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ABSTRACT 

Most chips today are designed with 20th century CAD 
tools.  These tools, and the abstractions they are based on, were 
originally intended to handle designs of millions of gates or 
less.  They are not up to the task of handling today's billion-gate 
designs.  The result is months of delay and considerable labor 
from final RTL to tapeout.  Surprises in timing closure, global 
congestion, and power consumption are common.  Even taking an 
existing design to a new process node is a time-consuming and 
laborious process. 

Twenty-first century CAD tools should be based on higher-level 
abstractions to enable billion-gate chips to go from final RTL to 
tapeout in days, not months.  Key to attaining this increase in 
productivity is raising the level of design and using simple, 
standard interfaces.  Designs should be composed from high-level 
modules – processors, MODEMs, CODECs, memory subsystems, 
and I/O subsystems – rather than gates and flip-flops.   Each 
module, which we expect to contain 100 thousand to 10 million 
gates, is easily laid out by today’s tools, is placed as a unit, and 
communicates over a NoC via a standard interface.   Restricting 
modules to standard sizes and aspect ratios further simplifies 
physical design.  We expect even a large chip to contain at most a 
few thousand such modules and expect the physical design and 
chip-assembly to take a few days with minimal labor after 
completion of the module-level design. 

Categories and Subject Descriptors 

B.7.2 [Integrated Circuit]: Design aids – layout, placement and 

routing, verification. 

General Terms 

Design, Standardization 

Keywords 

Design automation, NoC, Chiplet, Modularity, Digital design 

1. INTRODUCTION 
Many designers today are able to realize complex systems with 
billions of transistors in a few weeks by composing previously 
designed pieces of intellectual property (IP).  The physical design 

takes only a few hours and changes can be accommodated with a 
minimum of rework. These designers are working at the board or 
system level.  In contrast, designers working at the chip level take 
months to complete a design of similar complexity.   

The system designer is able to achieve a high level of productivity 
because the packaging of the components they are composing 
enforces modularity.  Modularity implies information hiding and a 
fixed, often standard, interface.  The system designer typically 
sees only the specification of a chip they are using.  They cannot 
see or alter the implementation of the chip.  Each chip can only 
interact with the rest of the system over its package pins, a set of 
fixed and often standard interfaces.  The modularity enforced by 
packaging enables a system designer to use a complex component 
without incurring a design cost associated with its internal 
complexity. 

In this paper, we suggest that chip designers can achieve 
productivity comparable to system designers if they adopt a 
comparable level of modularity.  A chip design has no packaging 
constraints to enforce this modularity found at the system level. 
The designer must adopt a discipline and a methodology that 
enforces modularity – and resist the temptation to violate it.   

The ideas we describe here are at an early stage.  We have not yet 
implemented any commercial chips using this approach.  We 
provide a number of specific examples to show what might be 
possible and to give some substance to the proposal.  We share 
these ideas here to encourage others in the design community to 
help flesh out and then adopt this approach in a quest to build an 
ecosystem for more productive SoC design. While others have 
advocated raising the level of abstraction for chip design [1], we 
propose specific methods for a modular design discipline. The 
advantages of modular design and information hiding have long 
been understood in the software engineering community [2].  
They apply equally well to hardware design. 

We propose two artificial constraints to impose modularity on a 
design and simplify composition.  First, all modules are one of a 
few standard heights (for example 0.5mm, 1mm, and 2mm) 
placed in rows, with no global signals routed through a module. 
Second, modules are restricted to communicate over a network-
on-chip (NoC) [3, 4] using standard interfaces.  A few flavors of 
the standard interface would be provided to accommodate a range 
of bandwidth requirements.  Restricting modules to standard 
heights greatly simplifies the bin-packing problem of module 
placement.  Restricting global signals to dedicated wiring 
channels enables separate design and verification of modules. 
Restricting communication to a standard packetized interface 
enforces information hiding, avoiding the rat’s nest that can 
develop when modules are able to see and exploit the internals of 
other modules. 
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The cost of self-imposed modularity is likely to be a chip that is 
less optimal along some axis than one that violates modularity.  It 
may be slightly larger, slightly slower, or consume slightly more 
power than a chip that is carefully handcrafted without imposing 
this discipline.  However, this slightly sub-optimal chip will get to 
market months before its handcrafted cousin.  The revenue 
generated and market position gained by earlier market delivery 
could easily justify, for instance, consuming a bit more die area. If 
reclaiming the additional area is important, a handcrafted design 
can follow the modular design as a cost reduction step. 

Semiconductor manufacturers have already shown a willingness 
to adopt modularity at the expense of optimality in the use of 
standard cells.  Making all cells a standard height and enforcing 
fully-restored CMOS electrical interface constraints imposes an 
area penalty.  We have seen cases where redesigning a standard-
cell unit using full-custom design can save upwards of 50% in 
area [5].  Yet this is rarely done in practice because full-custom 
design at the transistor or gate level is simply too costly. 
Interestingly, recent work indicates that the gap between 
automated standard cell and custom design methodologies may be 
closing [6]. 

The design discipline we are proposing is simply up-leveling the 
concept of standard cells.  Like standard cells, we propose cells 
with a common height to simplify composition.  The difference is 
that our proposed row height is 0.5mm while a standard cell's 

height is 6 to 12 wire pitches, about 1µm in a typical 28nm 
process.  A unit of modularity that is 6-12 wire pitches in height 
was the right abstraction when 103 to 105 such units fit on an edge 
of a chip.  Now that we are producing 108 to 109-gate chips, we 
need to scale up unit modularity to a unit that is at least 0.5mm on 
a side, resulting in designs that have perhaps a thousand of these 
new units on a chip. 

As we up-level standard cells, the need for a standard interface 
changes. With standard cells, the standard interface is a fully-
restored static CMOS logic signal.  Pre-charged signals, dynamic 
nodes, pass-gate signals, and flip-flop storage nodes are not 
allowed to be exposed outside the cell.  Flip-flop and latch cells 
typically use several inverters solely to provide this isolation. 
Enforcing this standard signaling convention ensures that any 
standard cell can talk to any other standard cell without fear of 
dynamic charge sharing or other subtle circuit effects.  As we up-
level to modules in our proposal,  the standard interface becomes 
a packetized transport protocol, namely a NoC interface.  This 
interface ensures that any module can talk to any other module 
without worrying about subtle protocol effects or timing surprises 
when integrated at the chip-level. 

The remainder of this paper explores the concept of high-level 
modular design in more detail, focusing on the design elements of 
chiplets, standard interfaces, NoC, and I/O. We conclude with a 
case study of an experimental chip that employed some of these 
principles and a call to arms to the chip design community. 

2. CHIPLETS 
Figure 1 shows how we envision modules or chiplets being placed 
on a portion of a chip.  The figure shows one corner of a chip with 
I/O chiplets along the periphery and rows of single, double, and 
quad-height modules.  Dedicated wiring tracks are provided 
between the module rows.  To preserve modularity, routing 
through modules is prohibited. 

All modules are a fixed height but have an arbitrary width.  As 
with standard cells, this approach facilitates simple placement in 
rows while allowing modules that span a wide range of areas. We 

envision perhaps three to four module heights to allow a wide 
range of module sizes without requiring extreme aspect ratios that 
tend to result in inefficient layout.  Chiplet heights can be 
arranged as a multiple of the power grid so that vias from the 
power grid to the chiplet are in the same position in each row.  

Assuming modules of 0.5, 1, and 2mm in height (single, double, 
and quad height), the design can accommodate areas from 
0.06mm2 (0.5mm x 0.125mm) to 16mm2 (2mm x 8mm) with 
aspect ratios no worse than 4:1. In a typical 28nm process, this 
range of areas would enable chiplets to include 190k to 48M 
gates. Modules smaller than 0.06mm2 (190k gates) can be 
combined with other small modules into a single module sharing a 
NoC interface, using conventional design techniques. Modules 
larger than 16mm2 (48M gates) can be placed as a large macro or 
be decomposed into multiple, smaller modules.  

The top 5% of a chiplet's height (25, 50, or 100µm for single, 
double, and quad-height chiplets) can be reserved for a wiring 
channel. The NoC logic and its channels are implemented in this 

area. A 25µm wiring channel for single-height modules provides 
over 250 wiring tracks per layer, sufficient bandwidth for a row of 
single-height modules.  Should additional bandwidth be required, 
a row of modules may be omitted and its space used entirely for 
wiring.  NoC connections between wiring channels are 
accomplished by inserting NoC wiring modules into each row. 
The connection from each module to the NoC takes place entirely 
along the upper and/or lower edge of the module using one or 
more of the fixed interfaces described below.  

Providing dedicated wiring area simplifies layout and timing 
closure, allowing each module's layout to be finalized and timing 
verified independent of global wiring.  It also makes the global 
wiring more predictable.  Timing of the NoC is not dependent on 
the design of any module.  

The center of a module only has connections to power, ground, 
and external I/O.  Chiplets can be powered via global power and 
ground grids that are distributed on upper layers of metal and 
supplied via an array of supply balls.    

I/O chiplets are modules that include I/O drivers, pads, and signal 
balls that connect to the package.  The presence of the signal balls, 
and any special supply balls needed to support them may interrupt 
the power grid and the array of power supply balls.  Otherwise an 
I/O chiplet is no different from any other chiplet.  We anticipate 
that I/O chiplets will include not just the I/O circuit elements, but 

 

Figure 1: Layout of chiplets on a modular SoC. 



also the logic associated with those pads.  For example, a memory 
controller would be included in the chiplet containing SDDR I/O 
pads, and a PCIe root complex would be contained in the chiplet 
containing PCIe PHYs.  While I/O chiplets will typically be 
placed along the periphery of the chip, area I/O is also possible. 
The implications of I/O chiplets are described in more detail in 
Section 5 below. 

As shown in Figure 1, we expect the tallest rows of chiplets to be 
placed toward the center of the chip so that the larger wiring 
channels associated with these chiplets are available in the center 
of the die, where the highest wiring density is expected.  At the 
point where row heights change, a NoC chiplet is inserted (solid 
black in Figure 1) to route packets between the different channels. 

3. STANDARD INTERFACES 
One of the motivations of advocating for standard interfaces in 
our modularized design proposal is to ensure that relatively 
straightforward automation can fully construct that top-level 
design ensuring functional correctness, while avoiding timing and 
routing surprises. 

3.1 The Rat’s Nest 
Perhaps the hardest step of converting an existing design to the 
modular approach we advocate is eliminating the rat’s nest of 
connections between modules on a modern SoC and replacing this 
wiring with disciplined communication over standard interfaces. 
Without the discipline of modularity, it is not unusual to have 
thousands of connections between modules.  A designer working 
on one module needing to know the status of an internal 
component of another module is tempted to just reach inside that 
module and grab the relevant signal.  To the designer, this option 
appears inexpensive as it only requires typing a signal name in 
Verilog or adding a wire to a module specification. In practice, it 
is quite costly to both the logical and physical design of the chip. 

Violating strict modularity increases the logical design complexity 
in several ways. Accessing internal signals of modules violates the 
principle of information hiding and in doing so makes module 
designs fragile and brittle. Changing or verifying a design 
becomes challenging. Substituting a new module for an old 
module may be very difficult when several other modules on a 
SoC depend on internal signals and potentially subtle or non-
obvious behavioral properties. Except in rare circumstances, 
accessing internal signals of a module is simply bad design. 

Violating strict modularity also incurs physical design costs, 
including area and design time. Random wiring between modules 
is costly in terms of area because it has a low duty factor.  A 
separate wiring track (or tracks for multi bit signals) is allocated 
for each signal accessed in this manner, even though the typical 
signal is relevant (both changing and observed) a tiny fraction of 
the time.  Except for signals with very high duty factor, a far more 
area-efficient approach multiplexes many signals over a shared 
communication structure, such as a NoC, rather than allocating 
dedicated wiring to each signal. Random wiring also makes full-
chip timing closure more difficult and time consuming, as internal 
module signals may have little local timing margin and translate 
into top-level timing violations.  

3.2 A Modular Interface 
Instead of unstructured module interfaces and access to internal 
module signals, we propose that modules communicate with other 
modules by sending packets over a NoC. To illustrate how this 
would work, we will propose one such packet-based NoC design. 

In this design, a packet consists of one or more 32-bit flits.  The 
destination of the packet is encoded in the first flit.  The 
remainder of the packet is user-defined. Figure 2 shows the 
standard module interface.  The interface consists of separate 
outbound (CO, RO, DO), inbound (CI, RI, DI), test, and clock 
signal groups.  The inbound and outbound signal groups are 
further divided into data (DO and DI), control (CO and CI), and 
flow control (RO and RI).  To allow the bandwidth to be 
configured for modules with different needs, the data fields (DO 
and DI) can be configured to be 32, 64, 128, or 256 bits wide, 
enabling modules to send 1, 2, 4, or 8 flits each cycle.  The least 
significant 16 bits of the first flit of a message encodes the 
message destination.  The remainder of the bits is defined by the 
two endpoints and is not interpreted by the network. The control 
(CO and CI) signal groups encode how many flits are valid, 
whether the last valid flit terminates the packet, and on which 
virtual channel the packet is sent [7].  The flow control lines (RO 
and RI) flow in the direction opposite to the corresponding data 
and control lines to signal when the data and control are accepted 
by the interface.  

To send a packet, a module places the first flit(s) on the DO lines 
and sets the CO lines appropriately. The data and control are held 
until the RO line is sensed high at the end of a cycle, indicating 
that the data has been accepted.  A packet that is longer than the 
width of the DO lines is sent over multiple cycles.  Flits from 
different virtual channels can be interleaved on a cycle-by-cycle 
basis by setting the CO lines appropriately.  Modules receive 
arriving packets using an identical interface but in the opposite 
direction. 

The test interface is comparable to JTAG and allows a tester to 
connect to and independently test each module via the NoC. The 
NoC must also include a capability to test the NoC itself and the 
module to NoC interfaces. 

The clock field provides a standard reference clock to the module; 
we expect that a 1GHz reference will be suitable for most SoCs.  
The NoC operates globally at this 1GHz clock rate and the 
module to NoC interface is synchronous with this clock.  Each 
module may operate using an arbitrary clock and arbitrary timing 
convention but is responsible for generating its local clock (or 
clocks). It is also responsible for synchronizing its local signals 
with the NoC interface, for example by using a FIFO 
synchronizer.  A standard synchronizer would be available for 
inclusion in each module. This approach to timing allows 

 

Figure 2: Standard module interface. 



complete flexibility in module design (including asynchronous) 
while providing a global timing reference that can be used to 
generate a local clock. 

Table 1 illustrates how an encoder chiplet with a 2-flit (64-bit) 
interface sends a 3-flit (96-bit) message to a memory controller 
with a 1-flit (32-bit interface).  On the first cycle, the encoder puts 
two flits (A and B) on the DO signals and sets CO to indicate 2 
valid flits, no termination, and virtual channel 3.  The low 16-bits 
of flit A encode the network address of the memory controller. On 
the second cycle, the remaining flit (C) is placed on the low DO 
lines and the CO signals are set to encode 1 flit, packet 
termination, and virtual channel 3.   

A few cycles later, the packet arrives on the CI and DI pins of the 
memory controller. Three cycles are required for the packet to be 
delivered at the far end over the 32-bit controller interface. The 
network converts the packet from 64-bit wide to 32-bit wide at the 
destination NoC interface. 

Providing a variable width interface enables the NoC to efficiently 
support a wide variety of interface bandwidths ranging from 
4GB/s to 32GB/s, with a 1GHz NoC clock.  Providing automatic 
conversion between widths in the network allows any module to 
talk to any other module regardless of their width.  To simplify 
width conversion, the physical layout of the multi-flit data buses 
are bit interleaved.  If interface bandwidth higher than 32GB/s is 
required, multiple parallel 32GB/s NoC interfaces can be 
instantiated on a module. 

4. NETWORK-ON-CHIP (NoC) 
We envision that the NoC for a particular SoC will be customized 
based on the anticipated traffic matrix for that NoC and the 
quality of service (QoS) required for each traffic flow.  The traffic 
matrix may be explicitly specified or may be extracted from 
simulations of the SoC.  Starting with the traffic matrix and the 
placement of modules, a NoC synthesis tool generates a NoC that 
provides the required throughput for each flow with a minimum of 
latency and energy.  The tool configures a NoC from a library of 
channels, routers, NICs, and controllers.  The NoC synthesis tool 
also assigns virtual channels to particular flows to meet QoS 
requirements of the application. 

We expect the NoC channels to be implemented with optimized 
circuits that employ equalization and low-swing signaling to 
achieve substantially lower energy and latency than a wire driven 
by a standard full-swing CMOS gate.  The use of low-swing 
signaling is enabled by dedicated wiring channels, which 
facilitates control of wire geometry and crosstalk.  We expect the 
performance of these optimized wires to more than offset the 
increased energy and latency due to the insertion of routers in the 
communication path. 

Some SoCs include isochronous flows that have fixed bandwidth 
requirements with tight latency constraints.  We expect the NoC 
to handle such flows by provisioning channels with sufficient 
bandwidth to meet the worst-case requirements of all 
simultaneous flows and then assigning isochronous flows to a 
high-priority virtual channel. 

Some interactions between modules on a SoC involve simple 
events.  For example, one module may need to know when a 
queue in another module reaches a threshold.  In a traditional rat’s 
nest SoC design, a dedicated wire would be run between the two 
modules with this indication.   On a NoC with standard interfaces, 
such events are sent as simple single-flit packets on the highest-
priority virtual channel.  To minimize latency, an event packet can 
be launched in the same cycle that the event is detected. 

5. I/O CHIPLETS 
One of the most visibly and structurally obvious holdovers from 
the early days of IC design is the I/O ring. This ring is the 
traditional repository of all the I/O buffer and power/ground pads 
for the device. The I/O padring requires up-leveling in a world 
that has full subsystem-sized modularity. 

One of the obvious problems with the I/O ring structure is that it 
separates the functional block with the I/O need from the actual 
I/O pads. This independence provided desirable isolation of all the 
challenges of high energy and often electrically-hostile external 
interfaces from the more standardized and less tolerant small-
signal domain of the internal logic. However the costs include 
long wires, non-standard module interfaces, inter-module timing 
challenges, global wiring congestion, unnaturally constrained 
floor plans and aspect ratios, and a considerable amount of 
exposed detailed module specific knowledge and behavior. None 
of these properties match our goal of design modularity with 
encapsulated functionality communicating via standard interfaces. 

Instead we propose to abandon the global I/O ring structure 
altogether, in favor of an I/O chiplet architecture which embeds 
the I/O pads with its interface logic. At the chip level, I/O pads are 
spread throughout the whole of the device using area I/O, rather 
than being constrained to the periphery. Within a chiplet, the I/O 
can still be distributed peripherally. However, the main goal is to 
make the physical implementation of the module completely self-
contained. This approach will require, for instance, that each 
module design solve its own di/dt and noise issues, provide for its 
own connections to power and ground resources, and 
accommodate standardized test infrastructures. While in some 
respect, we have just moved I/O design challenges from the chip 
to the chiplet, making chiplets and their I/O truly composable will 
facilitate much easier chip assembly and full-chip electrical 
verification. 

6. A CASE STUDY 
The TRIPS processor was a research prototype chip that 
employed much of the design style described above [8]. The 
TRIPS chip was designed to demonstrate distributed processor 
and memory architectures and included two processors and a 
distributed non-uniform NUCA cache. As shown in chip floorplan 
of Figure 3, the chip was implemented using 106 instances of 11 
different tiles (chiplets). The diagram shows the tile boundaries, 
annotated with tile names, along with the outlines of the major 
RAM structures within each tile. Each processor was composed of 
30 instances of five types of tiles, connected via a NoC and a 
small number of control networks. The five tiles (GT, RT, ET, 
DT, and IT) represented the major functions of the distributed 
processor, including global control, register file, execution units, 

Table 1: Example NoC communication. 

 Source Destination 

Cycle CO DO CI DI 

1 2, No, 3 A, B   

2 1, Yes, 3 C   

…     

i   1, No, 3 A 

i+1   1, No, 3 B 

i+2   1, Yes, 3 C 

 



data caches, and instruction caches. The tiles ranged in size from 
1mm2 to 9mm2 (in a 130nm process) and the design intended to 
align the tiles in both the X and Y dimensions. The on-chip 
NUCA memory system on the left side of the chip was composed 
of 16 level-2 cache tiles, memory controller tiles, DMA engines, 
and external communication interfaces.  

The logical connections between the tiles in each processor 
included a general purpose NoC for data operand transmission, as 
well as several control networks to implement the distributed 
uniprocessor control protocols, such as instruction distribution. 
Each tile contained a NoC router as well as pipelined channels for 
the control protocol networks. All tiles connected via abutment 
with no inter-tile global wiring. The memory system only 
included a NoC (separate from the operand NoCs in the 
processors) and the tiles there were intended to connect via 
abutment. 

In light of the design methodology described above, the TRIPS 
design achieved some of the physical design productivity goals. 
The tiled design in fact did eliminate all global wiring, making 
chip assembly trivial. Likewise, global timing closure was easy 
because of the clean timing interfaces at each tile boundary. In 
most areas of the chip, the tiles were sufficiently aligned to enable 
connection via abutment. 

However, a number of challenges prevented the design from being 
as modular as intended. First, the aspect ratios of the tiles were not 
always well matched in both dimensions. For example, the DT 
needed to match the width of the GT and the height of the ET, but 
the fit was not perfect. Second, the tiling approach broke down in 
the corners of the memory system because space and aspect ratio 
constraints required the MTs on the top and bottom to be arranged 
vertically (instead of horizontally) so that the different controllers 
could fit in a square space, rather than a thin rectangular space. 
Four different tiles (the two memory controllers, the chip-to-chip 
router, and the I/O controller) each required a substantial number 
of chip pins, which far exceeded the size of each of controller. 
Instead, the pins were spread throughout the chip with top-level 
wiring connecting the controllers to their I/Os.  

Finally, the design intended to perform a single physical design 
for each type of tile, with the layout and intra-tile wiring 
replicated during chip assembly. However, because the I/Os were 
spread throughout the chip, the I/O pattern caused non-uniform 
obstructions in different physical instances of the same tile. As a 
result, each tile was actually placed and routed individually, 
subject to the different I/O blockages within each instance. 
However, because all of the tile instances were independent, the 
placement and routing of each block could be performed in 
parallel. The entire chip physical design including placement, 
routing, and chip assembly was automated and could be 
performed in about a day. 

While the TRIPS chip demonstrates a number of advantages of 
raising the level of abstraction for full-chip logical and physical 
design, it also highlights a number of the challenges, including 
imperfect chip component tiling and a need for both data and 
control networks. Arguably, the TRIPS chip is a hard design to 
tile because each tile contains only a small portion of the design, 
such as a slice of the level-1 data cache or a slice of the register 
file. Contemporary SoCs composed of commodity building blocks 
likely require fewer if any communication channels that could not 
be transmitted via a general purpose NoC. However, composing a 
two-dimensional tiled design in which tiles align in both 
dimensions may still be difficult. 

Many of the differences between the TRIPS design and the 
approach we propose here are due to differences in requirements.  
Aligning modules in two dimensions and connecting by abutment 
is an ideal way to achieve modularity for a single design.  
Aligning uniform height modules in one dimension and routing 
the NoC in wiring channels external to the modules is better 
suited to building an ecosystem capable of quickly generating a 
wide range of SoCs. 

7. COMPROMISES 
While we expect the modular approach described above to serve 
the vast majority of SoCs, two areas may require compromises to 
the proposed methodology. 

Out-of-band signals: The vast majority of signaling between 
modules can be accomplished over the NoC.  Even most low-
latency event signals can be efficiently packetized, with 
appropriate use of virtual channels for providing priority and QoS. 
However, in rare cases modules may need to exchange signals 
directly, bypassing the NoC.  Such signals may arise in things like 
interrupt signals when partitioning a complex block into multiple 
tightly coupled chiplets. This practice of sending out-of-band 

signals should be strongly discouraged lest designers resort to it to 
avoid the effort required to packetize their interfaces.  However, 
when needed, the methodology we describe here can be extended 
to allow direct connection of signals between modules. By 
requiring that such signals be sampled by the NoC clock at both 
the outbound and inbound interfaces and be routed entirely in the 
wiring channels, module verification/timing closure and global 
verification/timing closure can still be decoupled. 

Captive vs. non-captive signal balls: Making all of the signal 
balls used by an I/O module captive (contained within the 
boundaries of the module) keeps the effect of these balls local to 
the module.  Modules can be composed in any way without the 
ball pattern of one module affecting the functionality of another 
module.  However, this restriction becomes costly in area when a 
module has a large number of balls but only a small area for 
circuits and logic. The alternative is to allow the module to route 
signals via a redistribution layer to non-captive balls, risking 

 
 

Figure 3: Floorplan of a tiled chiplet architecture. 

© 2006 IEEE. Reprinted, with permission, from [8]. 



disruption to the power and ground grids of any modules placed 
under the balls. 

8. A CALL TO ARMS 
We articulate our vision of the future of SoC design with the goal 
of engaging the broader design community to adopt a similar 
vision and work with us to build the ecosystem needed to realize 
it. Four major components are required to make this vision a 
reality: module placement software, a NoC generator, IP modules, 
and chiplet verification tools. 

Module placement: The module placement software is perhaps 
the simplest element as it is just a standard-cell placement system 
scaled up to larger modules and modified to deal with multiple 
row heights.  The inter-module traffic matrix can be used instead 
of a netlist to derive module affinity. The standard techniques of 
graph partitioning for coarse placement followed by iterative 
refinement should yield a good placement. Given the small 
number of modules being placed (103) we expect a good solution 
to be reached within only a few hours of CPU time. 

NoC generator: The NoC generator is perhaps the most complex 
element of the ecosystem.  The NoC generator uses the module 
placement and the traffic matrix to derive the communication 
loading of key cuts of the SoC.  It then determines a topology to 
provision sufficient communication across each cut at minimum 
cost.  We expect this step to employ a standard topology such as a 
flattened butterfly as the underlying substrate, and adapt it to 
provide more bandwidth where needed and less bandwidth where 
there is little demand.  The final step of the NoC generator 
instantiates library modules for channels, routers, and NICs to 
realize the selected topology. 

IP modules: The most important part of the ecosystem is the IP 
because a critical mass of it is required to make the ecosystem 
viable. Chiplets for processors, on-chip memory, off-chip memory 
controllers, common peripheral interfaces (PCIe, SATA, USB, 
Ethernet, etc.), and common CODECs and MODEMs are needed 
to enable SoC designers to quickly assemble chips from a library 
of modules. IP modules may be soft (synthesizable Verilog) or 
hard (placed and routed cells).   A proper IP module will include 
the module functionality packaged behind a standard NoC 
interface of an appropriate width.  Hard IP is simply soft IP 
synthesized for a particular process and with placement, routing, 
timing closure, and test generation completed.  The hard IP is 
ready to be placed in a modular SoC. 

We expect that most of the required IP already exists and simply 
needs to be tied to a standard interface.  For a given user, some IP 
will be generated in house, some IP will be provided by tool 
vendors, and some will be licensed by third parties.  Our vision is 
that simpler composition of modules will lower the barrier to 
creating a vibrant market of standard high-level digital IP chiplets. 

Chiplet verification tools: The challenges to widespread 
adoption of this approach lies in inter-module interconnects and 
establishing the necessary conventions and standards to allow 
automation to be responsible for all the heavy lifting. Besides 
functional connection requirements within the constraints of 
standardized module heights, formal specifications for ensuring 
appropriate power/ground resources and test interfaces to each 
module will be needed and require verification. 

New analysis tools will be required to focus on the chiplets to 
ensure that they are built correctly and follow established rules so 
that they can be safely re-instantiated in any circumstance. 

Compositions of chiplets should be correct by construction.  

Chiplet composition tools and appropriate checkers will be needed 
to ensure that all rules are followed and proper inter-chiplet 
connections are made. Given the independent nature of these 
chiplets, new automated test generation and test application 
methodologies and tools will be required. Such tools would allow 
the testing requirements of a module to be encapsulated so that 
those integrating a chiplet can again be isolated from the details of 
the test, yet be assured a quality result each and every time the 
module is used. 

We have heard both engineers and venture capitalists lament the 
high cost of designing a SoC today.  Estimates are that $50M  is 
required to get a complex digital SoC to first prototype [9]. Some 
attribute the dearth of fabless semiconductor startups and the 
slowdown of innovation in the field to this high cost.  While some 
of this cost can be attributed to mask sets and wafer starts, the 
bulk comes from design and verification. Our vision of a modular 
SoC built from standard chiplets offers a path toward greatly 
reducing the non-recurring cost of a SoC.  In doing, so we hope 
that it will spur a new generation of fabless semiconductor 
startups and encourage more innovation in chip architecture and 
design. 
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