cheap and can be generated in a mat-

ter of minutes on a single processor, with modest memory re-

quirements. Most importantly, our code is publicly available at

http://www.astro.princeton.edu/∼mesinger/Sim.html. We name our

simulation 21CMFAST.

Seminumerical approaches have already proved invaluable in

reionization studies (Zahn et al. 2005; Mesinger & Furlanetto

2007; Geil & Wyithe 2008; Alvarez et al. 2009; Choudhury,

Haehnelt & Regan 2009; Thomas et al. 2009). Indeed, 21CMFAST is a

more specialized version of our previous code, DEXM (Mesinger &

Furlanetto 2007; hereafter MF07). The difference between the two

is that 21CMFAST bypasses the halo finding algorithm, resulting in a

faster code with a larger dynamic range and more modest memory

requirements. In this work, we also introduce some new additions

to our code, mainly to compute the spin temperature.

In Section 2, we compare predictions from 21CMFAST with those

from hydrodynamic simulations of the various physical components

comprising the 21-cm signal in the post-heating regime. Density,

ionization, peculiar velocity gradient and full 21-cm brightness tem-

perature fields are explored in Sections 2.1, 2.2, 2.3, 2.4, respec-

tively. In Section 3, we introduce our method for computing the

spin temperature fields, with results from the complete calculation

(including the spin temperature) presented in Section 3.3. Finally

in Section 4, we summarize our findings.

Unless stated otherwise, we quote all quantities in comoving

units. We adopt the background cosmological parameters (��, �M,

�b, n, σ 8, H0) = (0.72, 0.28, 0.046, 0.96, 0.82, 70 km s−1 Mpc−1),

4 By ‘seminumerical’ we mean using more approximate physics than numer-

ical simulations, but capable of independently generating 3D realizations.

matching the 5-yr results of the WMAP satellite (Komatsu et al.

2009).

2 21 -cm TEMPERATURE FLUCTUATI ONS

POST-HEATING ( TS ≫ Tγ )

Our ultimate goal is to compute the 21-cm background, which

requires a number of physics components. To identify them, note

that the offset of the 21-cm brightness temperature from the CMB

temperature, Tγ , along a line of sight (LOS) at observed frequency

ν, can be written as (cf. Furlanetto et al. 2006a):

δTb(ν) =
TS − Tγ

1 + z
(1 − e−τν0 )

≈ 27xH I(1 + δnl)

(

H

dvr/dr + H

) (

1 −
Tγ

TS

)

×

(

1 + z

10

0.15

�Mh2

)1/2 (

�bh
2

0.023

)

mK, (1)

where TS is the gas spin temperature; τν0
is the optical depth at the

21-cm frequency ν0; δnl(x, z) ≡ ρ/ρ̄ − 1 is the evolved (Eulerian)

density contrast; H(z) is the Hubble parameter; dvr/dr is the co-

moving gradient of the LOS component of the comoving velocity;

and all quantities are evaluated at redshift z = ν0/ν − 1. The final

approximation makes the assumption that dvr/dr ≪ H, which is

generally true for the pertinent redshifts and scales, though we shall

return to this issue in Section 2.3.

In this comparison section, we make the standard, simplifying

assumption of working in the post-heating regime: TS ≫ Tγ . For

fiducial astrophysical models, this is likely a safe assumption during

the bulk of reionization (Furlanetto 2006; Chen & Miralda-Escudé

2008; Santos et al. 2008; Baek et al. 2009). We will however revisit

this assumption in Section 3, where we introduce our method for

computing the spin temperature field.

The remaining components of equation 1 are the density, δnl,

the ionization, xH I, and the velocity gradient, dvr/dr. Below, we

study these in turn, comparing 21CMFAST to the hydrodynamic cos-

mological simulation of Trac, Cen & Loeb (2008), using the same

initial conditions (ICs). We perform ‘by-eye’ comparisons at vari-

ous redshifts/stages of reionization, as well as one- and two-point

statistics: the PDFs (smoothed on several scales), and the power

spectra. Since our code is designed to simulate the cosmological

21-cm signal from neutral hydrogen, we study the regime before

the likely completion of reionization, z � 7 (though the present data

are even consistent with reionization completing at z � 6; Lidz et al.

2007; Mesinger 2009).

The simulations of Trac et al. (2008) are the current ‘state-of-the-

art’ reionization simulations. They include simultaneous treatment

of dark matter (DM) and gas, five-frequency radiative transfer (RT)

on a 5123 grid, and they resolve Mhalo � 108 M⊙ ionizing sources

with �40 DM particles in a 143-Mpc box.

2.1 Evolved density field

We calculate the evolved density field in the same fashion as in

the ‘parent’ code, DEXM, outlined in MF07. In short, we generate

density and velocity ICs in initial (Lagrangian) space, in roughly

the same manner as numerical cosmological simulations. We then

approximate gravitational collapse by moving each initial matter

particle (whose mass is the total mass in the corresponding IC

cell) according to first-order perturbation theory (Zel’Dovich 1970).

First-order perturbation theory is very computationally convenient,

C© 2010 The Authors, MNRAS 411, 955–972
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21CMFAST 957

Figure 1. Slices through the density field, �(x, z), for the gas; DM, linearly extrapolated ICs; and 21CMFAST, at z = 7 (clockwise from top left). Each slice is

143 Mpc on a side and 0.19 Mpc thick.

as the displacement field is a separable function of space and time,

so the spatial component need only be computed once for each

realization/box. There is no separate treatment of baryons and DM.

Readers interested in more details concerning this approach are

encouraged to check MF07.

This approach to generating large-scale density fields was also

adopted by Choudhury et al. (2009) and Santos et al. (2009), who

briefly showed that the resulting fields at high z traced the DM dis-

tribution from an N-body code fairly well. Here we perform more

extensive comparisons. The Lagrangian space ICs used for 21CMFAST

were initialized at z = 300 on a 15363 grid. The velocity fields used

to perturb the ICs, as well as the resulting density fields presented be-

low are 7683.5 We show results from both 7683 and 2563 boxes. We

5 Our code allows the ICs to be sampled on to a high-resolution, HI-RES-

DIM3, grid, while the subsequent evolved density, ionization, etc. fields

can be created at lower resolution, LOW-RES-DIM3. This allows efficient

use of available memory, with the code storing at most HI-RES-DIM3 +

4 × LOW-RES-DIM3 floating point numbers in RAM. However, the

Zel’Dovich perturbation approach, just as numerical simulations, requires

highlight here that it takes ∼10 min to generate the 7683
21CMFAST

density field from the 15363 ICs at z = 7 on a single-processor

Mac Pro desktop computer. To put this into perspective, a hydro-

dynamical simulation of this single realization would take approx-

imately 3 d to run down to z = 7 on a 1536-node supercomputing

cluster.

In Fig. 1, we show a slice through the evolved density field,

�(x, z) ≡ 1 + δnl, at z = 7. Density fields computed from the gas,

DM, linearly extrapolated ICs, and 21CMFAST are shown clockwise

from the top left panel. It is evident that the Zel’Dovich approx-

imation works quite well for this purpose, accurately reproduc-

ing the cosmic web. We do not capture baryonic physics, and so

the 21CMFAST output looks more similar to the DM than the gas.

that the evolved fields are adequately resolved by the high-resolution grid.

Failure to do so can substantially underestimate the fluctuations in the den-

sity field. We roughly find that the high-resolution grid should have cell

sizes �1 Mpc to accurately model density fields at redshifts of interest (z

� 40). For larger cell sizes, �10 Mpc, the linear theory evolution option of

21CMFAST should be used.

C© 2010 The Authors, MNRAS 411, 955–972
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958 A. Mesinger, S. Furlanetto and R. Cen

Figure 2. PDFs of the density fields smoothed on scale Rfilter, computed from the gas (solid red curves), DM (dotted green curves) and 21CMFAST (dashed blue

curves) fields, at z = 20, 15, 10, 7 (top to bottom). The left-hand panel corresponds to Rfilter = 0.5 Mpc; the right-hand panel corresponds to Rfilter = 5 Mpc.

All smoothing was performed with a real-space, top-hat filter.

However, hydrodynamics is not included even in most of the

present-day cosmological (�100 Mpc) simulations (e.g. Iliev et al.

2006; McQuinn et al. 2007; see the recent review in Trac & Gnedin

2009).

Also, note that the linear density field is only accurate on large

scales (�10 Mpc at z ∼ 7). Thus care should be taken in applying

tools which rely on the linear density field (such as the standard

excursion set formalism) at smaller scales. Nevertheless, we include

in 21CMFAST a feature to evolve the density field using fully linear

evolution, instead of the perturbation approach discussed above.

This allows one to generate extremely large boxes at low resolution.

When using this feature, one should make sure that the chosen cell

size is indeed in the linear regime at the redshift of interest. Some

results making use of this feature are presented below.

In Fig. 2, we show the PDFs of the density fields smoothed on

scale Rfilter, computed from the gas (solid red curves), DM (dotted

green curves) and 21CMFAST (dashed blue curves) fields, at z = 20, 15,

10, 7 (top to bottom). From the left-hand panel (Rfilter = 0.5 Mpc),

we see that as structure formation progresses, we tend to increas-

ingly overpredict the abundance of small-scale underdensities, and

underpredict the abundance of large-scale overdensities. However,

even at z = 7, our PDFs are accurate at the per cent level to over a dex

around the mean density. Understandably, the agreement between

the PDFs becomes better with increasing scale (see the right-hand

panel corresponding to Rfilter = 5 Mpc). Interestingly, the DM dis-

tributions match the gas quite well, although this is somewhat of a

coincidence, as we shall see from the power spectra below.

In Fig. 3, we present the density power spectra, defined as

�2
δδ(k, z) = k3/(2π

2V )〈|δ(k, z)|2〉k . The solid red, dotted green

and dashed blue curves correspond to the gas, DM and 21CMFAST

fields, respectively. On small scales (k � 5 Mpc−1), the three fields

have different power. The collapse of gas is initially delayed with

respect to the pressureless DM, resulting in less small-scale power.

The perturbation theory approach of 21CMFAST is closer in spirit to

the DM evolution, but does not capture virialized structure. In fact

the close agreement at z = 7 between the gas and 21CMFAST den-

Figure 3. Density power spectra, �2
δδ(k, z), of the gas (solid red curves),

DM (dotted green curves) and 21CMFAST (dashed blue curves) fields, at at z

= 20, 15, 10, 7 (top to bottom).

sity power spectra is a coincidence, with the small-scale flattening

of the 21CMFAST power attributable to ‘shell-crossing’ by the matter

particles in the Zel’Dovich approximation. During reionization, the

evolution of the gas is very complicated, since the power spectrum

on small scales is sensitive to the thermal history of the reionization

model (e.g. Hui & Gnedin 1997).

On large scales (k � 0.5 Mpc−1), all three power spectra agree

remarkably at all epochs. To put this into perspective, neither the

MWA nor LOFAR has sufficient signal-to-noise to detect the 21-cm

signal beyond k � 2 Mpc−1 (e.g. McQuinn et al. 2006).

C© 2010 The Authors, MNRAS 411, 955–972
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21CMFAST 959

2.2 Ionization field

We use a new, refined, seminumeric algorithm, FFRT, presented in

Zahn et al. (2010) to generate ionization fields, xH I(x, z). The ioniza-

tion fields have been exhaustively compared against cosmological

RT codes in Zahn et al. (2010), yielding a good agreement across

a broad range of statistical diagnostics on moderate to large scales.

Thus, we will not present further tests here. Instead, we merely

outline the procedure, and motivate some aspects with regards to

the goals of 21CMFAST: speed and efficiency.

We use the excursion-set approach for identifying H II regions,

pioneered by Furlanetto, Zaldarriaga & Hernquist (2004b). The

foundation of this approach is to require that the number of ionizing

photons inside a region be larger than the number of hydrogen atoms

it contains. Then ionized regions are identified via an excursion-set

approach, starting at large scales and progressing to small scales,

analogous to the derivation of the Press–Schechter (PS) mass func-

tions (Bond et al. 1991; Lacey & Cole 1993).

Specifically, we flag fully ionized cells in our box as those which

meet the criteria fcoll(x, z, R) ≥ ζ−1, where ζ is some efficiency

parameter and fcoll(x, z, R) is the collapse fraction smoothed on

decreasing scales, starting from a maximum Rmax and going down

to the cell size, Rcell. Additionally, we allow for partially ionized

cells by setting the cell’s ionized fraction to ζfcoll(x, z, Rcell) at

the last filter step for those cells which are not fully ionized.6 The

ionizing photon horizon, Rmax, is a free parameter which can be

chosen to match the extrapolated ionizing photon mean free path,

in the ionized IGM, at z ∼ 7–10 (e.g. Storrie-Lombardi et al. 1994;

Miralda-Escudé 2003; Choudhury, Ferrara & Gallerani 2008). The

photon sinks dominating the mean free path of ionizing photons

are likely too small to be resolved in reionization simulations. An

effective horizon due to photon sinks can delay the completion of

reionization (e.g. Choudhury et al. 2009; Furlanetto & Mesinger

2009), and cause a drop in large-scale 21-cm power, as we shall see

below.

There are two main differences between FFRT used in 21CMFAST

and the previous incarnation of our H II bubble finder used in DEXM

(MF07): (1) the use of the halo finder to generate ionization fields in

DEXM (MF07) versus using the evolved density field and conditional

PS to generate ionization fields in 21CMFAST; and (2) the bubble-

flagging algorithm, which in MF07 is taken to paint the entire

spherical region enclosed by the filter as ionized (‘flagging-the-

entire-sphere’), whereas for 21CMFAST we just flag the central cell

as ionized (‘flagging-the-central-cell’; for more information, see

MF07; Zahn et al. 2007; and the appendix in Zahn et al. (2010).

These default settings of 21CMFAST were chosen to maximize speed

and dynamic range, while minimizing the memory requirements.

Nevertheless, they are left as user-adjustable options in the codes.

The first difference noted above means that 21CMFAST does not ex-

plicitly resolve source haloes. In MF07, we made use of a seminu-

merically generated halo field, which accurately reproduces N-body

halo fields down to non-linear scales (MF07; Mesinger et al., in

preparation). As in numerical reionization simulations, these haloes

6 Our algorithm can also optionally account for Poisson fluctuations

in the halo number, when the mean collapse fraction becomes small,

fcoll(x, z, Rcell) × Mcell < 50Mmin, where Mcell is the total mass within

the cell and our faintest ionizing sources correspond to a halo mass of Mmin.

This last step is found to be somewhat important when the cell size increases

to �1 Mpc (see the appendix in Zahn et al. 2010). This is left as an option

since turning off such stochastic behaviour allows the user to better track

the deterministic redshift evolution of a single realization.

were assumed to host ionizing sources. However, the intermediate

step of generating such halo source fields adds additional compu-

tation time, and generally requires many GB of RAM for typical

cosmological uses. Also as in numerical simulations, this memory

requirement means that simulation boxes are limited to �200 Mpc

if they wish to resolve atomically cooled haloes at z = 7–10, and

even smaller sizes if they wish to resolve these at higher redshifts

or resolve molecularly cooled haloes. Although DEXM’S halo finder

is much faster than N-body codes, and can generate halo fields at

a given redshift in a few hours on a single processor, extending

the dynamic range even further without hundreds of GB of RAM

would be very useful. Alternatives to extending the dynamic range

have been proposed by McQuinn et al. (2007); Santos et al. (2009).

These involve stochastically populating cells with haloes below the

resolution threshold. Although computationally efficient, it is un-

clear if these alternatives preserve higher-order statistics of the non-

Gaussian fcoll(x, z, R) field, as each cell is treated independently

of the others. Furthermore, such prescriptions require generating

merger trees to self-consistently track the subgrid halo populations

throughout their evolution (McQuinn et al. 2007). Otherwise the

evolution of the shape of the subgrid mass function due to halo

mergers is not preserved, as is the case in Santos et al. (2009).

Therefore, to increase the speed and dynamic range, we use the

FFRT algorithm, which uses the conditional PS formalism (Lacey

& Cole 1993; Somerville & Kolatt 1999) to generate the collapsed

mass (i.e. ionizing source) field. Since conditional PS operates di-

rectly on the density field, without needing to resolve haloes, one

can have an enormous dynamic range with a relatively small loss

in accuracy. Most importantly, when computing fcoll(x, z, R) we

use the non-linear density field, generated according to Section 2.1,

instead of the standard linear density field. The resulting ionization

fields are a much better match to RT simulations than those gener-

ated from the linear density field (Zahn et al. 2010; foreshadowed

also by the ICs panel in Fig. 1 above). We normalize the resulting

collapsed mass field to match the Sheth–Tormen (ST) mean col-

lapse fraction, which in turn matches numerical simulations (see

equation 14 and associated discussion).

The other major difference is that by default, FFRT in 21CMFAST

flags just the central filter cell, instead of the entire sphere enclosed

by the filter, as in MF07. The main motivation for this switch is that

the former algorithm is O(N ), while the latter is slower: O(N ) at

x̄HI ∼ 1 but approaching O(N 2) as x̄HI → 0. There are some other

minor differences between the FFRT and the ionization scheme in

MF07, such as the use of a sharp k-space filter instead of a spherical

top-hat, but these have a smaller impact on the resulting ionization

maps.

2.3 Peculiar velocity gradient field

Redshift space distortions, accounted for with the dvr/dr term in

equation (1),7 are often ignored when simulating the 21-cm sig-

nal. In the linear regime, redshift space distortions of the 21-cm

field are similar to the well-studied Kaiser effect (e.g. Kaiser 1987),

and the power spectrum of fluctuations is enhanced on all scales

by a geometric factor of 1.87 (Bharadwaj & Ali 2004; Barkana &

7 Note that this expression is exact, as long as the dvr/dr field is constant

over the width of the 21-cm line and dvr/dr ≪ H(z). Alternatively, one

can apply redshift space distortions when converting the comoving signal

from the simulation box to an observed frequency. However, for the sake of

consistency, we perform all of our calculations in comoving space.

C© 2010 The Authors, MNRAS 411, 955–972
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960 A. Mesinger, S. Furlanetto and R. Cen

Figure 4. PDFs of the comoving LOS derivative of vr [in units of H(z)], smoothed on scale Rfilter = 0.5 Mpc (left) and 5.0 Mpc (right). Solid red curves

are generated from the hydrodynamic simulation, while the dashed blue curves are generated by 21CMFAST. Redshifts corresponding to z = 20, 15, 10, 7 are

shown from top to bottom. All smoothing was performed with a real-space, top-hat filter. The dotted magenta curves were generated on comparable scales

by 21CMFAST with different initial conditions; however, they assume linear evolution of the density field, instead of the perturbation theory approach (see

Section 2.1).

Loeb 2005a). However, the small-scale overdensities, where redshift

space distortions are most important, are also the regions whose 21-

cm emission is first erased by ‘inside-out’ reionization. Preliminary

studies therefore concluded that redshift space distortions would

only be noticeable before reionization and in its early stages (Mc-

Quinn et al. 2006, MF07). As we are interested in accurately sim-

ulating the 21-cm signal from all cosmological epochs, including

pre-reionization, here we will compare the velocity gradient term

from 21CMFAST and hydrodynamic simulations.

Using the Zel’Dovich approximation on our 3D realizations, we

can again efficiently move beyond the linear regime into the quasi-

linear regime, and take into account correlations in the velocity

gradient field. In this first-order perturbation theory, the velocity

field can be written as

v(k, z) =
ik

k2
Ḋ(z)δ(k), (2)

and so the derivative of the LOS velocity, vr, where r for simplicity

is oriented along a basis vector, can be written in k-space as

dvr

dr
(k, z) = ikrvr (k, z) (3)

≈ −
k2

r

k2
Ḋ(z)δnl(k), (4)

where differentiation is performed in k-space. The last approxima-

tion is used for 21CMFAST, while the first, exact expression is used for

the numerical simulation.8

In Fig. 4 we show the PDFs of the comoving LOS derivative

of vr [in units of H(z)], smoothed on scale Rfilter = 0.5 Mpc (left)

8 There is an inconsistency in the above equations for 21CMFAST, as equa-

tion (4) is applied to the non-linear density field, whereas equation (2)

assumes a linear δ. Nevertheless, as we shall show below, equation (4)

reproduces the non-linear velocity gradient field from the numerical simu-

lations remarkably well.

and 5.0 Mpc (right). Solid red curves are generated from the hy-

drodynamic simulation, while the dashed blue curves are gener-

ated by 21CMFAST. Redshifts corresponding to z = 20, 15, 10, 7

are shown top to bottom. We see that our perturbation theory ap-

proach again does remarkably well in reproducing results from the

hydrodynamic simulation. The velocity gradients agree even bet-

ter than the density fields, since the velocity field is coherent over

larger scales. The shape of the distributions is noticeably non-linear

on small scales and late times. The curves resemble PDFs of the

sign-flipped non-linear density field, δnl, which is understandable

from equation (4). The dotted magenta curves in the bottom right-

hand panels were generated on comparable scales by 21CMFAST with

different initial conditions; however, they assume linear evolution

of the density field, instead of the perturbation theory approach.

As expected, linear evolution results in a symmetric Gaussian

PDF.

Do we reproduce the geometric, scale-free enhancement of

the power spectrum on linear scales? In the top panel of

Fig. 5, we plot dimensionless 21-cm power spectra, �2
21(k, z) =

k3/(2π
2V )〈|δ21(k, z)|2〉k where δ21(x, z) ≡ δTb(x, z)/ ¯δTb(z) − 1.

The spectra are generated by 21CMFAST in the limit of TS ≫ Tγ and

assuming x̄H I = 1. The solid red curves correspond to a 5-Gpc box

with �x = 10 Mpc cells, while the dot–dashed blue and dashed

green curves correspond to a 1-Gpc box with different resolutions.

The upper set of curves were computed including peculiar veloci-

ties, while the lower set were computed without peculiar velocities.

The bottom three panels show the ratios of the power spectra that

include redshift space distortions to those that do not.

Indeed the red curves in Fig. 5, which were evolved linearly,

accurately capture the enhancement factor of 1.87, shown with a

dotted horizontal line. The other two curves, which include first-

order non-linear effects, show an enhancement of power in excess

of the purely geometric factor. From equation (4), one sees that a

high-value tail in the density distribution resulting from non-linear

evolution would drive a corresponding negative tail in the dvr/dr

C© 2010 The Authors, MNRAS 411, 955–972
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21CMFAST 961

Figure 5. Top panel: Dimensionless power spectra from 21CMFAST, in a

fully neutral universe, in the limit of TS ≫ Tγ . The upper set of curves were

computed including peculiar velocities, while the lower set were computed

without peculiar velocities. Bottom three panels: Ratios of the dimension-

less power spectra with peculiar velocities to those not including peculiar

velocities. The linear regime geometric enhancement of 1.87 is demarcated

by the upper horizontal dotted line. In all panels, the dot–dashed blue and

dashed green curves were generated from the same ICs in an L = 1 Gpc

box, sampled with an initial resolution of �x = 0.56 Mpc, with the evolved

density, velocity and ionization fields generated at lower resolutions of

�x = 3.3 Mpc (dashed green curves) and 10 Mpc (dot–dashed blue

curves). The solid red curves were generated from an L = 5 Gpc box

with a single resolution of �x = 10 Mpc. However, the density field

used for the solid red curves was generated assuming linear evolution,

while the others were generated with first-order perturbation theory (see

Section 2.1).

distributions, which in turn enhances the 21-cm signal through the

1/(1+dvr/dr/H) term in equation 1. Although the dvr/dr distribu-

tions are zero-mean, the distributions of 1/(1+dvr/dr/H) are not.

The bias to higher values is further enhanced when weighted by

the local density as in the δTb expression, �/(1+dvr/dr/H). Intu-

itively, infall in overdense regions causes photons emitted there to

travel farther in order to reach a fixed relative redshift; therefore the

optical depth and δTb are increased in δ > 0 regions (Barkana &

Loeb 2005a).

To further explore this effect and compare our results with simu-

lations, in Fig. 6, we plot the ratio of the dimensional 21-cm power

spectra, ¯δTb(z)2�2
21(k, z), computed including peculiar velocities to

those without peculiar velocities. The thin solid red curve in the

upper panel corresponds to a fully neutral universe at z = 9. The

hydrodynamic simulations go down to much smaller scales than

plotted in Fig. 5, which are more non-linear and hence show a

larger enhancement of power, though we confirm that most of this

is due to the evolution in the mean signal, ¯δTb(z)2.

This enhanced 21-cm power from non-linear peculiar velocities

obviously merits more investigation beyond the scope of this paper.

Therefore we defer further analysis to future work. We caution how-

ever that it is unclear how well we can estimate this enhancement,

due to the misuse of the 1/(1+dvr/dr/H) term in equation (1). This

expression diverges at dvr/dr = −H(z). To compensate for this be-

Figure 6. Ratios of the dimensional power spectra, ¯δTb(z)2�2
21(k, z), com-

puted including peculiar velocities to those without peculiar velocities. Pan-

els correspond to (z, x̄H I) = (9.00, 0.86), (7.73, 0.65), (7.04, 0.38) and (6.71,

0.20), (top to bottom). Solid red curves are generated from the hydrodynamic

simulation, while the dashed blue curves are generated by 21CMFAST. The thin

solid red curve in the upper panel corresponds to a fully neutral universe at

z = 9. The linear regime geometric enhancement of 1.87 is demarcated by

the upper horizontal dotted line.

haviour, we impose a maximum value of |dvr/dr| = 0.5H(z), and

confirm that our results are only weakly sensitive to this choice in

the ∼0.1H(z)–0.7H(z) range. Similar misuses of the mapping from

real space to redshift space have already been noted in the context

of galaxy surveys, although the derivation of the 1/(1+dvr/dr/H)

term for the classic Kaiser effect is different (see Scoccimarro 2004,

section IV B). Although the correlation of the field at large distances

is small, the velocity gradient at a given point need not be small.

Furthermore, equation (1) assumes that the brightness temperature

is proportional to the 21-cm optical depth τ (νobs), which is only

true when τ (νobs) ≪ 1. Therefore, our treatment quickly becomes

problematic as dvr/dr → −H(z). If the user is interested in more

accurate predictions of the 21-cm signal as observed with 21-cm

interferometers, we recommend to turn-off the velocity gradient

correction in 21CMFAST, and generate the final 21-cm intensity maps

from the component fields. Already there are several steps required

to transform a comoving simulation box to a simulated frequency-

dependent signal for a particular experiment (e.g. Harker et al. 2010;

Matejek et al., in preparation). The discussion below in the remain-

der of this section should not be sensitive to the above inconsistency

in applying redshift-space corrections.

The remaining curves in Fig. 6 do not artificially set x̄H I = 1,

but use the values of x̄H I from the numerical simulations. Solid

red curves are generated from the hydrodynamic simulation, while

the dashed blue curves are generated by 21CMFAST. We confirm the

results of MF07: that the enhancement of power due to redshift

space distortions vanishes in the early stages of reionization, and

subsequently only affects small scales.

When the density field is linear, the dvr/dr term is narrowly

centred around zero. Therefore the enhancement factor from equa-

tion (1): 1/(1+dvr/dr/H) can be Taylor expanded to first order,

C© 2010 The Authors, MNRAS 411, 955–972
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962 A. Mesinger, S. Furlanetto and R. Cen

becoming 1 − dvr/dr/H. This enhancement factor in the linear

limit pre-reionization is symmetric around unity and, although the

mean value of δTb does not change, the associated ∼1.867 en-

hancement in power (e.g. Bharadwaj & Ali 2004; Barkana & Loeb

2005a) is driven equally by over- and under-densities. When the

density field is non-linear, however, the (dvr/dr)/H term has a

corresponding high-value tail to negative values and is no longer

symmetric (see Fig. 4). The (dvr/dr)/H < 0 tail can rapidly en-

hance δTb due to the divergence at dvr/dr = −H. This is the cause

of the large enhancement of power in the non-linear case when ig-

noring the ionization field. However, as reionization progresses, H II

regions quickly ‘cover-up’ the most non-linear regions, due to the

inside-out nature of reionization. Hence, the enhancement in power

due to redshift space distortions fades as reionization progresses in

Fig. 6.

Using linear theory, one can relate the velocity gradient field

to the density field in k-space via equation 4. When converting

to real space, this essentially means that the velocity gradient is

proportional to the negative weighted density field with the k2
r /k

2

window function enhancing the contributions of the LOS modes.

Therefore, underdense regions will generally have a weaker 21-

cm signal [negative δ → positive (dvr/dr)/H → decrease in δTb].

Since reionization is inside out on large scales, the 21-cm signal

comes increasingly from underdense regions as reionization pro-

gresses. The velocity gradients in those regions not covered by

the ionized bubbles should become increasingly positive accord-

ing to the above, and the enhancement to δTb fades away and

becomes negative. Hence the curves in the two bottom panels in

Fig. 6 dip below unity at low k. This means that during the fi-

nal stages of reionization, peculiar velocity effects actually de-

crease power on moderate to large scales. We confirm that both

the mean signal and the large-scale power show this decrease due

to peculiar velocities in the advanced stages of reionization, and

it appears in both the simulations and the 21CMFAST. We defer a

detailed analytic treatment of redshift space distortions to a future

work.

In general, the relative enhancement due to peculiar velocity

effects shown in Fig. 6 is well predicted by 21CMFAST on moder-

ate to large scales, k � 1 Mpc−1, but is underpredicted at small

scales and in a very neutral universe. This is attributable in part

to the differences in the ionization field. Our ionization field al-

gorithm, FFRT, does not properly capture ionization fronts and

small-scale H II structure (Zahn et al. 2010). Thus statistics such

as this one which are sensitive to small scales are not accurately

reproduced. 21CMFAST’s underprediction of the power spectrum en-

hancement at small scales is likely also attributable in part to the

fact that the Nyquist frequency corresponds to larger scales in the

21CMFAST boxes, since these are directly computed on a 2563 grid,

whereas the RT simulation is smoothed down from a 5123 grid.

This means that our shot noise on small scales (approaching the

L/256 cell size) is larger than in the numerical simulation, and so

fractional enhancements in power contribute less.

2.4 Full post-heating comparison of 21-cm emission

We now combine the terms from equation (1) to provide a full com-

parison of 21CMFAST and numerical simulations, with the assumption

of TS ≫ Tγ . For the purposes of these comparisons, the two codes

only share the same initial density field; the evolved density, velocity

and ionization fields for 21CMFAST are all generated self-consistently

as explained above.

In Fig. 7, we plot slices through the δTb signal, generated from

hydrodynamic simulation, the algorithm outlined in MF07,9 and

21CMFAST, left to right columns. Rows correspond to (z, x̄H I) =

(9.00, 0.86), (7.73, 0.65), (7.04, 0.38) and (6.71, 0.20), top to

bottom.

As already shown in Section 2.1, the density fields are modelled

quite accurately with perturbation theory. One can also see that

both seminumerical schemes reproduce the large-scale H II region

morphology (shown in black) of the RT simulations. Differences

emerge at moderate to small scales, with the FFRT ionization al-

gorithm of 21CMFAST generally resulting in H II regions which too

are connected. This difference is mostly attributable to the bubble-

flagging algorithm; in general the ‘flagging-the-entire-sphere’ algo-

rithm of MF07 better reproduces H II morphological structure than

the ‘flagging-the-central-cell’ algorithm of Zahn et al. (2007) (e.g.

MF07).

In Fig. 8, we show the PDFs of δTb for the hydrodynamic simu-

lation (red solid curves), 21CMFAST (blue dashed curves) and MF07

(magenta dotted curves). Panels correspond to (z, x̄H I) = (9.00,

0.86), (7.73, 0.65), (7.04, 0.38) and (6.71, 0.20), top to bottom. The

left-hand panel was generated using the unfiltered δTb field with

cell length �x = 143/256 Mpc (effectively R ∼ 0.35 Mpc), while

the right-hand panel was generated from the δTb field, filtered on

Rfilter = 5 Mpc scales.

From the left-hand panel, we see that we underpredict the number

of ‘almost’ fully ionized cells, δTb � 10 mK. This can be traced to

our algorithm for determining the partially ionized fraction in the

remaining neutral cells. Our algorithm assumes that cells are par-

tially ionized by subgrid sources chewing away at their host cell’s

H I. Instead, partially ionized cells on these small scales generally

correspond to unresolved ionization fronts from non-local sources

(see appendix in Zahn et al. 2010). This discrepancy decreases as the

cell size increases, since then the fraction of cells which are ionized

by sources internal to the cell increases, and the assumption implicit

in our FFRT algorithm becomes increasingly accurate. Aside from

this, the distributions in the left-hand panel agree very well. This

should not be surprising, since for comparison the ionization effi-

ciency of the seminumerical schemes was chosen so that the mean

ionized fraction at these epochs agrees with the numerical simula-

tion (i.e. the spikes at δTb = 0 mK match).10 The remainder of the

signal at δTb � 10 mK merely reflects the density distribution of the

neutral cells, and we have already demonstrated in Section 2.1 that

our density fields match the hydrodynamic simulation quite well.11

The right-hand panel of Fig. 8 shows the δTb distributions,

smoothed on Rfilter = 5 Mpc scales. As evidenced by the smaller

relative spike at δTb = 0 mK, the ionization fields on these scales

are not as binary (i.e. either fully ionized or fully neutral) as those in

the left-hand panel. Thus the PDFs encode more information on the

9 This algorithm is not exactly the same as in MF07, since partially ionized

cells are still allowed. However, this does not affect our results, since on

scales as small as our cell size, the ionization field produced by cosmological

RT simulations can be treated as binary (i.e. either fully ionized or fully

neutral; see the appendix of Zahn et al. 2010). The ionization field becomes

less binary in the late stages of reionization, or when hard spectra dominate

reionization.
10 Strictly speaking, the partially ionized cells do impact this calibration, but

since most cells are either fully ionized or fully neutral, this is a small effect.
11 The δTb distributions include the additional check of sampling the density

field of the remaining neutral cells, instead of the entire density field studied

in Section 2.1. Therefore the close agreement of the δTb �10 PDFs contains

an additional confirmation of the accuracy of our ionization algorithms.

C© 2010 The Authors, MNRAS 411, 955–972
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21CMFAST 963

Figure 7. δTb maps. The slices are generated from the hydrodynamic simulation, DEXM (MF07), and 21CMFAST, left to right columns. All slices are 143 Mpc on

a side and 0.56-Mpc thick, and correspond to (z, x̄H I) = (9.00, 0.86), (7.73, 0.65), (7.04, 0.38) and (6.71, 0.20), top to bottom.

C© 2010 The Authors, MNRAS 411, 955–972
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964 A. Mesinger, S. Furlanetto and R. Cen

Figure 8. PDFs of δTb created using equation (1) for the hydrodynamic simulation (red solid curves), 21CMFAST (blue dashed curves) and MF07 (magenta

dotted curves). Panels correspond to (z, x̄H I) = (9.00, 0.86), (7.73, 0.65), (7.04, 0.38) and (6.71, 0.20), top to bottom. The left-hand panel was generated using

the unfiltered δTb field with cell length �x = 143/256 Mpc (effectively R ∼ 0.35 Mpc), while the right-hand panel was generated from the δTb field, filtered

on Rfilter = 5 Mpc scales. All fields invoke the simplifying assumption of TS ≫ Tγ .

ionization algorithms. The top panel at x̄H I = 0.86, shows that the

predicted distributions of δTb agree well around the mean signal,

but the seminumerical schemes diverge from the RT in the wings.

As mentioned before, the ‘flagging-the-entire-sphere’ ionization al-

gorithm from MF07 results in less connected H II regions, and so

there are more isolated 5.0-Mpc neutral patches. This results in an

increased number of high-δTb regions. The converse is true for the

FFRT ionization scheme which is the fiducial setting of 21CMFAST.

The agreement between the schemes improves as reionization pro-

gresses.

In Fig. 9, we compare the power spectra of these δTb boxes.

Again, the hydrodynamic simulation is shown with red solid curves,

MF07 is shown with dotted magenta curves, and 21CMFAST is shown

with dashed blue curves.

At all scales, the power spectra agree with each other at the

10s of per cent level.12 At moderate to large scales, agreement is

best, with MF07 performing slightly better than the FFRT algorithm

which is default in 21CMFAST.13 On smaller scales, MF07 predicts too

much power, while 21CMFAST underpredicts the power. It was shown

in Zahn et al. (2010) that the FFRT ionization algorithm used in

21CMFAST overpredicts the correlation of the ionization and density

fields on small scales, due to the fact that it operates directly on

the evolved density field. This strong cross-correlation results in

12 The seminumerical simulations show an increase in power approaching

the Nyquist frequency, which is most likely just shot noise of our 2563

boxes. The numerical simulations do not show the same upturn, since they

were generated on higher-resolution grids (5123 for the RT and 7683 for the

density), and subsequently smoothed down to 2563; numerical simulations

generated directly on the same scale 2563 grids show similar shot noise

upturns in power on these scales (see fig. 7 in Zahn et al. 2010).
13 Note that the FFRT results shown here are not precisely analogous to those

in Zahn et al. (2010), since there the evolved density field was taken from

an N-body simulation, whereas in 21CMFAST, we self-consistently generate

the density field according to Section 2.1.

Figure 9. Comparison of 21-cm power spectra obtained from the hydrody-

namic cosmological simulation (solid red curves), and the seminumerical

algorithms in MF07 (dotted magenta curves) and 21CMFAST (dashed blue

curves). Sets of curves correspond to (z, x̄H I) = (9.00, 0.86), (7.73, 0.65),

(7.04, 0.38) and (6.71, 0.20), top to bottom at high k.

an underprediction of 21-cm power on these scales. The converse

is true of the MF07 scheme, which although using discrete source

haloes, paints entire filtered regions as ionized, thus underpredicting

the cross-correlation of the ionization and density fields.

Most importantly, the differences in the power spectra between

the models is much smaller than the differences due to the progress

of reionization. Therefore, one might naively predict that the

seminumerical schemes are accurate enough to estimate x̄H I from

C© 2010 The Authors, MNRAS 411, 955–972
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21CMFAST 965

the power spectra to ±�0.1, or even better if the behaviour of the

models is understood. However, there are many astrophysical un-

certainties associated with prescriptions for sources and sinks of

ionizing photons during the epoch of reionization, and it will likely

be these which regulate the achievable constraints on x̄H I. Therefore

it is imperative for models to be fast and be able to span large

regions of parameter space. A single 21CMFAST realization of the

δTb fields shown in this section (generated from 15363 ICs) takes

∼ 30 min to compute on a single-processor computer.

3 THE SPIN TEMPERATURE

We now relax the requirement in Section 2 of TS ≫ Tγ , and

derive the full 21-cm brightness temperature offset from equa-

tion (1), including the spin temperature field. As mentioned pre-

viously, models predict that the heating epoch concluded well be-

fore the bulk of reionization, at z ≫ 10 (Furlanetto 2006; Chen &

Miralda-Escudé 2008; Santos et al. 2008; Baek et al. 2009). How-

ever, the second-generation 21-cm interferometers, such as SKA,

might be able to peek into this high-redshift regime of the dark

ages. Furthermore, the astrophysical quantities at high-z are uncer-

tain, and we do not really know how robust is the assumption of

TS ≫ Tγ even during the early stages of reionization. Therefore,

for many applications, especially parameter studies, it is impor-

tant to compute the spin temperature field. Unfortunately, there

is currently no numerical simulation that includes the computa-

tionally expensive radiative transfer of both X-rays and Lyα pho-

tons from atomically or molecularly cooled sources (though see

the recent work of Baek et al. 2010, who perform RT simulations

on a small subset of sources, with M � 1010 M⊙). Therefore we

cannot directly compare our spin temperature fields to numerical

simulations.

Our derivations in this section are similar to other semi-analytic

models (Furlanetto 2006; Pritchard & Furlanetto 2007; Santos et al.

2008). However, unlike Santos et al. (2008, 2009), we do not ex-

plicitly resolve the halo field as an intermediary step. Instead we

operate directly on the evolved density fields, using excursion set

formalism to estimate the mean number of sources inside spherical

shells corresponding to some higher redshift. As discussed above,

bypassing the halo field allows the code to be faster, with mod-

est memory requirements. Below we go through our formalism in

detail.

The spin temperature can be written as (e.g. Furlanetto et al.

2006a)

T −1
S =

T −1
γ + xαT

−1
α + xcT

−1
K

1 + xα + xc

, (5)

where TK is the kinetic temperature of the gas and Tα is the colour

temperature, which is closely coupled to the kinetic gas temperature,

Tα ≈ TK (Field 1959). There are two coupling coefficients in the

above equation. The collisional coupling coefficient can be written

as

xc =
0.0628 K

A10Tγ

[

nHIκ
HH
1−0(TK) + neκ

eH
1−0(TK) + npκ

pH

1−0(TK)
]

, (6)

where A10 = 2.85 × 10−15 s−1 is the spontaneous emission coeffi-

cient; nHI, ne and np are the number density of neutral hydrogen,

free electrons and protons, respectively; and κHH
1−0 (TK), κeH

1−0(TK),

and κ
pH

1−0(TK) are taken from Zygelman (2005), Furlanetto &

Furlanetto (2007) and Furlanetto & Furlanetto (2007), respectively.

The Wouthuysen–Field (Wouthuysen 1952; Field 1958; WF) cou-

pling coefficient can be written as

xα = 1.7 × 1011(1 + z)−1SαJα, (7)

where Sα is a correction factor of order unity involving detailed

atomic physics, and Jα is the Lyman α background flux in units of

pcm−2 s−1 Hz−1 sr−1. We compute Tα and Sα according to Hirata

(2006) and denote proper units with the prefix ‘p’.

According to the above equations, there are two main fields gov-

erning the spin temperature: (1) the kinetic temperature of the gas,

TK(x, z), and (2) the Lyα background, Jα(x, z). We address these

in Sections 3.1 and 3.2, respectively.

3.1 The kinetic temperature

3.1.1 Evolution equations

To calculate the kinetic temperature, one must keep track of the

inhomogeneous heating history of the gas. We begin by writing

down the evolution equation for TK(x, z) and the local ionized

fraction in the ‘neutral’ (i.e. outside of the ionized regions discussed

in Section 2.2) IGM, xe(x, z):

dxe(x, z′)

dz′
=

dt

dz′

[

�ion − αACx2
e nbfH

]

, (8)

dTK(x, z′)

dz′
=

2

3kB (1 + xe)

dt

dz′

∑

p

ǫp

+
2TK

3nb

dnb

dz′
−

TK

1 + xe

dxe

dz′
, (9)

where nb = n̄b,0(1 + z′)3[1 + δnl(x, z′)] is the total (H + He)

baryonic number density at (x, z′), ǫp(x, z′) is the heating rate per

baryon14 for process p in erg s−1, �ion is the ionization rate per

baryon, αA is the case-A recombination coefficient, C ≡ 〈n2〉/〈n〉2

is the clumping factor on the scale of the simulation cell, kB is

the Boltzmann constant, f H is the hydrogen number fraction15 and

we distinguish between the output redshift of interest, z, and some

arbitrary higher redshift, z′.16 We also make the accurate assumption

that single ionized helium and hydrogen are ionized to the same

degree, xe(x, z′), inside the mainly neutral IGM (e.g. Wyithe &

Loeb 2003).

In order to speed up our calculation, we extrapolate the cell’s

density to higher redshifts assuming linear evolution from z (the

desired output redshift at which we compute the non-linear density

field with perturbation theory): δnl(x, z′) ≈ δnl(x, z)D(z′)/D(z),

where D(z) is the linear growth factor. In principle, we should fol-

low the non-linear redshift evolution of each cell’s density, δnl(x, z′).

However, linearly extrapolating backwards from z is a good approxi-

mation, considering that the majority of cells sized for cosmological

simulations are in the linear or quasi-linear regime at very high red-

shifts where heating is important (see, e.g., Fig. 2). Additionally, the

evolution of structure, and thus also of heating, is extremely rapid

14 Note that our notation is different than that in Furlanetto (2006) and

Pritchard & Furlanetto (2007), who present heating and ionization rates per

proper volume.
15 Equation (8) ignores helium recombinations, which is a good approxima-

tion given that most He recombining photons will cause ionizations of H I

or He I.
16 For clarity of presentation, we will only explicitly show dependent vari-

ables of functions on the left-hand side of equations. Where it is obvious,

we also do not explicitly show dependences on (x, z′).
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966 A. Mesinger, S. Furlanetto and R. Cen

during this epoch, and is dominated by redshifts not much higher

than z. Therefore, we can rewrite equations (8) and (9) as

dxe(x, z′)

dz′
=

dt

dz′
�ion

−
dt

dz′
αACx2

e fHn̄b,0(1 + z′)3

[

1 + δnl(x, z)
D(z′)

D(z)

]

,

(10)

dTK(x, z′)

dz′
=

2

3kB (1 + xe)

dt

dz′

∑

p

ǫp

+
2TK

1 + z′
+

2TK

3

dD(z′)/dz′

D(z)/δnl(x, z) + D(z′)
−

TK

1 + xe

dxe

dz′
.

(11)

The first term in equation (11) corresponds to the heat input, which

for our purposes is dominated by the heating processes discussed

below. The second term corresponds to the Hubble expansion, the

third corresponds to adiabatic heating and cooling from structure

formation, and the fourth corresponds to the change in the total

number of gas particles due to ionizations.

3.1.2 Heating and ionization rates

At very high redshifts, Compton scattering between the CMB pho-

tons and the residual free electrons sets TK = Tγ . After decoupling,

the gas temperature evolves through adiabatic cooling, TK(z′) =

2.73 × (1 + zdec)[(1 + z′)/(1 + zdec)]
2, where the decoupling red-

shift is given by zdec ≈ 137(�bh2/0.022)0.4 − 1 (Peebles 1993).

However, as this is only approximate, we shall use the actual Comp-

ton heating rate (e.g. Seager, Sasselov & Scott 2000) in the sum in

equation (11):

2

3kB (1 + xe)
ǫcomp =

xe

1 + fHe + xe

8σTuγ

3mec
(Tγ − TK), (12)

where f He is the helium number fraction, uγ is the energy density of

the CMB and σ T is the Thomson cross-section. The initial condi-

tions for xe and TK in 21CMFAST can either be provided by the user, or

taken from the publicly available code RECFAST
17 (Seager, Sasselov

& Scott 1999).

We now proceed to outline our procedure for estimating X-ray

heating, which is the dominant heating process in this epoch.18 We

compute the heating rate per particle by summing contributions

from sources located in concentric spherical shells around (x, z′).

First, we take the standard ansatz in assuming that sources emit

photons with a rate proportional to the growth of the total mass

fraction inside DM haloes, f coll. Note that while this may not be

strictly true, we are averaging over large volumes and many sources,

and so it is probably a decent assumption in practice. Thus the total

X-ray emission rate (in s−1) per redshift interval from luminous

sources located between z′ ′ and z′ ′ + dz′ ′ (where z′ ′ ≥ z′) can be

17 http://www.astro.ubc.ca/people/scott/recfast.html
18 There are two other processes that may be important. The first is shock

heating in the IGM: with such a small temperature, a population of weak

shocks could substantially change the thermal history. This appears to be

the case in at least one simulation (Gnedin & Shaver 2004), although other

simulations (Kuhlen, Madau & Montgomery 2006) and analytic models

(Furlanetto & Loeb 2004) predict much smaller effects. The second is any

exotic process, such as dark matter decay or annihilation, that produces

X-rays or hot electrons (Furlanetto, Oh & Pierpaoli 2006b).

written as

dṄX

dz′′
= ζXf∗�bρcrit,0

(

1 + δR′′

nl

) dV

dz′′

dfcoll

dt
, (13)

where the efficiency, ζ X , is the number of photons per solar mass

in stars and the remaining terms on the RHS correspond to the total

star formation rate inside the spherical shell demarcated by z′ ′ and

z′ ′ + dz′ ′. Specifically, f ∗ is the fraction of baryons converted to

stars, and dV(z′′) is the comoving volume element at z′ ′ (i.e. volume

of the shell). The collapsed fraction is computed according to a

hybrid prescription, similar to Barkana & Loeb (2004, 2008):

fcoll(x, z′′, R′′, Smin) =
f̄ST

f̄PS,nl

erfc

[

δc − δR′′

nl
√

2[Smin − SR′′
]

]

, (14)

where R′ ′ is the comoving, null-geodesic distance between z′ and

z′ ′; Smin and SR′′
are the mass variances on the scales corresponding

to the smallest-mass sources and R′ ′, respectively; δR′′

nl is the evolved

density19 smoothed on scale R′ ′, which we again linearly extrapolate

from z: δ̄R′′

nl (x, z′′) = δ̄R′′

nl (x, z)D(z′′)/D(z); δc is the critical linear

density corresponding to virialization; and f̄ST(z′′, Smin) is the mean

ST collapsed fraction (with the Jenkins et al. 2001 normalization)

while f̄PS,nl(z
′′, Smin, R

′′) is the mean PS collapse fraction, averaged

over the evolved density field, δR′′

nl . Therefore the normalization

factor, f̄ST/f̄PS,nl, assures that the mean collapse fraction matches

the ST collapse fraction (in agreement with N-body simulations; e.g.

Jenkins et al. 2001; McQuinn et al. 2007; Trac & Cen 2007), while

the fluctuations are sourced by the conditional PS model applied

on the evolved density field.20 There is an implicit assumption in

equation (13) that dD(z′ ′)/dz′ ′ ≪ df coll/dz′ ′, which is quite accurate

for all pertinent epochs, as the large-scale density evolves much

slower than the exponential growth of the collapsed fraction.

We assume that the X-ray luminosity of sources can be character-

ized with a power law of the form, Le ∝ (ν/ν0)−α , with ν0 being the

lowest X-ray frequency escaping into the IGM. We can then write

the arrival rate [i.e. number of photons s−1 Hz−1 seen at (x, z′)] of

X-ray photons with frequency ν, from sources within z′ ′ and z′ ′ +

dz′ ′ as

dφX(x, ν, z′, z′′)

dz′′
=

dṄX

dz′′
αν−1

0

(

ν

ν0

)−α−1 (

1 + z′′

1 + z′

)−α−1

e−τX ,

(15)

where the last term accounts for IGM attenuation. For computation

efficiency, we compute the IGM X-ray mean free path through the

19 Although the collapse criterion for conditional PS was derived using the

linear density field, Zahn et al. (2010) find that using the evolved density

in equation (14) when computing ionization fields yields a better match to

radiative transfer simulations. However, this distinction is less important in

the context of computing X-ray flux fields than ionizing flux fields, since

the density is more linear on the most pertinent scales R′ ′, due to the larger

mean free path of X-ray photons.
20 Also note that equation (14) implicitly assumes that the sources are evenly

distributed within R′ ′, which is the same assumption inherent in the ioniza-

tion algorithm. Although the rate of change of the collapse fraction in each

shell can be computed from PS, we hesitate to apply this prescription to

X-rays, since the ionization algorithm which uses equation (14) has al-

ready been rigorously tested and found to agree well with RT simulations

of reionization (Zahn et al. 2010).
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21CMFAST 967

mean21 IGM:

τX(ν, z′, z′′) =

∫ z′

z′′

dẑ
c dt

dẑ
x̄H I(ẑ)n̄(ẑ)σ̃ (z′, ν̂), (16)

where the photoionization cross-section is weighted over species,

σ̃ (z′, ν̂) ≡ fH(1 − x̄e)σH + fHe(1 − x̄e)σHe I + fHex̄eσHe II and is

evaluated at ν̂ = ν(1 + ẑ)/(1 + z′). In practice, the contribution

of He II can be ignored. We also remind the reader that x̄H I is the

volume-filling factor of neutral regions during reionization.

Finally, one obtains the X-ray heating rate per baryon, ǫX from

equation (11) by integrating over frequency and z′ ′:

ǫX(x, z′) =

∫ ∞

ν0

dν
∑

i

(

hν − Eth
i

)

fheatfixiσi

∫ ∞

z′

dz′′ dφX/dz′′

4πr2
p

, (17)

where rp is the proper, null-geodesic separation of z′ and z′ ′, and the

frequency integral includes a sum over species, i = H I, He I or He II,

in which fi is the number fraction; xi is the cell’s species ionization

fraction [which for H I and He I is (1 − xe), and for He II is xe]; σ i the

ionization cross-section; and Eth
i is the ionization threshold energy

of species i. The factor fheat[hν − Eth
i , xe(x, z′)] is defined as the

fraction of the electron energy, hν − Eth
i , deposited as heat. We

use the new results of Furlanetto & Stoever (2009) (who provide

a more complete treatment than the previous work of Shull & van

Steenberg 1985), to compute f heat, as well as f ion and f Lyα below.

These fractions take into account the cell’s local ionization state, xe,

as opposed to the global IGM value, x̄e, used to calculate the optical

depth in equation (16).

Unfortunately, the double integral equation (17) is slow to eval-

uate due to the attenuation term, which depends on both redshift

and frequency (equation 16). To speed up computation, we make

the additional approximation that all photons with optical depth

τX ≤ 1 are absorbed, while no photons with optical depth τX > 1 are

absorbed. Such a step-function attenuation has been shown to yield

fairly accurate ionizing photon flux probability distributions (see

fig. 2 in Mesinger & Furlanetto 2009, although comparisons were

limited to a single set of parameters). This approximation allows us

to separate the frequency and redshift integrals in equation (17), re-

moving the exponential attenuation term from dφX/dz′ ′ and setting

the lower bound of the frequency integral to either ν0 or the fre-

quency corresponding to an optical depth of unity, ντ=1(x̄e, z
′, z′′),

whichever is larger. Expanding and grouping the terms, we obtain

ǫX(x, z′) = ζXαcν−1
0 f∗�bρcrit,0(1 + z′)α+1

∫ ∞

Max[ν0,ντ=1]

dν

(

ν

ν0

)−α−1
∑

i

(

hν − Eth
i

)

fheatfixiσi

∫ ∞

z′

dz′′(1 + z′′)−α+2
(

1 + δ̄R′′

nl

) dfcoll

dz′′
. (18)

21 Note that our framework for computing the spin temperature starts to

break down in the advanced stages of reionization. When H II regions be-

come sizable, there will be large sightline-to-sightline fluctuations in the

X-ray optical depth, which can only be taken into account with approximate

radiative transfer. In our fiducial model (see below), heating has already

saturated at x̄H I � 0.99, so this is not a concern. However, some extreme

models might be able to push the heating regime well into the bulk of

reionization; we caution the user against overinterpreting the results from

21CMFAST in that regime.

Now the integrand in both integrals only depends on a single vari-

able, and the entire frequency integral can be treated as a function

of z′ ′.

Analogously, we can also express the ionization rate per particle

in equation (10) as

�ion(x, z′) =

∫ ∞

Max[ν0,ντ=1]

dν
∑

i

fixiσiFi

∫ ∞

z′

dz′′ dφX/dz′′

4πr2
p

, (19)

Fi =
(

hν − Eth
i

)

(

fion,H I

Eth
H I

+
fion,He I

Eth
He I

+
fion,He II

Eth
He II

)

+ 1,

where fion,j [hν − Eth
i , xe(x, z′), j ] is now the fraction of the elec-

tron’s energy going into secondary ionizations of species j, with the

unity term inside the sum accounting for the primary ionization of

species i.

3.2 The Lyα background

The Lyman α background has two main contributors: X-ray excita-

tion of H I, Jα,X; and direct stellar emission of photons between Lyα

and the Lyman limit, Jα,∗. The former can easily be related to the

X-ray heating rate, assuming that the X-ray energy injection rate is

balanced by photons redshifting out of Lyα resonance (Pritchard &

Furlanetto 2007):

Jα,X(x, z) =
cnb

4πH (z)να

∫ ∞

z′

dz′′ dφX/dz′′

4πr2
p

∫ ∞

Max[ν0,ντ=1]

dν
∑

i

(hν − Eth
i )

fLyα

hνα

fixiσi, (20)

where fLyα[hν−Eth
i , xe(x, z)] is the fraction of the electron’s energy

going into Lyα photons.

Because of the high resonant optical depth of neutral hydro-

gen, photons redshifting into any Lyman-n resonance at (x, z) will

be absorbed in the IGM. They then quickly and locally cascade

with a fraction f recycle(n) passing through Lyα and inducing strong

coupling (Hirata 2006; Pritchard & Furlanetto 2006). Therefore,

the direct stellar emission component of the Lyα background (in

pc m−2 s−1 Hz−1 sr−1) can be estimated with a sum over the Lyman

resonance backgrounds (e.g. Barkana & Loeb 2005b):

Jα,∗(x, z) =

nmax
∑

n=2

Jα(n, x, z)

=

nmax
∑

n=2

frecycle(n)

∫ zmax(n)

z

dz′ 1

4π

dφe
∗(ν ′

n, x)/dz′

4πr2
p

, (21)

where the emissivity per unit redshift (number of photons s−1 Hz−1)

is calculated analogously to the X-ray luminosity above:

dφe
∗(ν ′

n, x)

dz′
= ε(ν ′

n)f∗n̄b,0

(

1 + δ̄R′′

nl

) dV

dz′

dfcoll

dt
. (22)

Here ε(ν) is the number of photons produced per Hz per stellar

baryon, and is evaluated at the emitted (rest frame) frequency:

ν ′
n = νn

1 + z′

1 + z
. (23)

The upper limit of the redshift integral in equation (21) corresponds

to the redshift of the next Lyman resonance:

1 + zmax(n) = (1 + z)
1 − (n + 1)−2

1 − n−2
. (24)
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968 A. Mesinger, S. Furlanetto and R. Cen

Following Barkana & Loeb (2005b), we truncate the sum at nmax =

23, and use their Population II and Population III spectral models

for ε(ν). For computational efficiency, one can rearrange the terms

in equation (21), placing the sum over Lyman transitions inside the

redshift integral. Substituting in equation (22) and simplifying, we

obtain

Jα,∗(x, z) =
f∗n̄b,0c

4π

∫ ∞

z

dz′(1 + z′)3
(

1 + δ̄R′′

nl

) dfcoll

dz′

n(z′)
∑

n=2

frecycle(n)ε(ν ′
n), (25)

where the contribution from the sum over the Lyman transitions is

a function of z′, and is zero at z′ > zmax(n = 2).

The total Lyman α background is then just the sum of the above

components:

Jα,tot(x, z) = Jα,X(x, z) + Jα,∗(x, z). (26)

In our fiducial model, we do not explicitly take into account other

soft-UV sources of Lyα such as quasars, assuming that these are

subdominant to the stellar emission. However, our framework makes

it simple to add additional source terms to the integrand of equa-

tion (21), if the user wishes to explore such scenarios (e.g. Volonteri

& Gnedin 2009).

3.3 Results: complete δTb evolution

All of the results in this section are from an L = 1 Gpc simulation,

whose ICs are sampled on a 18003 grid, with the final low-resolution

boxes being 3003 (3.33 Mpc cells). Our fiducial model below as-

sumes f ∗ = 0.1, ζX = 1057 M−1

⊙ (∼1 X-ray photon per stellar

baryon)22, hν0 = 200 eV, α = 1.5, Tvir,min = 104 K for all sources

(X-ray, Lyman α and ionizing), C = 2, Rmax = 30 Mpc, ζ ion = 31.523

and the stellar emissivity, ε, of Pop II stars from Barkana & Loeb

(2005b) normalized to 4400 ionizing photons per stellar baryon.

The free parameters pertaining to the spin temperature evolution

were chosen to match those in Furlanetto (2006) and Pritchard &

Furlanetto (2007), to facilitate comparison. It is trivial to customize

the code to add, for example, redshift or halo mass dependences

to these free parameters. The impressive length of the above list of

uncertain astrophysical parameters (which itself is only a simplified

description of the involved processes) serves well to underscore the

need for a fast, portable code, capable of quickly scrolling through

parameter space.

We also note that the TS calculations outlined in Section 3

are the slowest part of the 21CMFAST code (as they involve track-

ing evolution down to the desired redshift), and therefore should

only be used in the regime where they are important (z � 17 in

our fiducial model). For example, generating a δTb box, assuming

TS ≫ Tγ , on a 3003 grid takes only a few minutes on single pro-

cessor (depending on the choice of higher resolution for sampling

the ICs). However, including the spin temperature field takes an

additional day of computing time. Nevertheless, once the spin tem-

perature evolution is computed for a given realization at z, all of the

intermediate outputs at z′ > z can be used to compute δTb at those

redshifts at no additional computation cost.

22 This number was chosen to match the total X-ray luminosity per unit star

formation rate at low redshifts (see Furlanetto 2006 and references therein

for details).
23 This emissivity was chosen so that the mid-point of reionization is z ∼ 10

and the end is z ∼ 7.

Figure 10. Evolution of the mean temperatures from 21CMFAST in our fiducial

model. Solid, dashed and dotted curves show TS, TK and Tγ , respectively.

Before showing detailed results, it would be useful to summa-

rize the various evolutionary stages (cf. section 3.1 in Pritchard &

Furlanetto 2007). The reader is encouraged to refer to the evolu-

tion of the mean temperatures shown in Fig. 10 and/or view the

full movie available at http://www.astro.princeton.edu/∼mesinger/

Movies/delT.mov while reading the following.

(i) Collisional coupling; T̄K = T̄S ≤ Tγ : At high redshifts, the

IGM is dense, so the spin temperature is collisionally coupled to the

gas kinetic temperature. The gas temperature is originally coupled

to the CMB, but after decoupling cools adiabatically as ∝(1 + z)−2,

faster than the CMB. The 21-cm brightness temperature offset from

the CMB in this regime starts at zero, when all three temperatures

are equal, and then becomes increasingly negative as TS and TK

diverge more and more from Tγ . The fluctuations in δTb are driven

by the density field, as collisional coupling is efficient everywhere.

In our fiducial model, this epoch corresponds to 100 � z.

(ii) Collisional decoupling; T̄K < T̄S < Tγ : The IGM becomes

less dense as the Universe expands. The spin temperature starts

to decouple from the kinetic temperature, and begins to approach

the CMB temperature again, thus δTb starts rising towards zero.

Decoupling from TK occurs as a function of the local gas den-

sity, with underdense regions decoupling first. The power spectrum

initially steepens, as small-scale density fluctuations drive the addi-

tional fluctuations of the collisional coupling coefficient. As the spin

temperature in even the overdense regions finally decouples from

the kinetic temperature, the power spectrum flattens again, and the

mean signal drops. In our fiducial model, this epoch corresponds to

35 � z � 100.

(iii) Collisional decoupling → WF coupling transition; T̄K <

T̄S ≈ Tγ : As the spin temperature throughout the IGM decouples

from the kinetic temperature, the mean signal is faint and might

disappear, if the first sources wait long enough to ignite. In our

fiducial model, this transition regime does not really exist. In fact

our first sources turn on before the spin temperature fully decouples

from the kinetic temperature.

(iv) WF coupling; T̄K < T̄S < Tγ : The first astrophysical sources

turn on, and begin coupling the spin temperature of the nearby IGM

to the kinetic temperature through the WF effect (Lyα coupling).

C© 2010 The Authors, MNRAS 411, 955–972
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21CMFAST 969

As the requirements for Lyα coupling are more modest than those

to heat the gas through X-ray heating, the kinetic temperature keeps

decreasing in this epoch. The mean brightness temperature offset

from the CMB starts becoming more negative24 again and can even

reach values of δTb < −100 mK. In our fiducial model, this epoch

corresponds to 25 � z � 35.

(v) WF coupling → X-ray heating transition; T̄K ∼ T̄S < Tγ :

Lyα coupling begins to saturate as most of the IGM has a spin tem-

perature which is strongly coupled to the kinetic temperature. The

mean spin temperature reaches a minimum value, and then begins

increasing. A few underdense voids are left only weakly coupled as

X-rays from the first sources begin heating the surrounding gas in

earnest, raising its kinetic temperature. The 21-cm power spectrum

steepens dramatically as small-scale overdensities now host hot gas,

while on large scales the gas is uniformly cold as Lyα coupling sat-

urates. As inhomogeneous X-ray heating continues, the large-scale

power comes back up. In our fiducial model, this transition occurs

around z ∼ 25.

(vi) X-ray heating; T̄K = T̄S < Tγ : X-rays start permeating the

IGM. The fluctuations in δTb are now at their maximum, as regions

close to X-ray sources are heated above the CMB temperature,

δTb > 0, while regions far away from sources are still very cold,

δTb < 0. A ‘shoulder’ in the power spectrum, similar to that seen in

the epoch of reionization (e.g. McQuinn et al. 2007), moves from

small scales to large scales. X-rays eventually heat the entire IGM,

and 21-cm can only be seen in emission. The power spectrum falls

as this process nears completion. In our fiducial mode, this epoch

corresponds to 18 � z � 25.

(vii) X-ray heating → reionization transition; T̄K = T̄S > Tγ :

X-rays have heated all of the IGM to temperatures above the CMB.

The 21-cm signal becomes insensitive to the spin temperature.

Emission in 21-cm is now at its strongest before reionization be-

gins in the earnest. The 21-cm power spectrum is driven by the

fluctuations in the density field. In our fiducial model, this epoch

corresponds to 16 � z � 18.

(viii) Reionization: Ionizing photons from early generations of

sources begin permeating the Universe, wiping-out the 21-cm sig-

nal inside ionized regions. The power spectrum initially drops on

large scales at x̄H I � 0.9 as the first regions to be ionized are the

small-scale overdensities (McQuinn et al. 2007). The mean signal

decreases as H II regions grow, and the power spectrum is gov-

erned by H II morphology. This epoch can have other interesting

features depending on the detailed evolution of the sources and

sinks of ionizing photons, as well as feedback processes, but as

the focus of this section is the pre-reionization regime, we shall be

brief in this point. In our fiducial model, this epoch corresponds to

7 � z � 16.

These milestones are fairly general, and should appear in most

regions of astrophysical parameter space. However, the details

of the signal, as well as the precise timing and duration of the

above epochs depends sensitively on uncertain astrophysical pa-

rameters. For example, note that the above epochs in our fiducial

model are shifted to higher redshifts than the analogous ones in

Furlanetto (2006) and Pritchard & Furlanetto (2007). This is be-

cause the source abundances in those works were computed with

PS, which underpredicts the abundances of Tvir > 104 K haloes

by over an order of magnitude at high redshifts (e.g. Trac & Cen

24 Note that we discuss global trends here. Locally around each Lyα source,

there are partially ionized regions hosting hotter gas (e.g. Cen 2006).

Figure 11. Top panel: Evolution of the mean temperatures from 21CMFAST

in our fiducial, ζX = 1057 M−1
⊙ model (blue curves), and a model with a

hundred times weaker X-ray heating, ζX = 1055 M−1
⊙ (red curves). Solid,

dashed and dotted curves show TS, TK and Tγ , respectively. Bottom panel:

The corresponding evolution in x̄e and x̄H I.

2007). A similar effect is seen when compared to the recent nu-

merical simulations of Baek et al. (2010), who were only able to

resolve haloes with mass >1010 M⊙, which is 2–3 orders of mag-

nitude away from the atomic cooling threshold at these redshifts.

With such rare sources, they heat the gas in their 100 h−1 Mpc boxes

to above the CMB temperature much later.

Thorough investigation of the available parameter space is be-

yond the scope of this work. However, just to briefly show an

alternative evolution, in Fig. 11, we include a model where the X-

ray efficiency is 2 orders of magnitude lower than in our fiducial

model. As one would expect, the Lyα pumping epoch is unaffected.

However, X-ray heating is delayed by �z ∼ 7. In such an extreme

model, the 21-cm signal would be seen in strong absorption against

the CMB for a long time, and the X-ray heating epoch would overlap

with the early stages of the reionization epoch.

Finally, in Fig. 12, we show slices through our fiducial δTb

box (left), and the corresponding 3D power spectra (right). The

slices were chosen to highlight various epochs in cosmic 21-cm

signal discussed above: the onset of Lyα pumping, the onset of

X-ray heating, the completion of X-ray heating and the mid-point

of reionization are shown from top to bottom. We encourage the

interested reader to see more evolutionary stages through the movie

at http://www.astro.princeton.edu/∼mesinger/Movies/delT.mov.

When normalized to the same epoch, our power-spectrum evolu-

tion agrees fairly well with the analytical model of Pritchard &

Furlanetto (2007), as well as its application to a numerical (Santos

et al. 2008) and a seminumerical (MF07) simulation (Santos et al.

2009, cf. their fig. 11).

One interesting feature worth mentioning is that our reionization

power spectra show a drop in power on large scales, which per-

sists throughout reionization. In the advanced stages of reionization

(x̄H I � 0.9), the strongest imprint on the 21-cm power spectrum is

from H II morphology, with a ‘shoulder’ feature quickly propagat-

ing from small to large scales, and flattening the power spectrum

(see, for example, Fig. 9 and McQuinn et al. 2007). However there

C© 2010 The Authors, MNRAS 411, 955–972
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970 A. Mesinger, S. Furlanetto and R. Cen

Figure 12. Slices through our δTb simulation box (left), and the corresponding 3D power spectra (right), for our fiducial model at z = 30.1, 21.2, 17.9, 10.0

(top to bottom). The slices were chosen to highlight various epochs in the cosmic 21-cm signal (cf. the corresponding mean evolution in Fig. 10): the onset

of Lyα pumping, the onset of X-ray heating, the completion of X-ray heating and the mid-point of reionization are shown from top to bottom. All slices are

1 Gpc on a side and 3.3 Mpc deep. For a movie of this simulation, see http://www.astro.princeton.edu/∼mesinger/Movies/delT.mov.
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should still be a drop in large-scale power beyond either the H II

bubble scale, or the photon mean free path in the ionized IGM,25

whichever is smallest. This is an interesting feature from which one

can deduce the ionizing photon mean free path in the late stages

of reionization (Mesinger & Dijkstra 2008; Furlanetto & Mesinger

2009). And since it occurs at k � 0.1 Mpc−1 (for our fiducial choice

of parameters), it is beyond the dynamic range of present-day nu-

merical simulations hoping to resolve atomically cooled source

haloes.

4 C O N C L U S I O N S

We introduce a powerful new seminumeric modelling tool, 21CMFAST,

designed to efficiently simulate the cosmological 21-cm signal. Our

approach uses perturbation theory, excursion set formalism and

analytic prescriptions to generate evolved density, ionization, pe-

culiar velocity and spin temperature fields, which it then combines

to compute the 21-cm brightness temperature. This code is based

on the seminumerical simulation, DEXM (MF07). However, here we

bypass the halo finder and operate directly on the evolved den-

sity field, thereby increasing the speed and decreasing the memory

requirements. In the post-heating regime, 21CMFAST can generate a

realization in a few minutes on a single processor, compared to many

days on >1000-node supercomputing cluster required to generate

the same resolution boxes using state-of-the-art numerical simula-

tions. 21CMFAST realizations in the pre-heating regime require ∼1 d

of computation time. Conversely, RT simulations of the pre-heating

regime which resolve most sources currently do not exist, as they

are too computationally expensive. Our code is publicly available

at http://www.astro.princeton.edu/∼mesinger/Sim.html

We compare maps, PDFs and power spectra from 21CMFAST, with

corresponding ones from the hydrodynamic numerical simulations

of Trac et al. (2008), generated from the same initial conditions.

We find good agreement with the numerical simulation on scales

pertinent to the upcoming observations (�1 Mpc). The power spec-

tra from 21CMFAST agree with those generated from the numerical

simulation to within 10s of per cent down to the Nyquist frequency.

We find evidence that non-linear peculiar velocity effects en-

hance the 21-cm power spectrum, beyond the expected geometric,

linear value. This enhancement quickly diminishes during the onset

of reionization, remaining only on small scales at x̄H I � 0.7. Inter-

estingly, we also find that the large-scale power is decreased as a

result of peculiar velocities in the advanced stages of reionization.

This is due to the ‘inside-out’ nature of reionization on large scales:

the remaining H I regions are preferentially underdense, in which

peculiar velocities decrease the 21-cm optical depth and brightness

temperature.

Our code can also simulate the pre-reionization regime, includ-

ing the astrophysical processes of X-ray heating and the WF effect.

We show results from a 1-Gpc simulation which tracks the cosmic

21-cm signal down from z = 250, highlighting the various interest-

ing epochs.

There are several large 21-cm interferometers scheduled to be-

come operational soon. Interpreting their upcoming data will be

difficult since we know very little about the astrophysical processes

at high redshifts. Furthermore, there is an enormous range of scales

involved. Conventional numerical simulations are too slow for effi-

cient parameter exploration. 21CMFAST is not.

25 Note that RT simulations of reionization generally do not explicitly in-

clude an effective ionizing photon mean free path from unresolved LLSs.
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