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24.2 Context-Aware Hierarchical Information-Sensing in a 
6μW 90nm CMOS Voice Activity Detector 

 
Komail Badami, Steven Lauwereins, Wannes Meert, Marian 
Verhelst 
 
KU Leuven, Leuven, Belgium 
 
The rise of always-listening sensors integrated in energy-scarce devices such 
as watches and remote-controls increases the need for intelligent scalable 
interfaces. Contemporary sensor interfaces digitize raw sensor data to extract 
information with energy-intensive computations, such as FFT, which is 
inefficient if the end goal is to only extract selective information for classification 
tasks, e.g. voice activity detection (VAD). Previous work shows energy gains 
from early data reduction through analog feature extraction [1] or embedded 
classification hardware [2]. However, the potential energy savings of these 
devices is limited as they cannot adapt to changes in the sensed information 
content or sensing context, such as the amount/type of acoustic background 
noise. In the processor design community, such adaptivity to varying operating 
conditions is actively researched through the concept of hierarchical computing 
[3]. This work integrates the concept of hierarchical operation with adaptive 
early data extraction and classification, towards a power- and context-aware 
information-extraction sensor interface. This paper specifically reports on a μW 
90nm CMOS VAD, that dynamically adapts sensing resources to signal 
information content and context, thus only spending energy on relevant 
information extraction. An order of magnitude in power savings is achieved by 
exploiting hierarchical sensing, run-time activated/scalable analog feature 
extraction and tightly-integrated context-aware mixed-signal machine learning 
inference, enabling novel applications in area of acoustic sensing [1, 4]. 
                                                          
Figure 1 illustrates the high-level architecture and operating paradigm. A 
classical, yet configurable, always-listening wake-up detector (A) operates in 
nW range. Upon detection of potential information, a more powerful scalable 
analog feature extractor and embedded mixed-signal machine learning 
classification block (B) are activated, operating in the μW range. These blocks 
extract and process a feature subset and are programmed to achieve high 
classification accuracy within the present operating context, as determined by 
the amount and type of acoustic background noise. A context-aware control 
register (CR) only activates the most discriminating features for the current 
context and configures the analog feature extractor to the desired trade-off 
between detection accuracy and power consumption depending on QoS and 
power constraints. Based on the activated features, an embedded mixed-signal 
decision tree (DT) classifier evaluates the signal relevance and, upon interest 
detection, wakes up the off-chip micro-processor (μP) (C). The μP is 
responsible for more advanced acoustic signal processing (e.g. keyword 
detection), periodic context detection, relearning of the DT in case of context 
change and reprogramming the CR. The outlined hierarchical activation 
scheme results in an elastic power consumption of the sensing chip, which 
dynamically scales with the amount of information present in the sensed signal. 
The context-awareness on the other hand enables state-of-the-art (SotA) 
detection accuracy across disparate operating contexts while only spending 
energy on extracting information-bearing data. 
 
The configurable wake-up detector (top of Fig. 2) operates below 750nW and 
activates mode B if the input signal exceeds a μP-set threshold as seen at the 
top of Fig 3. Varying the comparator threshold controls how often the feature 
extractor and classifier are activated, trading-off overall accuracy vs. power 
consumption. The context-scalable analog feature extractor (bottom of Fig. 2) 
extracts the energy-content of the incoming signal in 16 Mel-spaced frequency 
bands between 75Hz and 5kHz, resulting in 16 individually activated analog 
features (af1 - af16). Each band consists of an amplifier and BPF followed by a 
rectifier and LPF. As the DT is trained with the chip’s own analog features, it 
automatically adapts to any process variations of the BPF characteristics. Fig. 3 
shows the measured response of 4 selected analog features to a sine wave 
frequency sweep (bottom left) and the measured analog performance (bottom right). 
The DT-based mixed-signal classifier (left side of Fig. 4) can be configured to 
any 7-node (3-level deep) DT (or less) taking decisions on any combination of 
af5 to af12, as they carry the highest information to power consumed ratio for 
VAD. The particular DT configuration and required tree reference levels (Vrefi) 
are adapted to the acoustic context and system’s energy constraints by the μP. 

To this end, the μP periodically has access to all features (af1-af16) to detect 
context change and learns at run-time a new DT optimized for that new context, 
enabling power efficient DTs while maintaining SotA accuracy. This learning 
phase on the μP [6] optimizes the tree using information-gain/watt as a cost 
function instead of the commonly used information-gain, to identify the subset 
of analog features that result in the lowest power consumption for a given miss-
detect/false-alarm accuracy. The configurable DT implementation consists of an 
analog feature selection stage, a reference comparison stage and a digital 
decision fusion stage. The feature selection stage maps the acoustic features 
(af) to the desired selected features (sf) for every decision node (Note that one 
af can map to multiple sf). In the comparison stage, the 7 selected features are 
compared to 7 reference levels set by the μP through external DACs. An invert 
bit selects between sfi > Vrefi or sfi ≤ Vrefi. The digital decision fusion stage 
implements the tree structure to produce a single voice detection signal waking-
up the μP. The right side of Fig. 4 shows measured speech/non-speech 
detection accuracies for various signal to acoustic noise ratios (SANR). Audio 
streams with a duration of 168s, from the NOIZEUS [5] database, containing 
50% voice are sent through the analog feature extraction block. Subsequently, 
the acoustic features af5-af12 measured on the chip are used offline to train 
DT’s on the achievable trade-off curve between speech/non-speech accuracy. 
Finally, one trade-off point is selected and the corresponding DT is configured 
on chip in the embedded classifier. Measurements (black-squares) confirm the 
performance of the analog feature extractor and embedded DT classifier. 
 
Fig. 5 depicts the benefits of bringing the full hierarchical sensing system 
together. While every operating mode ensures a low miss-detection rate, the 
false-alarm rates and context-specificity are systematically decreased with the 
gradual wake-up of more powerful modes upon interest detection. Always-on 
mode A ensures low average power consumption, operating well below 1μW. 
Context-specific mode B does a power-efficient drastic reduction of the false 
alarm rate, minimizing the power-expensive start-up of the mode C which 
ensures that the system works across heterogeneous contexts. The power 
hungry μP sporadically activates to check the stability of the operating context 
and performs run-time embedded machine learning of a new DT in case of a 
context switch. Table 5 shows that this hierarchical context-aware VAD has a 
voice/noise accuracy of 89/85% for 12dB SANR babble noise, on par with SotA 
software VADs [7] yet consuming only 3.8μW on average for hybrid operation. 
 
Figure 6 compares our hierarchical context-aware 90nm CMOS VAD chip (Fig. 
7) to analog/digital/software SotA VADs. The presented VAD does pay a 
penalty of a larger latency in voice detection, however staying within acceptable 
range for natural speech applications. The worst case power consumption of 
the VAD chip is 6μW performing well below the current SotA. The tight 
integration of hierarchical context-aware analog feature extraction with on chip 
mixed-signal classification clearly demonstrates superior energy efficiency, 
while maintaining SotA accuracies on standardized speech/noise databases. 
The presented paradigm opens up numerous other acoustic event detection 
applications, ranging far beyond VAD, and can also be ported to other sensor 
interfaces, such as gesture recognition. This work was funded by the FWO-
Flanders, the IWT SBO project SINS and an EXPERTS scholarship. 
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Figure 24.2.1: (left) Architectural representation of voice activity 
detector detailing hierarchical information extraction (right) energy 
consumption at different levels of hierarchy. 

 
Figure 24.2.2: Schematic representation of (top) Wakeup detector 
(bottom) Analog feature extractor 

 
Figure 24.2.3: (top) Measured response of Wakeup to audio input 
(bottom left) measured band frequency response and (bottom right) 
measured performance summary of analog feature extraction block 
and energy detector 

 
Figure 24.2.4: (left) Schematic and decision tree algorithm for mixed-
signal classifier (right) Measurement results for HR speech / Non 
speech for different contexts. 

 
Figure 24.2.5: Measured power consumption and Speech / Non Speech 
Hit rates for different operating modes and contexts 

 
Figure 24.2.6: Comparison to state-of-the-art. 



 
Figure 24.2.7: Chip micrograph highlighting different sections 




