
21st Century Digital Design Tools

William J. Dally
NVIDIA & Stanford University
2701 San Tomas Expressway

Santa Clara, CA 95050
408-486-2000

bdally@nvidia.com

Chris Malachowsky
NVIDIA

2701 San Tomas Expressway
Santa Clara, CA 95050

408-486-2000

chris@nvidia.com

Stephen W. Keckler
NVIDIA & UT-Austin

2701 San Tomas Expressway
Santa Clara, CA 95050

408-486-2000

skeckler@nvidia.com

ABSTRACT

Most chips today are designed with 20th century CAD
tools. These tools, and the abstractions they are based on, were
originally intended to handle designs of millions of gates or
less. They are not up to the task of handling today's billion-gate
designs. The result is months of delay and considerable labor
from final RTL to tapeout. Surprises in timing closure, global
congestion, and power consumption are common. Even taking an
existing design to a new process node is a time-consuming and
laborious process.

Twenty-first century CAD tools should be based on higher-level
abstractions to enable billion-gate chips to go from final RTL to
tapeout in days, not months. Key to attaining this increase in
productivity is raising the level of design and using simple,
standard interfaces. Designs should be composed from high-level
modules – processors, MODEMs, CODECs, memory subsystems,
and I/O subsystems – rather than gates and flip-flops. Each
module, which we expect to contain 100 thousand to 10 million
gates, is easily laid out by today’s tools, is placed as a unit, and
communicates over a NoC via a standard interface. Restricting
modules to standard sizes and aspect ratios further simplifies
physical design. We expect even a large chip to contain at most a
few thousand such modules and expect the physical design and
chip-assembly to take a few days with minimal labor after
completion of the module-level design.

Categories and Subject Descriptors

B.7.2 [Integrated Circuit]: Design aids – layout, placement and

routing, verification.

General Terms

Design, Standardization

Keywords

Design automation, NoC, Chiplet, Modularity, Digital design

1. INTRODUCTION
Many designers today are able to realize complex systems with
billions of transistors in a few weeks by composing previously
designed pieces of intellectual property (IP). The physical design

takes only a few hours and changes can be accommodated with a
minimum of rework. These designers are working at the board or
system level. In contrast, designers working at the chip level take
months to complete a design of similar complexity.

The system designer is able to achieve a high level of productivity
because the packaging of the components they are composing
enforces modularity. Modularity implies information hiding and a
fixed, often standard, interface. The system designer typically
sees only the specification of a chip they are using. They cannot
see or alter the implementation of the chip. Each chip can only
interact with the rest of the system over its package pins, a set of
fixed and often standard interfaces. The modularity enforced by
packaging enables a system designer to use a complex component
without incurring a design cost associated with its internal
complexity.

In this paper, we suggest that chip designers can achieve
productivity comparable to system designers if they adopt a
comparable level of modularity. A chip design has no packaging
constraints to enforce this modularity found at the system level.
The designer must adopt a discipline and a methodology that
enforces modularity – and resist the temptation to violate it.

The ideas we describe here are at an early stage. We have not yet
implemented any commercial chips using this approach. We
provide a number of specific examples to show what might be
possible and to give some substance to the proposal. We share
these ideas here to encourage others in the design community to
help flesh out and then adopt this approach in a quest to build an
ecosystem for more productive SoC design. While others have
advocated raising the level of abstraction for chip design [1], we
propose specific methods for a modular design discipline. The
advantages of modular design and information hiding have long
been understood in the software engineering community [2].
They apply equally well to hardware design.

We propose two artificial constraints to impose modularity on a
design and simplify composition. First, all modules are one of a
few standard heights (for example 0.5mm, 1mm, and 2mm)
placed in rows, with no global signals routed through a module.
Second, modules are restricted to communicate over a network-
on-chip (NoC) [3, 4] using standard interfaces. A few flavors of
the standard interface would be provided to accommodate a range
of bandwidth requirements. Restricting modules to standard
heights greatly simplifies the bin-packing problem of module
placement. Restricting global signals to dedicated wiring
channels enables separate design and verification of modules.
Restricting communication to a standard packetized interface
enforces information hiding, avoiding the rat’s nest that can
develop when modules are able to see and exploit the internals of
other modules.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC ’13, May 29-June 7, 2013, Austin, TX, USA
Copyright 2013 ACM 978-1-4503-2071-9/13/05 …$15.00.

The cost of self-imposed modularity is likely to be a chip that is
less optimal along some axis than one that violates modularity. It
may be slightly larger, slightly slower, or consume slightly more
power than a chip that is carefully handcrafted without imposing
this discipline. However, this slightly sub-optimal chip will get to
market months before its handcrafted cousin. The revenue
generated and market position gained by earlier market delivery
could easily justify, for instance, consuming a bit more die area. If
reclaiming the additional area is important, a handcrafted design
can follow the modular design as a cost reduction step.

Semiconductor manufacturers have already shown a willingness
to adopt modularity at the expense of optimality in the use of
standard cells. Making all cells a standard height and enforcing
fully-restored CMOS electrical interface constraints imposes an
area penalty. We have seen cases where redesigning a standard-
cell unit using full-custom design can save upwards of 50% in
area [5]. Yet this is rarely done in practice because full-custom
design at the transistor or gate level is simply too costly.
Interestingly, recent work indicates that the gap between
automated standard cell and custom design methodologies may be
closing [6].

The design discipline we are proposing is simply up-leveling the
concept of standard cells. Like standard cells, we propose cells
with a common height to simplify composition. The difference is
that our proposed row height is 0.5mm while a standard cell's

height is 6 to 12 wire pitches, about 1µm in a typical 28nm
process. A unit of modularity that is 6-12 wire pitches in height
was the right abstraction when 103 to 105 such units fit on an edge
of a chip. Now that we are producing 108 to 109-gate chips, we
need to scale up unit modularity to a unit that is at least 0.5mm on
a side, resulting in designs that have perhaps a thousand of these
new units on a chip.

As we up-level standard cells, the need for a standard interface
changes. With standard cells, the standard interface is a fully-
restored static CMOS logic signal. Pre-charged signals, dynamic
nodes, pass-gate signals, and flip-flop storage nodes are not
allowed to be exposed outside the cell. Flip-flop and latch cells
typically use several inverters solely to provide this isolation.
Enforcing this standard signaling convention ensures that any
standard cell can talk to any other standard cell without fear of
dynamic charge sharing or other subtle circuit effects. As we up-
level to modules in our proposal, the standard interface becomes
a packetized transport protocol, namely a NoC interface. This
interface ensures that any module can talk to any other module
without worrying about subtle protocol effects or timing surprises
when integrated at the chip-level.

The remainder of this paper explores the concept of high-level
modular design in more detail, focusing on the design elements of
chiplets, standard interfaces, NoC, and I/O. We conclude with a
case study of an experimental chip that employed some of these
principles and a call to arms to the chip design community.

2. CHIPLETS
Figure 1 shows how we envision modules or chiplets being placed
on a portion of a chip. The figure shows one corner of a chip with
I/O chiplets along the periphery and rows of single, double, and
quad-height modules. Dedicated wiring tracks are provided
between the module rows. To preserve modularity, routing
through modules is prohibited.

All modules are a fixed height but have an arbitrary width. As
with standard cells, this approach facilitates simple placement in
rows while allowing modules that span a wide range of areas. We

envision perhaps three to four module heights to allow a wide
range of module sizes without requiring extreme aspect ratios that
tend to result in inefficient layout. Chiplet heights can be
arranged as a multiple of the power grid so that vias from the
power grid to the chiplet are in the same position in each row.

Assuming modules of 0.5, 1, and 2mm in height (single, double,
and quad height), the design can accommodate areas from
0.06mm2 (0.5mm x 0.125mm) to 16mm2 (2mm x 8mm) with
aspect ratios no worse than 4:1. In a typical 28nm process, this
range of areas would enable chiplets to include 190k to 48M
gates. Modules smaller than 0.06mm2 (190k gates) can be
combined with other small modules into a single module sharing a
NoC interface, using conventional design techniques. Modules
larger than 16mm2 (48M gates) can be placed as a large macro or
be decomposed into multiple, smaller modules.

The top 5% of a chiplet's height (25, 50, or 100µm for single,
double, and quad-height chiplets) can be reserved for a wiring
channel. The NoC logic and its channels are implemented in this

area. A 25µm wiring channel for single-height modules provides
over 250 wiring tracks per layer, sufficient bandwidth for a row of
single-height modules. Should additional bandwidth be required,
a row of modules may be omitted and its space used entirely for
wiring. NoC connections between wiring channels are
accomplished by inserting NoC wiring modules into each row.
The connection from each module to the NoC takes place entirely
along the upper and/or lower edge of the module using one or
more of the fixed interfaces described below.

Providing dedicated wiring area simplifies layout and timing
closure, allowing each module's layout to be finalized and timing
verified independent of global wiring. It also makes the global
wiring more predictable. Timing of the NoC is not dependent on
the design of any module.

The center of a module only has connections to power, ground,
and external I/O. Chiplets can be powered via global power and
ground grids that are distributed on upper layers of metal and
supplied via an array of supply balls.

I/O chiplets are modules that include I/O drivers, pads, and signal
balls that connect to the package. The presence of the signal balls,
and any special supply balls needed to support them may interrupt
the power grid and the array of power supply balls. Otherwise an
I/O chiplet is no different from any other chiplet. We anticipate
that I/O chiplets will include not just the I/O circuit elements, but

Figure 1: Layout of chiplets on a modular SoC.

also the logic associated with those pads. For example, a memory
controller would be included in the chiplet containing SDDR I/O
pads, and a PCIe root complex would be contained in the chiplet
containing PCIe PHYs. While I/O chiplets will typically be
placed along the periphery of the chip, area I/O is also possible.
The implications of I/O chiplets are described in more detail in
Section 5 below.

As shown in Figure 1, we expect the tallest rows of chiplets to be
placed toward the center of the chip so that the larger wiring
channels associated with these chiplets are available in the center
of the die, where the highest wiring density is expected. At the
point where row heights change, a NoC chiplet is inserted (solid
black in Figure 1) to route packets between the different channels.

3. STANDARD INTERFACES
One of the motivations of advocating for standard interfaces in
our modularized design proposal is to ensure that relatively
straightforward automation can fully construct that top-level
design ensuring functional correctness, while avoiding timing and
routing surprises.

3.1 The Rat’s Nest
Perhaps the hardest step of converting an existing design to the
modular approach we advocate is eliminating the rat’s nest of
connections between modules on a modern SoC and replacing this
wiring with disciplined communication over standard interfaces.
Without the discipline of modularity, it is not unusual to have
thousands of connections between modules. A designer working
on one module needing to know the status of an internal
component of another module is tempted to just reach inside that
module and grab the relevant signal. To the designer, this option
appears inexpensive as it only requires typing a signal name in
Verilog or adding a wire to a module specification. In practice, it
is quite costly to both the logical and physical design of the chip.

Violating strict modularity increases the logical design complexity
in several ways. Accessing internal signals of modules violates the
principle of information hiding and in doing so makes module
designs fragile and brittle. Changing or verifying a design
becomes challenging. Substituting a new module for an old
module may be very difficult when several other modules on a
SoC depend on internal signals and potentially subtle or non-
obvious behavioral properties. Except in rare circumstances,
accessing internal signals of a module is simply bad design.

Violating strict modularity also incurs physical design costs,
including area and design time. Random wiring between modules
is costly in terms of area because it has a low duty factor. A
separate wiring track (or tracks for multi bit signals) is allocated
for each signal accessed in this manner, even though the typical
signal is relevant (both changing and observed) a tiny fraction of
the time. Except for signals with very high duty factor, a far more
area-efficient approach multiplexes many signals over a shared
communication structure, such as a NoC, rather than allocating
dedicated wiring to each signal. Random wiring also makes full-
chip timing closure more difficult and time consuming, as internal
module signals may have little local timing margin and translate
into top-level timing violations.

3.2 A Modular Interface
Instead of unstructured module interfaces and access to internal
module signals, we propose that modules communicate with other
modules by sending packets over a NoC. To illustrate how this
would work, we will propose one such packet-based NoC design.

In this design, a packet consists of one or more 32-bit flits. The
destination of the packet is encoded in the first flit. The
remainder of the packet is user-defined. Figure 2 shows the
standard module interface. The interface consists of separate
outbound (CO, RO, DO), inbound (CI, RI, DI), test, and clock
signal groups. The inbound and outbound signal groups are
further divided into data (DO and DI), control (CO and CI), and
flow control (RO and RI). To allow the bandwidth to be
configured for modules with different needs, the data fields (DO
and DI) can be configured to be 32, 64, 128, or 256 bits wide,
enabling modules to send 1, 2, 4, or 8 flits each cycle. The least
significant 16 bits of the first flit of a message encodes the
message destination. The remainder of the bits is defined by the
two endpoints and is not interpreted by the network. The control
(CO and CI) signal groups encode how many flits are valid,
whether the last valid flit terminates the packet, and on which
virtual channel the packet is sent [7]. The flow control lines (RO
and RI) flow in the direction opposite to the corresponding data
and control lines to signal when the data and control are accepted
by the interface.

To send a packet, a module places the first flit(s) on the DO lines
and sets the CO lines appropriately. The data and control are held
until the RO line is sensed high at the end of a cycle, indicating
that the data has been accepted. A packet that is longer than the
width of the DO lines is sent over multiple cycles. Flits from
different virtual channels can be interleaved on a cycle-by-cycle
basis by setting the CO lines appropriately. Modules receive
arriving packets using an identical interface but in the opposite
direction.

The test interface is comparable to JTAG and allows a tester to
connect to and independently test each module via the NoC. The
NoC must also include a capability to test the NoC itself and the
module to NoC interfaces.

The clock field provides a standard reference clock to the module;
we expect that a 1GHz reference will be suitable for most SoCs.
The NoC operates globally at this 1GHz clock rate and the
module to NoC interface is synchronous with this clock. Each
module may operate using an arbitrary clock and arbitrary timing
convention but is responsible for generating its local clock (or
clocks). It is also responsible for synchronizing its local signals
with the NoC interface, for example by using a FIFO
synchronizer. A standard synchronizer would be available for
inclusion in each module. This approach to timing allows

Figure 2: Standard module interface.

complete flexibility in module design (including asynchronous)
while providing a global timing reference that can be used to
generate a local clock.

Table 1 illustrates how an encoder chiplet with a 2-flit (64-bit)
interface sends a 3-flit (96-bit) message to a memory controller
with a 1-flit (32-bit interface). On the first cycle, the encoder puts
two flits (A and B) on the DO signals and sets CO to indicate 2
valid flits, no termination, and virtual channel 3. The low 16-bits
of flit A encode the network address of the memory controller. On
the second cycle, the remaining flit (C) is placed on the low DO
lines and the CO signals are set to encode 1 flit, packet
termination, and virtual channel 3.

A few cycles later, the packet arrives on the CI and DI pins of the
memory controller. Three cycles are required for the packet to be
delivered at the far end over the 32-bit controller interface. The
network converts the packet from 64-bit wide to 32-bit wide at the
destination NoC interface.

Providing a variable width interface enables the NoC to efficiently
support a wide variety of interface bandwidths ranging from
4GB/s to 32GB/s, with a 1GHz NoC clock. Providing automatic
conversion between widths in the network allows any module to
talk to any other module regardless of their width. To simplify
width conversion, the physical layout of the multi-flit data buses
are bit interleaved. If interface bandwidth higher than 32GB/s is
required, multiple parallel 32GB/s NoC interfaces can be
instantiated on a module.

4. NETWORK-ON-CHIP (NoC)
We envision that the NoC for a particular SoC will be customized
based on the anticipated traffic matrix for that NoC and the
quality of service (QoS) required for each traffic flow. The traffic
matrix may be explicitly specified or may be extracted from
simulations of the SoC. Starting with the traffic matrix and the
placement of modules, a NoC synthesis tool generates a NoC that
provides the required throughput for each flow with a minimum of
latency and energy. The tool configures a NoC from a library of
channels, routers, NICs, and controllers. The NoC synthesis tool
also assigns virtual channels to particular flows to meet QoS
requirements of the application.

We expect the NoC channels to be implemented with optimized
circuits that employ equalization and low-swing signaling to
achieve substantially lower energy and latency than a wire driven
by a standard full-swing CMOS gate. The use of low-swing
signaling is enabled by dedicated wiring channels, which
facilitates control of wire geometry and crosstalk. We expect the
performance of these optimized wires to more than offset the
increased energy and latency due to the insertion of routers in the
communication path.

Some SoCs include isochronous flows that have fixed bandwidth
requirements with tight latency constraints. We expect the NoC
to handle such flows by provisioning channels with sufficient
bandwidth to meet the worst-case requirements of all
simultaneous flows and then assigning isochronous flows to a
high-priority virtual channel.

Some interactions between modules on a SoC involve simple
events. For example, one module may need to know when a
queue in another module reaches a threshold. In a traditional rat’s
nest SoC design, a dedicated wire would be run between the two
modules with this indication. On a NoC with standard interfaces,
such events are sent as simple single-flit packets on the highest-
priority virtual channel. To minimize latency, an event packet can
be launched in the same cycle that the event is detected.

5. I/O CHIPLETS
One of the most visibly and structurally obvious holdovers from
the early days of IC design is the I/O ring. This ring is the
traditional repository of all the I/O buffer and power/ground pads
for the device. The I/O padring requires up-leveling in a world
that has full subsystem-sized modularity.

One of the obvious problems with the I/O ring structure is that it
separates the functional block with the I/O need from the actual
I/O pads. This independence provided desirable isolation of all the
challenges of high energy and often electrically-hostile external
interfaces from the more standardized and less tolerant small-
signal domain of the internal logic. However the costs include
long wires, non-standard module interfaces, inter-module timing
challenges, global wiring congestion, unnaturally constrained
floor plans and aspect ratios, and a considerable amount of
exposed detailed module specific knowledge and behavior. None
of these properties match our goal of design modularity with
encapsulated functionality communicating via standard interfaces.

Instead we propose to abandon the global I/O ring structure
altogether, in favor of an I/O chiplet architecture which embeds
the I/O pads with its interface logic. At the chip level, I/O pads are
spread throughout the whole of the device using area I/O, rather
than being constrained to the periphery. Within a chiplet, the I/O
can still be distributed peripherally. However, the main goal is to
make the physical implementation of the module completely self-
contained. This approach will require, for instance, that each
module design solve its own di/dt and noise issues, provide for its
own connections to power and ground resources, and
accommodate standardized test infrastructures. While in some
respect, we have just moved I/O design challenges from the chip
to the chiplet, making chiplets and their I/O truly composable will
facilitate much easier chip assembly and full-chip electrical
verification.

6. A CASE STUDY
The TRIPS processor was a research prototype chip that
employed much of the design style described above [8]. The
TRIPS chip was designed to demonstrate distributed processor
and memory architectures and included two processors and a
distributed non-uniform NUCA cache. As shown in chip floorplan
of Figure 3, the chip was implemented using 106 instances of 11
different tiles (chiplets). The diagram shows the tile boundaries,
annotated with tile names, along with the outlines of the major
RAM structures within each tile. Each processor was composed of
30 instances of five types of tiles, connected via a NoC and a
small number of control networks. The five tiles (GT, RT, ET,
DT, and IT) represented the major functions of the distributed
processor, including global control, register file, execution units,

Table 1: Example NoC communication.

 Source Destination

Cycle CO DO CI DI

1 2, No, 3 A, B

2 1, Yes, 3 C

…

i 1, No, 3 A

i+1 1, No, 3 B

i+2 1, Yes, 3 C

data caches, and instruction caches. The tiles ranged in size from
1mm2 to 9mm2 (in a 130nm process) and the design intended to
align the tiles in both the X and Y dimensions. The on-chip
NUCA memory system on the left side of the chip was composed
of 16 level-2 cache tiles, memory controller tiles, DMA engines,
and external communication interfaces.

The logical connections between the tiles in each processor
included a general purpose NoC for data operand transmission, as
well as several control networks to implement the distributed
uniprocessor control protocols, such as instruction distribution.
Each tile contained a NoC router as well as pipelined channels for
the control protocol networks. All tiles connected via abutment
with no inter-tile global wiring. The memory system only
included a NoC (separate from the operand NoCs in the
processors) and the tiles there were intended to connect via
abutment.

In light of the design methodology described above, the TRIPS
design achieved some of the physical design productivity goals.
The tiled design in fact did eliminate all global wiring, making
chip assembly trivial. Likewise, global timing closure was easy
because of the clean timing interfaces at each tile boundary. In
most areas of the chip, the tiles were sufficiently aligned to enable
connection via abutment.

However, a number of challenges prevented the design from being
as modular as intended. First, the aspect ratios of the tiles were not
always well matched in both dimensions. For example, the DT
needed to match the width of the GT and the height of the ET, but
the fit was not perfect. Second, the tiling approach broke down in
the corners of the memory system because space and aspect ratio
constraints required the MTs on the top and bottom to be arranged
vertically (instead of horizontally) so that the different controllers
could fit in a square space, rather than a thin rectangular space.
Four different tiles (the two memory controllers, the chip-to-chip
router, and the I/O controller) each required a substantial number
of chip pins, which far exceeded the size of each of controller.
Instead, the pins were spread throughout the chip with top-level
wiring connecting the controllers to their I/Os.

Finally, the design intended to perform a single physical design
for each type of tile, with the layout and intra-tile wiring
replicated during chip assembly. However, because the I/Os were
spread throughout the chip, the I/O pattern caused non-uniform
obstructions in different physical instances of the same tile. As a
result, each tile was actually placed and routed individually,
subject to the different I/O blockages within each instance.
However, because all of the tile instances were independent, the
placement and routing of each block could be performed in
parallel. The entire chip physical design including placement,
routing, and chip assembly was automated and could be
performed in about a day.

While the TRIPS chip demonstrates a number of advantages of
raising the level of abstraction for full-chip logical and physical
design, it also highlights a number of the challenges, including
imperfect chip component tiling and a need for both data and
control networks. Arguably, the TRIPS chip is a hard design to
tile because each tile contains only a small portion of the design,
such as a slice of the level-1 data cache or a slice of the register
file. Contemporary SoCs composed of commodity building blocks
likely require fewer if any communication channels that could not
be transmitted via a general purpose NoC. However, composing a
two-dimensional tiled design in which tiles align in both
dimensions may still be difficult.

Many of the differences between the TRIPS design and the
approach we propose here are due to differences in requirements.
Aligning modules in two dimensions and connecting by abutment
is an ideal way to achieve modularity for a single design.
Aligning uniform height modules in one dimension and routing
the NoC in wiring channels external to the modules is better
suited to building an ecosystem capable of quickly generating a
wide range of SoCs.

7. COMPROMISES
While we expect the modular approach described above to serve
the vast majority of SoCs, two areas may require compromises to
the proposed methodology.

Out-of-band signals: The vast majority of signaling between
modules can be accomplished over the NoC. Even most low-
latency event signals can be efficiently packetized, with
appropriate use of virtual channels for providing priority and QoS.
However, in rare cases modules may need to exchange signals
directly, bypassing the NoC. Such signals may arise in things like
interrupt signals when partitioning a complex block into multiple
tightly coupled chiplets. This practice of sending out-of-band

signals should be strongly discouraged lest designers resort to it to
avoid the effort required to packetize their interfaces. However,
when needed, the methodology we describe here can be extended
to allow direct connection of signals between modules. By
requiring that such signals be sampled by the NoC clock at both
the outbound and inbound interfaces and be routed entirely in the
wiring channels, module verification/timing closure and global
verification/timing closure can still be decoupled.

Captive vs. non-captive signal balls: Making all of the signal
balls used by an I/O module captive (contained within the
boundaries of the module) keeps the effect of these balls local to
the module. Modules can be composed in any way without the
ball pattern of one module affecting the functionality of another
module. However, this restriction becomes costly in area when a
module has a large number of balls but only a small area for
circuits and logic. The alternative is to allow the module to route
signals via a redistribution layer to non-captive balls, risking

Figure 3: Floorplan of a tiled chiplet architecture.

© 2006 IEEE. Reprinted, with permission, from [8].

disruption to the power and ground grids of any modules placed
under the balls.

8. A CALL TO ARMS
We articulate our vision of the future of SoC design with the goal
of engaging the broader design community to adopt a similar
vision and work with us to build the ecosystem needed to realize
it. Four major components are required to make this vision a
reality: module placement software, a NoC generator, IP modules,
and chiplet verification tools.

Module placement: The module placement software is perhaps
the simplest element as it is just a standard-cell placement system
scaled up to larger modules and modified to deal with multiple
row heights. The inter-module traffic matrix can be used instead
of a netlist to derive module affinity. The standard techniques of
graph partitioning for coarse placement followed by iterative
refinement should yield a good placement. Given the small
number of modules being placed (103) we expect a good solution
to be reached within only a few hours of CPU time.

NoC generator: The NoC generator is perhaps the most complex
element of the ecosystem. The NoC generator uses the module
placement and the traffic matrix to derive the communication
loading of key cuts of the SoC. It then determines a topology to
provision sufficient communication across each cut at minimum
cost. We expect this step to employ a standard topology such as a
flattened butterfly as the underlying substrate, and adapt it to
provide more bandwidth where needed and less bandwidth where
there is little demand. The final step of the NoC generator
instantiates library modules for channels, routers, and NICs to
realize the selected topology.

IP modules: The most important part of the ecosystem is the IP
because a critical mass of it is required to make the ecosystem
viable. Chiplets for processors, on-chip memory, off-chip memory
controllers, common peripheral interfaces (PCIe, SATA, USB,
Ethernet, etc.), and common CODECs and MODEMs are needed
to enable SoC designers to quickly assemble chips from a library
of modules. IP modules may be soft (synthesizable Verilog) or
hard (placed and routed cells). A proper IP module will include
the module functionality packaged behind a standard NoC
interface of an appropriate width. Hard IP is simply soft IP
synthesized for a particular process and with placement, routing,
timing closure, and test generation completed. The hard IP is
ready to be placed in a modular SoC.

We expect that most of the required IP already exists and simply
needs to be tied to a standard interface. For a given user, some IP
will be generated in house, some IP will be provided by tool
vendors, and some will be licensed by third parties. Our vision is
that simpler composition of modules will lower the barrier to
creating a vibrant market of standard high-level digital IP chiplets.

Chiplet verification tools: The challenges to widespread
adoption of this approach lies in inter-module interconnects and
establishing the necessary conventions and standards to allow
automation to be responsible for all the heavy lifting. Besides
functional connection requirements within the constraints of
standardized module heights, formal specifications for ensuring
appropriate power/ground resources and test interfaces to each
module will be needed and require verification.

New analysis tools will be required to focus on the chiplets to
ensure that they are built correctly and follow established rules so
that they can be safely re-instantiated in any circumstance.

Compositions of chiplets should be correct by construction.

Chiplet composition tools and appropriate checkers will be needed
to ensure that all rules are followed and proper inter-chiplet
connections are made. Given the independent nature of these
chiplets, new automated test generation and test application
methodologies and tools will be required. Such tools would allow
the testing requirements of a module to be encapsulated so that
those integrating a chiplet can again be isolated from the details of
the test, yet be assured a quality result each and every time the
module is used.

We have heard both engineers and venture capitalists lament the
high cost of designing a SoC today. Estimates are that $50M is
required to get a complex digital SoC to first prototype [9]. Some
attribute the dearth of fabless semiconductor startups and the
slowdown of innovation in the field to this high cost. While some
of this cost can be attributed to mask sets and wafer starts, the
bulk comes from design and verification. Our vision of a modular
SoC built from standard chiplets offers a path toward greatly
reducing the non-recurring cost of a SoC. In doing, so we hope
that it will spur a new generation of fabless semiconductor
startups and encourage more innovation in chip architecture and
design.

9. ACKNOWLEDGMENTS
We thank our colleagues at NVIDIA whose work on numerous
SoCs has shaped our thoughts on this topic.

10. REFERENCES
[1] Borkar, S. 2009. Design perspectives on 22nm CMOS and

beyond. In Proceedings of the Design Automation

Conference, July 2009, pp. 93-94.

[2] Parnas, D. L. 1972. On the criteria to be used in
decomposing systems into modules. Communications of the

ACM, 15(12) 1972, pp. 1053-1058.

[3] Dally, W. J. and Towles, B. 2001. Route packets, not wires:
on-chip interconnection networks. In Proceedings of the

Design Automation Conference, June 2001, pp. 684-689.

[4] Dally, W. J. and Towles, B. P. 2003. Principles and

Practices of Interconnection Networks. Morgan Kaufmann.

[5] Dally, W.J. and Chang, A. 2000. The role of custom design
in ASIC chips. In Proceedings of the Design Automation

Conference, June 2000, pp. 643-647.

[6] Ueno, K. et al. 2007. A design methodology realizing an over
GHz synthesizable streaming processing unit. In Proceedings

of the IEEE Symposium on VLSI Circuits, June 2007, pp. 48-
49.

[7] Dally, W. J. 1992. Virtual-channel flow control. IEEE

Transactions on Parallel and Distributed Systems, 3(2),
1992, pp. 194-205.

[8] Sankaralingam, K., et al. 2006. Distributed
microarchitectural protocols in the TRIPS prototype
processor. In Proceedings of the International Symposium on

Microarchitecture, December 2006, pp. 480-491.

[9] Goering, R. (2009) Are SoC Development Costs Significantly

Underestimated?,
http://www.cadence.com/Community/blogs/ii/archive/2009/0
9/24/are-soc-development-costs-significantly-
underestimated.aspx

